## Black holes in $\mathcal{N}=8$ supergravity

Eighth Crete Regional Meeting in String Theory, Nafplion

David Chow<br>University of Crete

9 July 2015

## Introduction

4-dimensional $\mathcal{N}=8$ (maximal) supergravity:

- Low energy regime of M-theory compactified on $T^{7}$
- In perturbation theory, UV finite up to 4 loops, ...?
- Setup for addressing black hole microscopics

Aim: Find general (stationary, non-extremal, asymptotically flat) black hole of $\mathcal{N}=8$ supergravity
$S T U$ supergravity: truncation of $\mathcal{N}=8$ with $4 \mathrm{U}(1)$ gauge fields
Classical U-duality (global symmetries) (Cvetič Hull 96) $\Longrightarrow$ General STU solution is generating solution for general $\mathcal{N}=8$ solution, mixing matter fields, but same 4d metric

Equivalent aim: Find general black hole of STU supergravity

- 10 parameters: mass, rotation, 4 electric, 4 magnetic (5 electromagnetic charges suffice, but 8 is more symmetric)

Based mainly on 1404.2602 (with Geoffrey Compère)

## Outline of solution generating technique

STU supergravity: $\quad 4 \mathrm{~d}$ metric +4 vectors +6 scalars reduce on $t \rightarrow 3 \mathrm{~d}$ metric +5 vectors +11 scalars Hodge dualize $\rightarrow$ 3d metric +16 scalars

3d scalars parameterize coset (Breitenlohner Maison Gibbons 88)

$$
G / K=\mathrm{SO}(4,4) / \mathrm{SL}(2, \mathbb{R})^{4}
$$

Lagrangian: 3d euclidean gravity + scalars (in $\mathrm{SO}(4,4)$ matrix $\mathcal{M}$ )

$$
\mathcal{L}_{3}=R \star_{3} 1-\frac{1}{8} \operatorname{Tr}\left[\star_{3}\left(\mathcal{M}^{-1} \mathrm{~d} \mathcal{M}\right) \wedge\left(\mathcal{M}^{-1} \mathrm{~d} \mathcal{M}\right)\right]
$$

Efficient 1-step generating technique:

$$
\mathrm{d} s_{3}^{2}=\mathrm{d} s_{3}^{2}
$$

$$
\mathcal{M}=g^{\sharp} \mathcal{M}_{0} g
$$

$\mathcal{M}_{0}$ : seed solution $g$ : $\mathrm{SO}(4,4)$ group element
$\mathcal{M}$ : new solution $\sharp$ : $\mathrm{SO}(4,4)$ generalized transpose
(Chong Cvetič Lü Pope 04, Gal'tsov Scherbluk 08, Bossard Michel Pioline 09)

## STU supergravity

4-dimensional $\mathcal{N}=2$ supergravity coupled to 3 vector multiplets
Bosonic fields:

- Metric: $g_{a b}$
- $4 \mathrm{U}(1)$ gauge fields: $A^{I}, I=1,2,3,4$ (or dual fields $\widetilde{A}_{I}$ )
- 6 real scalars: $\varphi_{i}$ "dilatons", $\chi_{i}$ "axions", $i=1,2,3$
( 3 complex scalars $z_{i}=\chi_{i}+\mathrm{ie}^{-\varphi_{i}}$, sometimes called $S, T, U$ )
Bosonic Lagrangian of form

$$
\begin{aligned}
\mathcal{L}_{4}= & R \star 1-\frac{1}{2} \sum_{i}\left(\star \mathrm{~d} \varphi_{i} \wedge \mathrm{~d} \varphi_{i}+\mathrm{e}^{2 \varphi_{i}} \star \mathrm{~d} \chi_{i} \wedge \mathrm{~d} \chi_{i}\right) \\
& -\frac{1}{2} \sum_{I, J}\left[F_{I J}(\boldsymbol{\varphi}, \boldsymbol{\chi}) \star F^{I} \wedge F^{J}+G_{I J}(\boldsymbol{\varphi}, \boldsymbol{\chi}) F^{I} \wedge F^{J}\right]
\end{aligned}
$$

Scalars parameterize coset $\bar{G} / \bar{K}=(\mathrm{SL}(2, \mathbb{R}) / \mathrm{U}(1))^{3}$
Special case: Einstein-Maxwell theory ( $A^{I}$ all equal, $\varphi_{i}=\chi_{i}=0$ )
Field equations invariant under $\mathrm{SL}(2, \mathbb{R})^{3}$ and triality (permuting $\mathrm{SL}(2, \mathbb{R})$ 's)

## STU supergravity continued

Bosonic Lagrangian

$$
\begin{aligned}
\mathcal{L}_{4}= & R \star 1-\frac{1}{2} \sum_{i=1}^{3}\left(\star \mathrm{~d} \varphi_{i} \wedge \mathrm{~d} \varphi_{i}+\mathrm{e}^{2 \varphi_{i}} \star \mathrm{~d} \chi_{i} \wedge \mathrm{~d} \chi_{i}\right) \\
& -\frac{1}{2} \sum_{i=1}^{3} \mathrm{e}^{2 \varphi_{i}-\varphi_{1}-\varphi_{2}-\varphi_{3}} \star\left(\widetilde{F}_{i}-\chi_{i} F^{4}\right) \wedge\left(\widetilde{F}_{i}-\chi_{i} F^{4}\right) \\
& -\frac{1}{2} \mathrm{e}^{-\varphi_{1}-\varphi_{2}-\varphi_{3}} \star F^{4} \wedge F^{4}+\chi_{1} \chi_{2} \chi_{3} F^{4} \wedge F^{4} \\
& +\frac{1}{2} \sum_{\{i, j, k\}=\{1,2,3\}}\left(\chi_{i} \widetilde{F}_{j} \wedge \widetilde{F}_{k}-\chi_{j} \chi_{k} \widetilde{F}_{i} \wedge F^{4}\right)
\end{aligned}
$$

$\left(\widetilde{A}_{1}, \widetilde{A}_{2}, \widetilde{A}_{3}, A^{4}\right)$ duality frame: triality invariance manifest, and prepotential exists
$\mathrm{SL}(2, \mathbb{R})_{1} \times \mathrm{SL}(2, \mathbb{R})_{2} \times \mathrm{SL}(2, \mathbb{R})_{3}$ global symmetry:

$$
\begin{aligned}
\binom{\widetilde{F}_{1}}{F^{4}} & \rightarrow \Lambda\binom{\widetilde{F}_{1}}{F^{4}}, & \binom{\widetilde{F}_{2}}{F^{3}} & \rightarrow\left(\Lambda^{\top}\right)^{-1}\binom{\widetilde{F}_{2}}{F^{3}} \\
\binom{\widetilde{F}_{4}}{F^{1}} & \rightarrow \Lambda\binom{\widetilde{F}_{4}}{F^{1}}, & \binom{\widetilde{F}_{3}}{F^{2}} & \rightarrow\left(\Lambda^{\top}\right)^{-1}\binom{\widetilde{F}_{3}}{F^{2}} \\
\Lambda & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{R})_{1}, & z_{1} & \rightarrow \frac{a z_{1}+b}{c z_{1}+d}
\end{aligned}
$$

## Truncations of $\mathcal{N}=8$ supergravity



## Basic example: 4d gravity $\rightarrow$ 3d

Restrict to stationary solutions $\Longrightarrow$ Kaluza-Klein reduce on $t$
Reduction ansatz (timelike):

$$
\mathrm{d} s^{2}=-\mathrm{e}^{2 U}\left(\mathrm{~d} t+\omega_{3}\right)^{2}+\mathrm{e}^{-2 U} \mathrm{~d} s_{3}^{2}
$$

Hodge dualize $\omega_{3}$ to 3 d scalar $\sigma$ :

$$
\mathrm{d} \omega_{3}=-\frac{1}{2} \mathrm{e}^{-4 U} \star_{3} \mathrm{~d} \sigma
$$

$\Longrightarrow$ 3d euclidean gravity + scalars:

$$
\mathcal{L}_{3}=R \star_{3} 1-2 \star_{3} \mathrm{~d} U \wedge \mathrm{~d} U-\frac{1}{8} \mathrm{e}^{-4 U} \star_{3} \mathrm{~d} \sigma \wedge \mathrm{~d} \sigma
$$

Hidden $\operatorname{SL}(2, \mathbb{R})$ "Ehlers symmetry" revealed in 3d:
Scalars $(U, \sigma)$ parameterize $\mathrm{SL}(2, \mathbb{R}) / \mathrm{U}(1)$

Basic example: 4d gravity $\rightarrow$ 3d: $\mathrm{SL}(2, \mathbb{R}) / \mathrm{U}(1)$ coset $\mathfrak{s l}(2, \mathbb{R})$ generators:

Cartan

$$
H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

positive-root

$$
E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

$$
F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Scalars $(U, \sigma)$ parameterize $\operatorname{SL}(2, \mathbb{R}) / \mathrm{U}(1)$ coset: $\mathcal{V}=\mathrm{e}^{-U H} \mathrm{e}^{-\sigma E / 2}$
Define $\mathcal{M} \equiv \mathcal{V}^{\top} \mathcal{V} \in \operatorname{SL}(2, \mathbb{R})$ :

- $\mathcal{M}$ is "gauge-invariant", i.e. $\mathcal{V} \sim k \mathcal{V}$ for $k \in \mathrm{SO}(2)=\mathrm{U}(1)$
- 3d scalars $(U, \sigma)$ can be extracted from $\mathcal{M}$

3d theory as manifest $\mathrm{SL}(2, \mathbb{R})$ coset:

$$
\begin{aligned}
\mathcal{L}_{3} & =R \star_{3} 1-2 \star_{3} \mathrm{~d} U \wedge \mathrm{~d} U-\frac{1}{8} \mathrm{e}^{-4 U} \star_{3} \mathrm{~d} \sigma \wedge \mathrm{~d} \sigma \\
& =R \star_{3} 1-\frac{1}{8} \operatorname{Tr}\left[\star_{3}\left(\mathcal{M}^{-1} \mathrm{~d} \mathcal{M}\right) \wedge\left(\mathcal{M}^{-1} \mathrm{~d} \mathcal{M}\right)\right]
\end{aligned}
$$

Basic application: generate Taub-NUT from Schwarzschild

## $S T U$ supergravity $\rightarrow 3 \mathrm{~d}$

Reduction ansatz:

$$
\begin{gathered}
\mathrm{d} s^{2}=-\mathrm{e}^{2 U}\left(\mathrm{~d} t+\omega_{3}\right)^{2}+\mathrm{e}^{-2 U} \mathrm{~d} s_{3}^{2} \\
A^{I}=\zeta^{I}\left(\mathrm{~d} t+\omega_{3}\right)+A_{(3 \mathrm{~d})}^{I}, \quad \widetilde{A}_{I}=\widetilde{\zeta}_{I}\left(\mathrm{~d} t+\omega_{3}\right)+\widetilde{A}_{I(3 \mathrm{~d})}
\end{gathered}
$$

16 3d scalars after Hodge dualization:

- $U, \sigma$ (dualizing $\omega_{3}$ )
- 8 electromagnetic scalars $\zeta^{I}, \widetilde{\zeta}_{I}$ (dualizing $\widetilde{A}_{I(3 \mathrm{~d})}, A_{(3 \mathrm{~d})}^{I}$ )
- 3 dilatons $\varphi_{i}, 3$ axions $\chi_{i}$

3d scalars parameterize $\mathrm{SO}(4,4) / \mathrm{SL}(2, \mathbb{R})^{4}$
$\mathrm{SO}(4,4)$ generalized transpose $\sharp$ :

$$
g^{\sharp}=\eta g^{\top} \eta^{-1}, \quad \eta=\operatorname{diag}(-1,-1,1,1,-1,-1,1,1)
$$

$\mathrm{SO}(4,4)$ matrices satisfy $\mathcal{M}^{\sharp}=\mathcal{M}$

## $S T U$ supergravity $\rightarrow 3 \mathrm{~d}: \mathrm{SO}(4,4) / \mathrm{SL}(2, \mathbb{R})^{4}$ coset

 $28 \mathfrak{s o}(4,4)$ generators:| Cartan (4) | Positive-root (12) | Negative-root (12) |
| :---: | :---: | :---: |
| $H_{\Lambda}$ | $E_{\Lambda}, E^{Q_{I}}, E^{P^{I}}$ | $F_{\Lambda}, F^{Q_{I}}, F^{P^{I}}$ |

$\Lambda=0:$ Ehlers $\operatorname{SL}(2, \mathbb{R}) \quad \Lambda=1,2,3$ : scalar fields $\operatorname{SL}(2, \mathbb{R})^{3}$
$I=1,2,3,4$ : gauge fields
16 scalars parameterize coset in Iwasawa gauge $g=g_{K} g_{H} g_{E}$ :

$$
\begin{aligned}
& \mathcal{V}=\exp \left(-U H_{0}\right) \exp \left(\frac{1}{2} \sum_{i} \varphi_{i} H_{i}\right) \exp \left(-\sum_{i} \chi_{i} E_{i}\right) \\
& \exp \left[-\sum_{I}\left(\zeta^{I} E^{Q_{I}}+\widetilde{\zeta}_{I} E^{P^{I}}\right)\right] \exp \left(-\frac{1}{2} \sigma E_{0}\right)
\end{aligned}
$$

3d Lagrangian with manifest $\mathrm{SO}(4,4)$ symmetry:

$$
\mathcal{L}_{3}=R \star_{3} 1-\frac{1}{8} \operatorname{Tr}\left[\star_{3}\left(\mathcal{M}^{-1} \mathrm{~d} \mathcal{M}\right) \wedge\left(\mathcal{M}^{-1} \mathrm{~d} \mathcal{M}\right)\right], \quad \mathcal{M} \equiv \mathcal{V}^{\sharp} \mathcal{V}
$$

Useful to define 1-form $\mathcal{N} \in \mathfrak{s o}(4,4)$ (Breitenlohner Maison 00):

$$
\mathrm{d} \mathcal{N}=\mathcal{M}^{-1} \star_{3} \mathrm{~d} \mathcal{M}=\mathrm{d} \omega_{3} F_{0}+\sum_{I}\left(\mathrm{~d} A_{(3 \mathrm{~d})}^{I} F^{P^{I}}-\mathrm{d} \widetilde{A}_{I(3 \mathrm{~d})} F^{Q_{I}}\right)+\ldots
$$

## Generating the charged solution

Method generalizes "Harrison transformation" of Einstein-Maxwell theory, which uses $\mathrm{SU}(2,1) / \mathrm{S}(\mathrm{U}(1,1) \times \mathrm{U}(1))$ coset

1. Initial seed solution: Kerr-Taub-NUT (3 parameters $m, n, a$ )
2. Act with group element (adds 8 charge parameters $\delta_{I}, \gamma_{I}$ )

$$
g=\exp \left(-\sum_{I} \gamma_{I}\left(E^{P^{I}}-F^{P^{I}}\right)\right) \exp \left(-\sum_{I} \delta_{I}\left(E^{Q_{I}}-F^{Q_{I}}\right)\right)
$$

3. Final 11-parameter solution: 3d scalars from $\mathcal{M} \rightarrow g^{\sharp} \mathcal{M} g$ $\left(\mathcal{N} \rightarrow g^{-1} \mathcal{N} g\right.$ gives directly 3d 1-forms $\left.\omega_{3}, A_{(3 \mathrm{~d})}^{I}, \widetilde{A}_{I(3 \mathrm{~d})}\right)$

Seed Kerr solution often generates NUT charge
$\Longrightarrow$ start with more general Kerr-Taub-NUT seed instead
Choice of $g$ motivated by:

- Symmetry in gauge fields
- $g^{\sharp} g=\mathbb{I}$ : preserves asymptotic flatness at spatial infinity


## Summary of general charged solution

| 11 physical charges | 11 parameters |
| :---: | :---: |
| Mass $M$, NUT charge $N$ | $m, n$ |
| Angular momentum $J$ | $a$ |
| Electric charges $Q_{I}$ | $\delta_{I}$ |
| Magnetic charrges $P^{I}$ | $\gamma_{I}$ |

Set $N=0$ (linear constraint on seed $m, n$ )
$\rightarrow$ 10-parameter asymptotically flat family
Unifies various previous solutions (Demiański Newman 66, Rasheed 95, Cvetič Youm 96, Matos Mora 96, Larsen 99, Lozano-Tellecha Ortín 99, Chong Cvetič Lü Pope 04, Giusto Saxena Ross 07, Compère de Buyl Stotyn Virmani 10)

## Thermodynamics

Thermodynamic quantities satisfy usual relations:

- First law: $\mathrm{d} E=T \mathrm{~d} S+\Omega \mathrm{d} J+\sum_{I}\left(\Phi^{I} \mathrm{~d} \bar{Q}_{I}+\Psi_{I} \mathrm{~d} \bar{P}^{I}\right)$
- Smarr relation: $E=2 T S+2 \Omega J+\sum_{I}\left(\Phi^{I} \bar{Q}_{I}+\Psi_{I} \bar{P}^{I}\right)$

Product of inner and outer horzion areas (Larsen 97, Cvetič Larsen 97, Cvetič Gibbons Pope 10):

$$
S_{+} S_{-}=4 \pi^{2}\left(J^{2}+\Delta\left(Q_{I}, P^{I}\right)\right) \in \pi^{2} \mathbb{Z}
$$

Cayley hyperdeterminant:

$$
\begin{aligned}
\Delta= & \frac{1}{16}\left[4\left(\prod_{I} Q_{I}+\prod_{I} P^{I}\right)+2 \sum_{I<J} Q_{I} Q_{J} P^{I} P^{J}\right. \\
& \left.-\sum_{I}\left(Q_{I}\right)^{2}\left(P^{I}\right)^{2}\right]
\end{aligned}
$$

- $\operatorname{SL}(2, \mathbb{R})^{3}$-invariant and triality-invariant
- Special case of $\mathrm{E}_{7(7)}$ quartic invariant $\diamond$ (Kallosh Kol 96)

Non-extremal entropy formula:

$$
S_{+}=2 \pi\left(\sqrt{\Delta+F}+\sqrt{-J^{2}+F}\right)
$$

$S_{+}, J, \diamond \mathrm{E}_{7(7) \text {-invariant }} \Longrightarrow F\left(M, Q_{I}, P^{I}, z_{\infty}^{i}\right)$ also invariant

## Killing tensors and separability

Kerr metric admits Killing-Stäckel tensor:

$$
K_{a b}=K_{(a b)}, \quad \nabla_{(a} K_{b c)}=0, \quad K^{a b} P_{a} P_{b} \text { conserved on geodesics }
$$

General STU supergravity charged black holes admit Killing-Stäckel tensor $\widetilde{K}_{a b}$ in "string frame" $\mathrm{d} \widetilde{s}^{2}=\Omega^{2} \mathrm{~d} s^{2}$
$\Longrightarrow$ Conformal Killing-Stäckel tensor

$$
Q_{a b}=Q_{(a b)}, \quad \nabla_{(a} Q_{b c)}=q_{(a} g_{b c}, \quad\left(q_{a}=\frac{1}{6}\left(\nabla_{a} Q^{b}{ }_{b}+2 \nabla_{b} Q^{b}{ }_{a}\right)\right)
$$

in Einstein frame, components $Q^{a b}=\widetilde{K}^{a b}$

- $Q^{a b} P_{a} P_{b}$ conserved on null geodesics

Separation of:

- Massive/massless geodesics in string/Einstein frame
- Massless Klein-Gordon equation in Einstein frame


## $\mathrm{U}(1)^{4}$ gauged supergravity and AdS black holes

Maximal $\mathcal{N}=8, \operatorname{SO}(8)$-gauged supergravity truncates to $\mathcal{N}=2$, $\mathrm{U}(1)^{4}$-gauged supergravity (Cvetic et al. 99):

$$
\mathcal{L}_{\text {gauged }}=\mathcal{L}_{\text {ungauged }}+g^{2} \sum_{i}\left(2 \cosh \varphi_{i}+\chi_{i}^{2} \mathrm{e}^{2 \varphi_{i}}\right) \star 1
$$

$g$ : gauge-coupling constant/inverse AdS radius
Potential breaks 4d global symmetry $\operatorname{SL}(2, \mathbb{R})^{3} \rightarrow \mathrm{U}(1)^{3}$
$\Longrightarrow$ previous techniques fail, so guess instead
Two classes of asymptotically AdS generalizations:

- Static solutions, 10 parameters: mass, AdS radius, 4 electric charges, 4 magnetic charges, $\left(S^{2}, \mathbb{R}^{2}, H^{2}\right.$ horizon)
- Rotating solutions, 8 parameters: mass, NUT charge, rotation, AdS radius, 2 electric charges, 2 magnetic charges ( $\mathrm{U}(1)^{2}$ truncation of $\mathcal{N}=4, \mathrm{SO}(4)$-gauged supergravity)
Includes known subcases (Duff Liu 99, Chong Cvetič Lü Pope 05, Lü Pang Pope 13, Lü 13)


## Summary

$\mathrm{SO}(4,4)$ solution generating technique for $S T U$ supergravity
Solutions:

- General rotating black holes of STU supergravity with 11 parameters: mass, NUT, rotation, 4 electric, 4 magnetic $\Longrightarrow$ General black holes in $\mathcal{N}=8$ supergravity with 59 parameters: mass, NUT, rotation, 28 electric, 28 magnetic
- Also some AdS black holes of $\mathrm{U}(1)^{4}$-gauged supergravity

Some properties:

- $\mathrm{E}_{7(7) \text {-invariant non-extremal entropy formula: }}$

$$
S=2 \pi\left(\sqrt{\diamond+F}+\sqrt{-J^{2}+F}\right)
$$

- Killing tensors, separability

Open problems:

- Beyond coset models: inverse scattering, more general $\mathcal{N}=2$ theories
- Complete proof of uniqueness


European Union European Social Fund

This research has been co-financed by the European Union (European Social Fund, ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF), under the grant schemes "Funding of proposals that have received a positive evaluation in the 3rd and 4th Call of ERC Grant Schemes" and the program "Thales".

## Summary of general charged solution: metric

Coordinates: $(t, r, \phi, u), u=n+a \cos \theta$
Metric:

$$
\begin{gathered}
\mathrm{d} s^{2}=-\frac{R-U}{W}\left(\mathrm{~d} t+\omega_{3}\right)^{2}+W\left(\frac{\mathrm{~d} r^{2}}{R}+\frac{\mathrm{d} u^{2}}{U}+\frac{R U \mathrm{~d} \phi^{2}}{a^{2}(R-U)}\right) \\
R=r^{2}+a^{2}-n^{2}-2 m r, \quad U=a^{2}-(u-n)^{2}
\end{gathered}
$$

$W^{2}(r, u)$ quartic

## Summary of general charged solution: matter

Gauge fields:

$$
A^{I}=-W \frac{\partial}{\partial \delta_{I}}\left(\frac{\mathrm{~d} t+\omega_{3}}{W}\right)
$$

Scalar fields:

$$
\begin{aligned}
\chi_{i} & =\frac{f_{i}}{r^{2}+u^{2}+g_{i}}, \quad \mathrm{e}^{-\varphi_{i}}=\frac{W}{r^{2}+u^{2}+g_{i}}, \\
f_{i}(r, u) & =2(m r+n u) \xi_{i 1}+2(m u-n r) \xi_{i 2}+4\left(m^{2}+n^{2}\right) \xi_{i 3}, \\
g_{i}(r, u) & =2(m r+n u) \eta_{i 1}+2(m u-n r) \eta_{i 2}+4\left(m^{2}+n^{2}\right) \eta_{i 3}
\end{aligned}
$$

