Moduli stabilization, de Sitter vacua and supersymmetry breaking

I. Antoniadis

Albert Einstein Center, Bern University and LPTHE, UPMC/CNRS, Paris

8th Regional Meeting in String Theory Nafplion 6-10 July 2015

String phenomenology

• Is string theory a tool for strong coupling dynamics

or a theory of fundamental forces?

• If theory of Nature can string theory describe

both particle physics and cosmology?

Problem of scales

- describe high energy SUSY extension of the Standard Model unification of all fundamental interactions
- incorporate Dark Energy

simplest case: infinitesimal (tunable) +ve cosmological constant

- describe possible accelerated expanding phase of our universe models of inflation (approximate de Sitter)
 - \Rightarrow 3 very different scales besides M_{Planck} :

impose independent scales: proceed in 2 steps

• SUSY breaking at $m_{SUSY} \sim \text{TeV}$ with an infinitesimal (tunable) positive cosmological constant

Villadoro-Zwirner '05

I.A.-Knoops, I.A.-Ghilencea-Knoops '14, I.A.-Knoops in preparation

2 Inflation in supergravity at a scale different than m_{SUSY}

1st step: Maximal predictive power if there is common framework for :

- moduli stabilization
- model building (spectrum and couplings)
- SUSY breaking (calculable soft terms)
- computable radiative corrections (crucial for comparing models)

Possible candidate of such a framework: magnetized branes

Type I string theory with magnetic fluxes B_{ij} on 2-cycles of the compactification manifold

- Dirac quantization: $B = \frac{m}{nA} \equiv \frac{p}{A}$ [8] \Rightarrow moduli stabilization *B*: constant magnetic field *m*: units of magnetic flux *n*: brane wrapping *A*: area of the 2-cycle
- Spin-dependent mass shifts for charged states \Rightarrow SUSY breaking
- Exact open string description: \Rightarrow calculability

 $qB \rightarrow \theta = \arctan qB\alpha'$ weak field \Rightarrow field theory

T-dual representation: branes at angles ⇒ model building
 (m, n): wrapping numbers around the 2-cycle directions

Magnetic fluxes can be used to stabilize moduli I.A.-Maillard '04, I.A.-Kumar-Maillard '05, '06, Bianchi-Trevigne '05

e.g. T^6 : 36 moduli (geometric deformations)

internal metric: $6 \times 7/2 = 21 = 9 + 2 \times 6$ type IIB RR 2-form: $6 \times 5/2 = 15 = 9 + 2 \times 3$

 $\label{eq:complexification} \operatorname{complex} \begin{cases} \mathrm{K\ddot{a}hler\ class} & J \\ & 9\ \mathrm{complex\ moduli\ for\ each} \\ & \\ \mathrm{complex\ structure} & \tau \end{cases}$

magnetic flux: 6×6 antisymmetric matrix F complexification \Rightarrow

 $F_{(2,0)}$ on holomorphic 2-cycles: potential for au superpotential $F_{(1,1)}$ on mixed (1,1)-cycles: potential for J FI D-terms

N = 1 SUSY conditions \Rightarrow moduli stabilization

F_(2,0) = 0 ⇒ τ matrix equation for every magnetized U(1) need 'oblique' (non-commuting) magnetic fields to fix off-diagonal components of the metric ← but can be made diagonal

Tadpole cancellation conditions : introduce an extra brane(s)

 \Rightarrow dilaton potential from the FI D-term \rightarrow two possibilities:

- keep SUSY by turning on charged scalar VEVs
- break SUSY in a dS or AdS vacuum $d = \xi / \sqrt{1 + \xi^2}$ [9]

I.A.-Derendinger-Maillard '08

$$F_{(2,0)} = 0 \Rightarrow \tau^{\mathrm{T}} p_{xx} \tau - (\tau^{\mathrm{T}} p_{xy} + p_{yx} \tau) + p_{yy} = 0$$

$$T^{6} \text{ parametrization: } (x^{i}, y^{i}) \quad i = 1, 2, 3 \qquad z^{i} = x^{i} + \tau^{ij} y^{i}$$

Non-trivial VEVs ν for charged brane scalars \Rightarrow

D-term condition is modified to:

$$q v^{2} (J \land J \land J - J \land F \land F) = -(F \land F \land F - F \land J \land J)$$

charge

break SUSY in a dS or AdS vacuum

I.A.-Derendinger-Maillard '08

N = 2 non-linear supersymmetry \Rightarrow

General form of the localized dilaton potential:

$$V(\phi, d) = \frac{e^{-\phi}}{g^2} \left\{ \left(\sqrt{1 - d^2} - 1 \right) + \xi d + \delta T \right\}$$

DBI action FI-term

- d: D-auxiliary in $2\pi \alpha'$ -units
- δT : tension leftover RR tadpole cancellation $\Rightarrow \delta T = 1 \sqrt{1 \xi^2}$

$$d$$
 elimination $\Rightarrow d = rac{\xi}{\sqrt{1+\xi^2}}$

$$V_{
m min} = \delta \, \overline{T} \, e^{-\phi}$$
 ; $\delta \, \overline{T} = \sqrt{1+\xi^2} - \sqrt{1-\xi^2}$

Dilaton fixing:

- 1) by 3-form fluxes in a SUSY way \Rightarrow dS vacuum with positive energy D-term uplifting possible from flat space
- 2) add a 'non-critical' (bulk) dilaton potential

 \Rightarrow AdS vacuum with tunable string coupling

 $V_{\rm non-crit} = \delta c \, e^{-2\phi} \qquad \delta c$: central charge deficit

minimization of $V = V_{\rm non-crit} + V_{\rm min} \Rightarrow \delta c < 0$

$$e^{\phi_0} = -\frac{2\delta c}{3\delta \overline{T}}$$
 $V_0 = \frac{\delta c^3}{3\delta \overline{T}^2}$ $R_0 = -\delta \overline{T} e^{3\phi_0}$
curvature in Einstein frame

e.g. replace a free coordinate by a CFT minimal model of central charge $1+\delta c$

 \rightarrow generalize: add a dilaton potential preserving the axion shift symmetry \Rightarrow break SUSY with tunable vacuum energy

Content (besides N = 1 SUGRA): one vector V and one chiral multiplet S with a shift symmetry $S \rightarrow S - ic\omega \leftarrow \text{transformation parameter}$ String theory: compactification modulus or universal dilaton $s = 1/g^2 + ia \leftarrow$ dual to antisymmetric tensor Kähler potential K: function of $S + \bar{S}$ string theory: $K = -p \ln(S + \bar{S})$ Superpotential: constant or single exponential if R-symmetry $W = ae^{bS}$ $b < 0 \Rightarrow$ non perturbative can also be described by a generalized linear multiplet

$$\mathcal{V}_{F} = a^{2} e^{\frac{b}{l}} l^{p-2} \left\{ \frac{1}{p} (pl-b)^{2} - 3l^{2} \right\} \qquad l = 1/(s+\bar{s})$$
Planck units

no minimum for b < 0 with l > 0 ($p \le 3$)

but interesting metastable SUSY breaking vacuum

when R-symmetry is gauged by V allowing a Fayet-Iliopoulos (FI) term:

 $\mathcal{V}_D = c^2 l(pl - b)^2$ for gauge kinetic function f(S) = S

• b > 0: $V = V_F + V_D$ SUSY local minimum in AdS space at l = b/p

- b = 0: SUSY breaking minimum in AdS (p < 3) $\delta c = -a^2$
- b < 0: SUSY breaking minimum with tunable cosmological constant Λ

In the limit $\Lambda \approx 0 \ (p = 2) \Rightarrow$

 $b/I = \alpha \approx -0.183268$

$$rac{a^2}{bc^2} = 2rac{e^{-lpha}}{lpha}rac{(2-lpha)^2}{2+4lpha-lpha^2} + \mathcal{O}(\Lambda) pprox -50.6602$$

physical spectrum:

massive dilaton, U(1) gauge field, Majorana fermion, gravitino

All masses of order $m_{3/2} \approx e^{\alpha/2} I a \leftarrow$ TeV scale

I. Antoniadis (Regional Meeting 2015)

Properties and generalizations

• Metastability of the ground state: extremely long lived $I \simeq 0.02 \text{ (GUT value } \alpha_{GUT}/2) m_{3/2} \sim \mathcal{O}(TeV) \Rightarrow$

decay rate $\Gamma \sim e^{-\mathcal{B}}$ with $B \approx 10^{300}$

• Add visible sector (MSSM) preserving the same vacuum matter fields ϕ neutral under R-symmetry

 $\mathcal{K} = -2\ln(S+ar{S}) + \phi^{\dagger}\phi$; $\mathcal{W} = (a + \mathcal{W}_{MSSM})e^{bS}$

 \Rightarrow soft scalar masses non-tachyonic of order $m_{3/2}$ (gravity mediation)

 R-charged fields can be added in the hidden sector needed for anomaly cancellation (important constraint)

Properties and generalizations

- Interesting phenomenology: work in progress
- Toy model classically equivalent to

 $K = -p \ln(S + \overline{S}) + b(S + \overline{S})$; W = a with V ordinary U(1)

- string origin of b ? allows flat space solution
 unphysical in the absence of a
- Consider a simple (anomaly free) variation of the model with the above K and W, gauge kinetic function f = 1 and p = 1
 ⇒ tuning still possible but scalar masses of neutral matter tachyonic possible solution: add a new field Z in the 'hidden' SUSY sector

An alternative model

$$egin{aligned} \mathcal{K} &= -\ln(S+ar{S}) + b(S+ar{S}) + Zar{Z} + \sum \Phiar{\Phi} \ & \mathcal{W} &= a(1+\gamma Z) + \mathcal{W}_{MSSM}(\Phi) \ & f &= 1 \quad , \quad f_{\mathcal{A}} &= 1/g_{\mathcal{A}}^2 \end{aligned}$$

Existence of tunable dS vacuum + non-tachyonic soft scalar masses $\Rightarrow 0.5 \leq \gamma \lesssim 1.7$

- main properties remain with $\operatorname{Re} z, F_z \neq 0$
- soft scalar masses: $m_0 pprox B_0 \sim \mathcal{O}(m_{3/2})$
- trilinear scalar couplings: $A_0 = B_0 + m_{3/2}$

gaugino masses appear to vanish since f_A are constants however in the gauged R-symmetry representation they don't

Kähler transformation and gaugino masses

$$\begin{split} \mathcal{K} &= -\ln(S + \bar{S}) + Z\bar{Z} + \sum \Phi \bar{\Phi} \\ \mathcal{W} &= \left[a(1 + \gamma Z) + \mathcal{W}_{MSSM}(\Phi) \right] e^{bS} \\ f_A &= 1/g_A^2 + \beta_A S \quad ; \quad \beta_A = \frac{b}{8\pi^2} (\mathcal{T}_{R_A} - \mathcal{T}_{G_A}) \end{split}$$

S-dependent contribution: needed to cancel the $U(1)_R$ anomalies \Rightarrow generate non-vanishing gaugino masses!

resolution of the puzzle: 'anomaly' mediation contribution due to super-Weyl-Kähler and sigma-model anomalies

 $m_{1/2} = -\frac{g^2}{16\pi^2} [(3T_G - T_R)m_{3/2} + (T_G - T_R)K_{\alpha}F^{\alpha} + 2\frac{T_R}{d_R}(\log \det K|_R'')_{,\alpha}F^{\alpha}]$

difference in K_S is accounted by difference in f

Phenomenology

• distinct features

different from other models of SUSY breaking and mediation

• gaugino masses at the quantum level

 \Rightarrow suppressed compared to scalar masses and A-terms experimental bounds on gluinos \Rightarrow scalar masses O(10) TeV

- μ -term as in SUGRA: e.g. add in the Kähler potential $zh\bar{h}$
- Z-field can be avoided (non tachyonic scalar masses) by adding an S-dependent factor in Matter kinetic terms $K = -\ln(S + \bar{S}) + (S + \bar{S})^{-\nu} \sum \Phi \bar{\Phi} \quad \text{for } \nu \gtrsim 2.5$

 \Rightarrow similar phenomenology

Conclusions

String phenomenology:

Consistent framework for particle phenomenology and cosmology

possible 3 very different scales (besides M_{Planck})

electroweak, dark energy, inflation

Maximal predictive power if common frame for:

moduli stabilization, model building, SUSY breaking and calculability e.g. magnetized branes

- SUSY breaking with infinitesimal (tunable) +ve cosmological constant interesting framework for model building incorporating dark energy
- Inflation models at a hierarchically different third scale Sgoldstino-less supergravity models of inflation