Rigid Holography and 6d N=(2,0) Theories on AdS₅xS¹

Ofer Aharony Weizmann Institute of Science

8th Crete Regional Meeting on String Theory, Nafplion, July 9, 2015 OA, Berkooz, Rey, 1501.02904

Outline

- Why study field theories on AdS_pxM_a?
- Rigid holography + simple examples.
- 6d A_{n-1} 𝒴=(2,0) SCFTs.
- How to study them on AdS₅xS¹ using rigid holography ?
- Naïve analysis → a paradox → a surprising duality.
- Summary and open questions.

Field Theories on AdS_pxM_q - why ?

- Field theories on curved space exhibit new features not visible in flat space.
- On AdS space have a new knob to turn : boundary conditions.
- Supersymmetric theories on AdS_pxM_q can preserve (all) supersymmetry. Hope to compute many things exactly. Localization?
- Can hope to learn more about mysterious theories (such as $6d \mathcal{N}=(2,0) \text{ SCFTs}$).
- Can use AdS/CFT !

Standard AdS/CFT

- A quantum gravity theory on AdS_{d+1} is equivalent to a CFT_d. Symmetries match.
- Need boundary conditions to define. At weak bulk coupling, fields in bulk map to operators ("single-trace") in the CFT_d.
 Non-normalizable modes (fixed) map to sources for operators, normalizable modes (fluctuating) to their VEVs.
- Graviton maps to EM tensor T_{mn}.
- Hilbert spaces identical.

Rigid holography

- A quantum field theory on AdS_{d+1} still has same symmetries as a CFT_d.
- Bulk fields still sit in same representations as local operators, can identify source and VEV. Correlators of these operators obey usual conditions (unitarity, crossing, etc.).
- However, no T_{mn}, so cannot be equivalent to a local CFT.
- Example free field in bulk = single operator and its products = "generalized free field". Decoupled subsector of CFT.

5

Rigid holography

- Can we realize interacting theories as decoupled sector in a CFT ? Need to have a limit of the CFT where all correlators
 < O_{QFT} ... O_{QFT} O_{other} ... O_{other} > vanish, while some < O_{QFT} ... O_{QFT} > remain finite.
- Vanishing of normalized <0_{QFT} 0_{QFT} T_{mn}> requires c →∞, as in large N limit.
- But usually all correlators vanish, so need to have also some other parameters scaling with N to retain finite correlators.

How to find examples ?

- Can sometimes embed a field theory on AdS_pxM_a into string (M) theory on AdS_mxM_n which is dual to an (m-1) dimensional CFT, and take a decoupling limit. So these QFTs are a subsector of (m-1) dimensional CFTs (though not full local CFTs by themselves). In flat space string (M) theory with branes /
 - defects, decouple low-energy field theory by taking M_s , M_P to ∞ keeping energies and couplings (g_{YM}) fixed.

How to find examples ?

- In string(M) theory on AdS_mxM_n with branes / defects filling AdS_pxM_q, again take M_s and M_P to ∞, but now need to keep R_{AdS} fixed. In dual CFT means taking M_P R_{AdS} ~ N^α to ∞.
- Would like to keep QFT couplings fixed may or may not be possible.
- Naturally keep SUSY.
- So field theory on AdS_pxM_q (with specific boundary conditions) = a subsector of the (m-1) dimensional CFT. <u>Rigid Holography</u>.

Caveats

- Is it an exact equivalence ? The dual subsector captures the response of the QFT on AdS_pxM_q to sources on the boundary.
- But this QFT also has local correlators in AdS_pxM_q. Are these uniquely determined by the response to boundary sources ? (Are local QFT correlators in flat space determined by S-matrix ?)
- Get specific boundary conditions, not clear how to generalize.

Examples in IIB on AdS₅xS⁵

- NS5-branes on AdS₄xS² (6d SYM, LST) : $M_P R_{AdS} \rightarrow \infty$ requires N $\rightarrow \infty$. $g_6^2 \sim \alpha'$. Can take $M_s \rightarrow \infty$, get free 6d SYM on AdS₄xS². Or can keep M_s fixed ($g_s \sim 1/N$), and get UV completion : $\mathcal{N}=(1,1)$ LST on AdS₄xS² (non-local non-conformal example).
 - D1-branes on AdS₂ (2d SYM) : Again need $N \rightarrow \infty$. Now $g_2^2 R_{AdS}^2 \sim (N g_s^3)^{1/2}$. So can take $g_s \sim 1/N$ and get free 2d SYM, or can keep N g_s^3 fixed and get interacting 2d SYM.

Our main example

- 6d A_{n-1} 𝒴=(2,0) SCFT on AdS₅xS¹.
- It arises as the low-energy theory on n overlapping IIA NS5/M5-branes.
- The same theory arises in type IIB on a C²/Z_n orbifold, at its singular point (related by string dualities).
- For a single M5-brane, low-energy theory is a free N=(2,0) tensor multiplet, containing 5 scalars (transverse motion), a self-dual 2-form (dB=*dB) and fermions.

Our main example

- For n>1 get an interacting CFT whose only parameter is n. (Dual for $n \rightarrow \infty$.)
- M theory realization implies moduli space is R⁵ⁿ/S_n (removing the center of mass R⁵). At generic points get (n-1) tensor multiplets.
- In IIB, it is realized by turning on blow-up modes for (n-1) 2-cycles localized at the orbifold fixed point (3 scalars each), and two 2-form fields (B₂, C₂) on each of the 2-cycles.
- On R⁵xS¹ at low energies get 5d SU(n) SYM with g₅² ~ R_S¹, generally broken to U(1)ⁿ⁻¹.

AdS₅xS¹ embedded in string theory

- Consider type IIB string theory on AdS₅xS⁵/Z_n = near-horizon limit of K D3-branes on C²/Z_n. Dual to 4d N=2 SU(K)ⁿ elliptic quiver with bi-fundamental hypermultipets (Kachru-Silverstein).
- Fixed points : AdS₅xS¹ in AdS₅xS⁵/Z_n, locally have a C²/Z_n orbifold there.
- At orbifold point B₂ fields non-zero. When vanish get 6d $\mathcal{N}=(2,0)$ A_{n-1} SCFT on AdS₅xS¹ (coupled to rest of type IIB), with R_{AdS}=R_S and specific boundary conditions. ¹³

- 4d N=2 SCFT has n exactly marginal deformations = complex gauge couplings.
- One maps to type IIB dilaton-axion.
- Other (n-1) map to B₂ and C₂ on 2-cycles of singularity. Other blow-up modes tachyonic.
- Near this point "moduli space" (space of SUSY vacua on AdS₅) is Cⁿ⁻¹/S_n with A_{n-1} (2,0) SCFT arising at the origin.
- Preserve 16 supercharges.
- At generic points on the "moduli space" have (n-1) 6d 2-forms → U(1)ⁿ⁻¹ gauge theory on AdS₅. Dual to U(1)ⁿ global symmetry of hypermultiplets (diagonal U(1) geometrical)₄.

Naïve expectation

- At origin of "moduli space" expect N=(2,0) theory on S¹ to give an SU(n) gauge theory on AdS₅. Would mean global symmetry of 4d N=2 SCFT enhanced to SU(n).
- But can show from 4d N=2 representations that global symmetries in 4d N=2 SCFTs <u>cannot</u> be enhanced as a function of exactly marginal deformations (unlike in 4d N=1), except at free points (high-spin currents).
- Consistent since W-bosons not BPS.
- What does happen in this 4d *N*=2 SCFT ? ¹⁵

Singular limit in 4d N=2 SCFT

- Space of couplings of SU(K)ⁿ quiver is the moduli space of n marked points on a torus (Witten). In Gaiotto language obtain this from A_{K-1} 6d (2,0) theory on a torus with n minimal (U(1)) punctures. Has a weakly coupled SU(K)ⁿ limit. \bigotimes \approx \bigotimes \lesssim (Throats = weakly coupled 4d $\mathcal{N}=2$ theories.)
- Origin of "moduli space" : n punctures come together = (n-1) couplings go to infinity.

Singular limit in 4d $\mathcal{N}=2$ SCFT

- Studied already (local on Riemann surface).
- Global symmetry not enhanced O, but get a weakly coupled SU(n) gauge theory, with $g_{SU(n)}$ going to zero at origin, coupled to two different 4d $\mathcal{N}=2$ SCFTs with SU(n) global symmetry : A_{K-1} on a torus with a single SU(n) puncture ($Q_{K,n}$) and a sphere with one SU(n) puncture and n U(1) punctures (P_n).¹⁷

Singular limit in 4d N=2 SCFT

- New SU(n) is strong-weak dual to original SU(K)ⁿ; similar to Argyres-Seiberg.
- Implies that 4d N=2 SCFT has at singular point an infinite number of conserved highspin currents (instead of naïve expectation – new global SU(n)). These should somehow be part of N=(2,0) theory on AdS₅xS¹.
- Does this local field theory develop massless high-spin fields ? Not impossible on AdS₅, but very strange. Would like

Alternative description

- Can we get around inevitable conclusion ?
- We propose a simpler picture. The new 4d SU(n) and the P_n theory can live on the boundary of AdS_5 ; can have 4d $\mathcal{N}=2$ theories living there. The 4d SU(n) theory couples to both $Q_{K,n}$ and P_n , and has a vanishing beta function.
- Identify the bulk theory with the Q_{K,n} theory. The 4d SU(n) gauge theory must couple to 5d SU(n) gauge fields on AdS₅, helping to cancel its beta function. ¹⁹

Alternative description features

- Should be related by duality (extra AdS/CFT for SU(n)xP_n?) to the picture with high-spin fields in the bulk, but seems much simpler.
- Have SU(n) in AdS₅ but no global symmetry. Usually say unique boundary condition for G gauge fields on AdS₅ !? When have global symmetry G can always gauge it = couple to 4d G gauge fields on boundary. When bulk theory is weakly coupled, get large (R_{AdS}/g_{G}^{2}) contribution to beta function of 4d G, inconsistent with conformal symmetry. 20

Alternative description consequences

- In our case we know contribution to beta function. Implies bulk 5d SU(n) is strongly coupled at R_{AdS}. Thus, no contradiction with standard semi-classical analysis of allowed boundary conditions.
- On the "moduli space" 5d SU(n) behaves very differently from the naïve expectation: not broken to U(1)ⁿ⁻¹ (exactly marginal deformations described by changing couplings of SU(n) and P_n on boundary; U(1)ⁿ⁻¹ acts on boundary P_n theory).

Moduli space of (2,0) on AdS₅xS¹

- At origin of "moduli space" coupling constant of 4d SU(n) goes to zero – infinitely far away (in natural Zamolodchikov metric).
- Moreover, origin of "moduli space" is not just a point but an (n-2)-dimensional space – space of moduli of P_n theory = a sphere with (n+1) marked points. Big change...
- The P_n theory has a region in its parameter space where it becomes a weakly coupled 4d SU(n-1)xSU(n-2)x...xSU(2) theory with bi-fundamental hypers + 1+n fundamentals².

- Note all beta functions in this chain vanish.
 Q_{K,n} (5d bulk) contributes to beta function of SU(n) like (n+1) fundamental hypers.
- In this region it is easy to compute how many d.o.f. we are adding on the boundary (say in sense of conformal anomalies) : O(n³). Amusing since bulk 6d (2,0) theory also has $O(n^3)$ d.o.f. But no clear relation – for instance, 6d d.o.f. and 4d d.o.f. lead to a different density of states as a function of temperature / energy. 23

- This is all for the specific boundary condition that we get from type IIB. Can also take a "standard" boundary condition for 5d SU(n) gauge fields, and then the (2,0) theory is part of the gravitational dual to the QK.n theory (which has an SU(n) global symmetry). In this case the (2,0) theory has no "moduli space". How is this dual related to the previous one? • To decouple should take $K \rightarrow \infty$ with
 - couplings as above. Limit of 4d $\mathcal{N}=2$ SCFT contains a subsector dual to $\mathcal{N}=(2,0)$ theory on AdS₅xS¹.

Summary

- Introduced "rigid holography", and used it to show that A_{n-1} (2,0) theories on $AdS_5 xS^1$ with $R_{AdS} = R_{S}$ and specific b.c. are different from expected – "moduli space" is singular near origin, have SU(n) gauge fields on AdS_5 but with different behavior than in flat space. This theory appears as a decoupled sector in the large K, strong coupling limit of 4d $\mathcal{N}=2$ SU(K)ⁿ. Can get same theory also from IIA
 - backgrounds with n NS5-branes on $AdS_5 xS^1$, dual to other 4d N=2 quiver SCFTs. ²⁵

Summary

- In retrospect, the behavior of the A_{n-1} (2,0) theories on AdS₅xS¹ is not so surprising. They have a strongly coupled SU(n) gauge theory on AdS₅, as expected, and this theory does not have a "moduli space", presumably because its' scalars are tachyonic.
 - Surprise is that when this theory is coupled to a 4d $SU(n)xP_n$ theory on the boundary of AdS₅, have a very different dual description with U(1)ⁿ⁻¹ gauge fields in the bulk, and <u>nothing</u> on the boundary. ²⁶

Further questions

- What can we compute (16 supercharges)? Localization in 4d N=2 SCFT ? Directly on AdS₅xS¹? (Work in progress)
- Gravity dual for (2,0) theory on AdS₅xS¹ ?
- Are "boundary correlators" (computable in principle) enough to characterize A_{n-1} (2,0) theory on AdS₅xS¹ ? (Is S-matrix enough?)
- Other boundary conditions? "Standard" with SU(n) global symmetry for any R_{AdS}/R_S , for specific R_{AdS}/R_S can couple to 4d $\mathcal{N}=2$ SU(n) theory on the boundary. Embed in string? ²⁷

Further questions

- Far on "moduli space", got a description with U(1)ⁿ⁻¹ and "moduli" coming from the bulk; near the origin, have a description where they come from the boundary. What is relation between them ? AdS/CFT ? Strongweak duality (similar to Gaiotto-Witten) ?
 - Do other sets of punctures coming together on a Riemann surface also correspond to (2,0) theories on AdS_5xS^1 (b.c.) ? For a torus it seems so. Can we bring together punctures+handles ?

Further questions

- Many possible generalizations. Simple to get generalization to (2,0) LST on AdS₅xS¹.
- Other D_n and E_n N=(2,0) theories on AdS₅xS¹ can be similarly studied using other orbifolds of type IIB on AdS₅xS⁵.
- Rigid holography should be useful for studying various $\mathcal{N}=(2,0)$ theories on AdS₄xS² and AdS₃xS³, 6d $\mathcal{N}=(1,0)$ theories on AdS₅xS¹ and other manifolds, 5d theories on AdS₄xS¹, 4d $\mathcal{N}=4$ SYM on AdS₃xS¹, etc.