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Outline:

1. Black Hole information paradox and smoothness of horizon

2. AdS/CFT reconstruction of BH interior

3. Need for state-dependence for eternal black hole

4. Precise formulation of ER=EPR

based on arXiv: 1211.6767, 1310.6334, 1310.6335, 1502.06692,
1503.08825 + in progress (K.P. and S. Raju)

work in progress with S. Banerjee, J. Brijan, S. Raju and P. Samantray



Information Paradox

Hawking computation : |Ψ〉 ⇒ ρthermal (?)

Hawking’s computation is a semiclassical approximation, we certainly expect
quantum corrections

Can small corrections (in principle) resolve the paradox?



Information Paradox

Hawking computation : |Ψ〉 ⇒ ρthermal (?)

Hawking’s computation is a semiclassical approximation, we certainly expect
quantum corrections

Can small corrections (in principle) resolve the paradox?

Two clarifications:

1) Small corrections to simple correlation functions in EFT

2) Resolving the paradox is not the same thing as being able to compute the
exact BH S-matrix



Basic formulation of Information Paradox:
looking only at the exterior of the black hole and the outgoing radiation

Exponentially small corrections1 to Hawking’s computation can restore
unitarity

(basic Quantum Stat-Mech arguments : Page, Lloyd etc.)

Tr(ρthermalA) = 〈Ψ|A|Ψ〉+O(e−S)

if A is a simple observable.

1To simple observables



Entanglement entropy of Hawking radiation as a function of time
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The “exact curve” can be reproduced by exponentially small corrections (to
simple observables) from the ”Hawking curve“.

f



Information Paradox,“refined” formulation: interior+exterior

A

B
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Quantum cloning on nice slices

Strong subadditivity paradox (firewall, 2012) [Mathur], [Almheiri, Marolf,

Polchinski, Sully (AMPS)]

Mathur’s theorem (2009): “small corrections cannot resolve the paradox” (?)



Related paradoxes for AdS black holes:

Big black holes in AdS do not evaporate. Dual to QGP states in CFT.

Do they have a geometric interior?

AMPSS (AMPS+Stanford) and Marolf-Polchinski (MP): counting paradoxes
in CFT which suggest that big AdS black holes do not have a smooth interior

But:+Explicit construction of BH interior from CFT (K.P. and Suvrat Raju)

?

Previous paradoxes can be resolved if we allow operators inside the black hole
to be state-dependent



Proposed Resolution:

[K.P and S.Raju]

The Hilbert space of Quantum Gravity does not factorize in
interior × exterior

BH info as quantum cloning problem and subadditivity Mathur/AMPS
problem resolved

Concrete mathematical construction

Consistent with (approximate) locality in effective field theory

Operators in the black hole interior are state-dependent



Background



Black Hole Exterior
Consider big black hole in AdS. Expectation from bulk effective field theory
(EFT) for a free scalar

φ(t, r,Ω) =

∫ ∞

0
dω

∑

lm

bωlm e−iωtfω,l(r)Ylm(Ω) + h.c.

where (dropping l,m indices) we have

[bω, b
†
ω′ ] = δ(ω − ω′) [H, bω] = −ωbω

and

〈b†ωbω〉 ∼
e−βω

1− e−βω

How do we reconstruct this from the CFT?



Consider single-trace operator O in CFT, dual to bulk field φ. Define Fourier
modes

Oωlm =

∫
dtdΩ O(t,Ω) eiωt Y ∗

lm(Ω)

then we identify
bωlm ∝ Oωlm

(interesting subtleties about large l modes, gauge invariance, 1/N corrections
etc.)



Need for interior modes

EFT: we need a new set of modes b̃ which commute with b, and which are
entangled with b.

We identified b with modes of O in CFT.

Central question:

Which CFT operators correspond to b̃?



Counting argument, against existence of b̃ operators in CFT (AMPSS)

The required algebra between b̃, b̃†, H is inconsistent with spectrum of states
in CFT



[̃b, b̃†] = 1 ⇒ b̃† = “creation operator”

⇒ b̃† should not annihilate (typical) states of the CFT (∗).

On the other hand
[H, b̃†] = −ωb̃†

implies that b̃† lowers the energy so it maps CFT states of energy E to E −ω.

But in CFT, we have S(E) > S(E − ω).

⇒ if b̃† is an ordinary linear operator, it must have a nontrivial kernel.

Inconsistent with statement (*).

⇒ The CFT does not contain b̃ operators and cannot describe the BH interior
(?)



Previous counting argument can be made somewhat more precise (K.P and
S.Raju)

Related argument Tr[Na] 6= 0 (Bousso, Marolf-Polchinski)

Additional general argument: if b̃ is a fixed, linear operator, it is hard to
understand how typical CFT states can have the particular, special

entanglement between b, b̃ needed for smooth interior

These arguments against the existence of a smooth interior for a big black
hole in AdS provide the most well-defined version of the firewall paradox

Is there a way out?



Construction of interior operators



Defining the “small Hilbert space HΨ”

Suppose we have a typical BH microstate |Ψ〉 and bulk observer at t = 0.

Consider possible simple experiments the observer can perform within EFT.

To describe those, we do not need the entire Hilbert space of the CFT, but
rather a smaller subspace.

If φ(x) is a bulk field, the states we need to use are

φ(x)|Ψ〉

φ(x1)φ(x2)|Ψ〉, ...
φ(x1)...φ(xn)|Ψ〉, ...

and their linear combinations, where the number of insertions n does not
scale with N and the points xi are not too spread-out in time.



Defining the “small Hilbert space HΨ”

T

In the CFT BH microstate → typical QGP state |Ψ〉

Bulk field φ related to boundary single-trace operator O

A= “algebra” of small products of single-trace operators

A = span of{O(t1, ~x1), O(t1, ~x1)O(t2, ~x2), ...}

Here T is a long time scale and we also need some UV regularization.



Defining the “small Hilbert space HΨ”

We define

HΨ = A|Ψ〉 = {span of : O(t1, ~x1)...O(tn, ~xn))|Ψ〉}

Simple EFT experiments in the bulk, around BH |Ψ〉 take place within HΨ

The interior operators b̃ will be defined to act only on this subspace.

HΨ is similar to “code subspace”



Important point:

T

HΨ = A|Ψ〉 = {span of : O(t1, ~x1)...O(tn, ~xn))|Ψ〉}
already contains the states describing the BH interior! (i.e. states we would
get in bulk EFT by acting with b̃)

entanglement, compare with Reeh-Schlieder theorem in QFT

The CFT operators that will correspond to b̃, will act within the subspace HΨ

We will call them mirror operators and denote them by Õ. Notice that O, Õ
must commute.



What is special when |Ψ〉 is a BH microstate, which allows the “small Hilbert
space” HΨ = A|Ψ〉 to be big enough to accomodate the action of operators
Õ which commute with O?



A typical BH microstate |Ψ〉 cannot be annihilated by (nonvanishing)
elements of the small algebra A

This implies that the representation of A on HΨ has qualitative differences
when |Ψ〉 is a BH microstate, compared to -say- when |Ψ〉 is the vacuum.

Physical interpretation:

The state |Ψ〉 appears to be entangled when probed by the algebra A.



Algebras and Representations

We have the “small algebra” A acting on HΨ = A|Ψ〉, with the property that
it cannot annihilate the state.

⇒ the representation of the algebra is reducible, and the algebra has a
nontrivial commutant acting on the same space.

Proof: Define the antilinear map acting on HΨ by

SA|Ψ〉 = A†|Ψ〉 A ∈ A

any operator of the form
Â = SAS

commutes with all elements of the algebra A



The hatted operators commute with those in A:

B̂A|Ψ〉 = SBSA|Ψ〉 = SBA†|Ψ〉 = (BA†)†|Ψ〉 = AB†|Ψ〉

and also
AB̂|Ψ〉 = ASBS|Ψ〉 = AB†|Ψ〉

hence
[A, B̂]|Ψ〉 = 0

The operators Â = SAS satisfy:

Their algebra is isomorphic to A (since S2 = 1)
They commute with A

they are almost the mirror operators, but not quite (the mixed A-Â
correlators are not “canonically” normalized)



Constructing the mirror operators (Tomita-Takesaki)

The mapping S is not an isometry. We define the “magnitude” of the
mapping

∆ = S†S

and then we can write
J = S∆−1/2

where J is (anti)-unitary. Then the correct mirror operators are

Õ = JOJ

The operator ∆ is a positive, hermitian operator and can be written as

∆ = e−K

where
K = “modular Hamiltonian′′

For entangled bipartite system A×B this construction would give
KA ∼ log(ρA) i.e. the usual modular Hamiltonian for A.



In the large N gauge theory and using the KMS condition for correlators of
single-trace operators we find that for equilibrium states

K = β(HCFT − E0)



Constructing the mirror operators

Putting everything together we find that the mirror operators are given by the
following set of linear equations

Õω|Ψ〉 = e−
βω

2 O†
ω|Ψ〉

and
ÕωO....O|Ψ〉 = O...OÕω|Ψ〉

[H, Õω]O....O|Ψ〉 = ωÕωO....O|Ψ〉
These conditions are self-consistent because A|Ψ〉 6= 0, which in turns relies
on

1. The algebra A is not too large
2. The state |Ψ〉 is complicated (this definition would not work around the

ground state of CFT)



Reconstructing the interior
Using the Oω’s and Õω’s we can reconstruct the black hole interior by
operators of the form

φ(t, r,Ω) =
∑

m

∫ ∞

0
dω

[
Oω,m e−iωtYm(Ω)g(1)ω,m(r) + h.c.

+Õω,m e−iωt Ym(Ω) g(2)ω,m(r) + h.c.
]

Low point functions of these operators reproduce those of effective field
theory in the interior of the black hole

⇒

∃ Smooth interior

Nothing dramatic when crossing the horizon



Realization of Complementarity
The operators Õ seem to commute with the O’s

This is only approximate: the commutator [O, Õ] = 0 only inside low-point
functions i.e. in the “small Hilbert space” HΨ

If we consider N2-point functions, then we find that the construction cannot
be performed since we will violate

A|Ψ〉 6= 0, for A 6= 0

or in a sense we will find that [O, Õ] 6= 0 inside complicated correlators.

Relatedly, we can express the Õ’s as very complicated combination of O’s.

Simple vs Complicated experiments and decomposition of Hilbert
space in interior× exterior



State-dependence as a central issue



State dependence of construction

The operators Õ are defined as linear operators acting only on the “small
Hilbert space” around any given state.

Different microstate — different “small Hilbert space“— different linear
operators Õ

Can we stitch them together into globally defined (linear) operators?

NO , eS states, overlaps between HΨ’s too large, counting arguments of
AMPSS, MP

(but generically can be done for small subsets of states)



How state dependence resolves counting paradoxes

1. Counting argument of AMPSS about b̃† lowering energy

2. Tr(Na) 6= 0 argument

3. Explains how we get correct entanglement for typical states since b̃

operators (partly) ”selected by entanglement“

Other examples of state dependence in QM? BH exterior?



Consistency of state dependence with Quantum Mechanics

1. Linear superpositions of states in a CFT.

2. CFT is entangled with external system.

In recent paper 1503.08825 (KP, SR) we showed that for a large class of
examples, which could potentially lead to problems, there is no observable
violation of the linearity of QM.



Eternal black hole
(evidence for state dependence, 1502.06692 )



∃ general agreement that eternal BH has smooth interior

In some conventions the wormhole is centered at tL = tR = 0. We call the
corresponding CFT state |TFD〉.

〈TFD| OL(tL = 0) OR(tR = 0)|TFD〉 ∼ O(1)



The |TFD〉 has the exact symmetry

(HR −HL)|TFD〉 = 0

which implies
ei(HR−HL)t|TFD〉 = |TFD〉

On the other hand

ei(HR+HL)t|TFD〉 = 1√
Z

∑

i

e−
βEi
2 e2iEit |Ei〉L ⊗ |Ei〉R

is a genuinely new state due to the phases (large diff in bulk).



Time-shifted wormhole

Consider the state
|ΨT 〉 ≡ eiHLT |TFD〉

In the bulk, the state |ΨT 〉 is related to |TFD〉 by a large diff (which acts as a
time translation on the left boundary, and as identity on the right boundary).

T

An observer jumps from the right CFT at tR = 0 into the state |ΨT 〉. Does
he/she experience a smooth horizon?

Right-relational observables invariant under left-sided large diffs.



This implies that the state

|ΨT 〉 ≡ eiHLT |TFD〉

should appear to be smooth to the observer who jumps from the right CFT at
tR = 0.

Moreover, this should be true for all T , even it if T ∼ eS



We have a class of states |ΨT 〉, which all appear to be smooth to the observer
who jumps from the right CFT at tR = 0.

We will now prove that this can only happen if we allow state-dependence.

Equivalently, we will assume that this behavior can be reproduced by
state-independent operators, and we will run into a contradiction.

This will provide us with a strong argument in favor of state-dependence

(similar arguments, different conclusion Marolf and Wall)



Time-shifted wormhole

Suppose that the observer jumps from the right CFT at tR = 0 and measures
the “occupation number” of some infalling mode behind the horizon. Suppose
this occupation number is described by a state-independent, linear operator
N . Then from the previous arguments we have the prediction that

〈ΨT |N |ΨT 〉 = 0 for all T

or

∑

E

e−βE

Z
〈E,E|N |E,E〉+

∑

E 6=E′

e−
β(E+E′)

2

Z
〈E′, E′|N |E,E〉ei(E−E′)T ≈ 0

Take long time average to kill off-diagonal terms

∑

E

e−βE

Z
〈E,E|N |E,E〉 ≈ 0



〈E,E|N|E,E〉 = 0

so |E,E〉 is smooth.

According to the AMPSS/MP counting arguments, for a single CFT, |E〉 is
singular. How can it be that |E,E〉 is now smooth? Why does one CFT care
about the existence of another copy if there is no entanglement?

More precise argument: let us demand as a condition, that if there is no
entanglement between two systems there should be no wormhole.

This implies, that for any unitary UL on the left CFT (even a complicated
one) we should have

〈E,E|U †
LN UL|E,E〉 = 〈E,E|N |E,E〉 = 0

since N was right-relationally defined.



No wormhole condition ⇒ all |E′, E〉 are smooth, for any E,E′.

This is too strong to be consistent with state-independence. Easy to show
that we again run into AMPSS, MP counting arguments.

Conclusion: We assumed eternal black hole is smooth and that the interior
operators are state-independent and we found a contradiction



Possibilities:

1. Eternal black hole has a firewall

2. AdS 6= CFT (maybe related to superselection sectors of Marolf-Wall, ... )

3. State-dependence



Other developments



Superposition principle

For given |Ψ〉 we define Õ on HΨ. So these are sparse operators

For another state |Ψ′〉 we have different Õ on HΨ′

For a small number of such subspaces, the operator Õ can be promoted to an
operator defined on the direct sum of the subspaces.

In superpositions of small numbers of states, the infalling observer cannot
detect any state-dependence (or violations of QM) within EFT

Ambiguities-Unitaries behind the horizon (see 1503.08825)



ER=EPR from the mirror construction
(Maldacena, Susskind: entanglement = wormhole)



CFT entangled with other system S

|Ψ〉 =
∑

ia

cia|Ψi〉CFT ⊗ |φa〉S

S could be

-Small system (qubit)

-Large system (possibly same CFT), generic entanglement

-Same CFT, special entanglement (for example TFD state)

How do we describe BH interior for observer falling from the CFT? Is there a
wormhole, is it geometric?



Mirror operators for entangled systems

ACFT = small algebra of simple operators in CFT

AS = (relevant) algebra of operators in system S.

We define
Aproduct ≡ ACFT ⊗AS

Now the “small Hilbert space” HΨ is defined as

HΨ = Aproduct|Ψ〉

In general this is larger than just ACFT|Ψ〉 (but in cases with special
entanglement, like the TFD, the two spaces may be the same)



In the general case the Hilbert space

HΨ = Aproduct|Ψ〉

will decompose into a direct sum

HΨ =
⊕

j

Hj
Ψ

of subspaces Hj
Ψ, each of which are closed under the algebra ACFT

We identify an equilibrium state |Ψ〉j within each of the Hj
Ψ. Notice that

Hj
Ψ = ACFT|Ψ〉j

We define the Õ to act within each Hj
Ψ as before.

Finally, the Õ on the entire HΨ are the sum of individual Õ for each Hj
Ψ.



Example 1: TFD

In this case we have ACFT = simple operators in CFTR and AS = simple
operators in CFTL.

Because of special entanglement of TFD we have relations like

OL,ω|TFD〉 = e−
βω

2 O†
R,ω|TFD〉

and more generally

AL|TFD〉 = e−
βHR

2 A
†
Re

βHR
2 |TFD〉



Example 1: TFD

In this case Aproduct|Ψ〉 = ACFT|Ψ〉 so we simply define the mirror operators

Õ, as usual, relative to the state |TFD〉

ÕωAR|TFD〉 = e−
βω

2 ARO†
ω|TFD〉

[HR, Õω]AR|TFD〉 = ωÕωAR|TFD〉
This reproduces the geometric wormhole between the two CFTs, which is
expected for the TFD.

[OL, Õ] 6= 0 , [HL, Õ] = 0



Example 2: generic entangled state of 2 CFTs

|Ψ〉 =
∑

ij

cij |Ei〉L ⊗ |Ej〉R

Typical state with same amount of entanglement as TFD (but random
pattern of entanglement). In this case the states OR|Ψ〉 and OL|Ψ〉 are
linearly independent. So now

Aproduct|Ψ〉 ∼ (ACFT|Ψ〉)2



Example 2: generic entangled state of 2 CFTs

No (short) geometric wormhole

However, Õ operators for right CFT DO have support on left CFT



Example 3: CFT entangled with small qubit system
Consistency of construction



Toy model for complementarity

(in progress: with S. Banerjee, J. Brijan and S.Raju)



A toy model for complementarity

Consider a holographic CFT on Sd−1 × time in the ground state

T
P

T

Consider a time-band on the boundary of length T < πR (AdS light-crossing
time)

The gray causal diamond around center of AdS is spacelike relative to
time-band on boundary

According to EFT a local operator φ(P ) should commute with local operators
in time-band (up to Gauss-law tails)



T
P

T

Two related questions:

1. The gray causal diamond seems to be behind a horizon for observers in
complementary annular wedge. Can we define ”mirror operators“ to
reconstruct the interior of the gray diamond?

2. A puzzle: φ(P ) seems to commute with all CFT local operators within
time-band, but then ”time-slice axiom“ → φ(P ) ∼ identity (?)



T

Simple vs Complex operators

If we act with arbitrary numbers of local operators in the band, we
(presumably) get the full algebra of operators in the CFT. Clearly φ(P )
cannot really commute with the full algebra of (complicated) operators in the
time band

Bulk EFT requires φ(P ) to commute only within simple correlation functions
of local operators in the band



T
P

T

Define the ”small algebra“ generated by a small number of local operators in
the time band

A = span of{O(t1, ~x1), O(t1, ~x1)O(t2, ~x2), ...}

and the ”small Hilbert space“ as H|0〉 = A|0〉 . Because the ground state is
entangled this space already contains states with excitations inside the gray
diamond.

We should be able to define ”mirror operators“ acting on this space, and
which can be used to reconstruct φ(P )



T
P

T

These mirror operators approximately commute with single-trace operators
within the time-band.

This can only be approximate due to time-slice axiom. The mirror operators
in this case can be re-expressed as very complicated combinations of operators
within the time-band.

Toy model of black hole complementarity (without black holes...)



T
P

T

Consider small algebra A and small Hilbert space H|0〉 = A|0〉.

As in case of BH, the representation of A on H|0〉 is reducible and there is
nontrivial commutant.

This follows from the fact that: if T < πR we cannot annihilate |0〉 with
simple local operators in time-band.

We can define
SA|0〉 = A†|0〉

and then the commutant of the algebra is Â = SAS.



T
P

T

What is the modular hamiltonian? log(S†S) =?

From bulk point of view, it seems that it may act non-locally in the diamond.

Different from AdS-Rindler wedge decomposition (or from causal diamond in
flat-space CFT) where modular Hamiltonian is symmetry generator



Relation to ”precursors“

P

HCFT

Reconstructing point P via mirror operators vs precursors ?



Conclusions



Summary

Reconstructing the BH interior is an outstanding problem in AdS/CFT

Proposed approach: the mirror operator construction

State-dependence plays a key role



Outlook

1. Measurement theory for infalling observer: uniqueness, selection of Õ,
dynamics

2. Robustness of the construction: coarse graining to define “small algebra”,
1/N corrections

3. Possible importance of “precursors“ for describing the BH interior

4. Probing the singularity



THANK YOU
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