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d = 4,  N  = 2

2

Continuous families of N  = 2 SCFTs

N  = 2 superconformal manifold 

➡ space parametrized by N  = 2 exactly marginal couplings

spectrum, correlation functions ... vary continuously across 

this space

exact coupling constant dependence?
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Sector of interest:

correlation functions of local 1/2-BPS operators

- non-trivial 

- rich geometric structure

- largely computable...



 N  = 2 chiral rings

•  R-symmetry of d=4 N  = 2 SCFTs :

•  N  = 2 chiral primary operators 
 
             - neutral, 1/2-BPS

In short multiplets saturating the bound

SU(2)R ⇥ U(1)R

�I

Q
i
↵̇ · �I = 0 , ↵̇ = ± , i = 1, 2

� � |R|
2scaling dimension R-charge

(+ anti-chiral)

SU(2)R
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Dolan-Osborn, ‘02



Chiral ring data

•  Chiral primaries form a ring (under OPE)

•  2-point functions 

•  3-point functions

�I(x)�J(0) = C

K
IJ �K(0) + . . .

h�I(x)�J(0)i =
gIJ̄

|x|2�
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CIJK̄ = CL
IJ gLK̄

h�I(x)�J(y)�̄K(z)i = CIJK̄

|x� y|�I+�J��K |x� z|�I+�K��J |y � z|�J+�K��I

0
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On a conformal manifold the 2- & 3-point function coefficients

are non-trivial functions of the marginal coupling constants.

☞ N  = 4 is special: non-renormalization theorems

☞ Access to all extremal N-point functions 

gIJ̄ , CIJK̄

h�I1(x1) · · ·�In(xn)�̄J(y)i
RJ +

X

k

RIk = 0

Lee-Minwalla-Rangamani-Seiberg ’98, ..., 
Baggio-de Boer-Papadodimas ’12

Baggio-VN-Papadodimas, ’14



Geometry I
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An infinitesimal deformation

preserves the N  = 2 superconformal invariance iff it is the 

descendant of a (anti)-chiral primary with 

     
     indices             for R = 4 chiral primaries

�S =
��

i

4⇡2

Z
d

4
xOi(x) +

��̄

i

4⇡2

Z
d

4
xOi(x)

Oi = Q4 · �i , Oi = Q̄4 · �̄i

� = 2 , R = ±4

i, j, ...!
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Zamolodchikov metric

The coefficient of the 2-point function 

defines a metric on the conformal manifold M.

N  = 2: with this metric M is a complex Kaehler manifold

hOi(x)Oj(0)i =
Gij̄

|x|8

Gij̄ = @i@j̄K

Zamolodchikov ’86
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Kaehler potential and localization

Sphere PF         can be computed exactly with localization

➠ determines 2-point functions of the chiral primaries       

K = 192 logZS4

ZS4

part of          datagIJ̄

�i

gij̄ =
Gij̄

192

= @i@j̄ logZS4

Gerchkovitz-Gomis-Komargodski ’14
also Gomis-Ishtiaque ’14

Pestun ’07



CL
I K : VRI ⌦ VRK ! VRL

Geometry II
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Operator mixing and quantum renormalization

➠ chiral primaries as sections of vector bundles 

with non-trivial connection  

VR

(rµ)
L
K = �LK@µ + (Aµ)

L
K
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Superconformal Ward identities imply

(Fij)
L
K =

�
Fīj̄

�L
K

= 0

�
Fij̄

�L
K

= �
⇥
Ci, C̄j

⇤L
K
+ gij̄�

L
K

✓
1 +

R

4c

◆

holomorphic 
vector bundles

tt* equations

4d: Papadodimas ’092d: Cecotti-Vafa 1991 

topological-anti-topological fusion
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Holomorphic gauge

• Practical to select a particular scheme

 converts tt* equations to PDEs for 2- and 3-point functions

• Holomorphic vector bundles ➟ holomorphic gauge 
�
Aj̄

�L
K

= 0

@

@�̄j

✓
gM̄L @

@�i
gKM̄

◆
= CP

iKgPQ̄C
⇤Q̄
j̄R̄

gR̄L � gKN̄C⇤N̄
j̄Ū gŪV CL

iV � gij̄�
L
K

@

@�̄j
CK

IJ = 0

@CL
jK

@�i
� @CL

iK

@�j
= gQ̄L@igPQ̄C

P
jK � CL

jP g
Q̄P@igKQ̄ � (i $ j)



 

๏ d=2 N=(2,2): very restrictive set of equations
 solution almost unique

๏ d=4: how restrictive?

 a recognizable (integrable) structure in these equations?

 a complete solution from a `few’ data? 

Cecotti-Vafa 1991 
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Example:  N  = 2 superconformal QCD

N  = 2 SYM, gauge group SU(N)  ⊕  2N hypermultiplets

N  = 2 chiral ring generators

Complex 1-dimensional conformal manifold

complexified gauge coupling

14

�` / Tr
⇥
'`

⇤
, ` = 2, 3, . . . , N

⌧ =
✓

2⇡
+

4⇡i

g2YM

O⌧ = Q4 · �2

complex scalar in vector multiplet'



SU(2)
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•  1 chiral ring generator

•  No degeneracies

•  The chiral primary operators are

•  We normalize                            so that

or

�2n /
�
Tr

⇥
'2

⇤�n

�2n , n > 1

�2(x)�2n(0) = �2n+2(0) + . . .

C2(n+m)
2n 2m = 1

consistent with
holomorphic gauge

Baggio-VN-Papadodimas ’14



Solve for the 2-point function coefficients

NOTE: equivalently, in basis of orthonormal 2-point 

functions we study the exact 3-point functions

h�2n(x)�̄2n(0)i =
g2n(⌧, ⌧̄)

|x|4n

17

`trivial’ in N=4
(group theory)

highly non-trivial
in N=2
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tt* equations

semi-infinite Toda chain 

☛ one datum, e.g.        from localization, determines all !!!

@⌧@⌧̄ log g2n =

g2n+2

g2n
� g2n

g2n�2
� g2

g0 = 1 , n = 1, 2, . . .

@⌧@⌧̄qn = eqn+1�qn � eqn�qn�1 , n = 2, . . .

g2n = exp (qn � logZS4
)

g2

Recursive
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Predictions for perturbation theory

0-instanton sector

g(0)2 =
3

8

1

(Im⌧)2
� 135 ⇣(3)

32⇡2

1

(Im⌧)4
+

1575 ⇣(5)

64⇡3

1

(Im⌧)5
+ . . . ,

g(0)4 =
15

32

1

(Im⌧)4
� 945 ⇣(3)

64⇡2

1

(Im⌧)6
+

7875 ⇣(5)

64⇡3

1

(Im⌧)7
+ . . . ,

g(0)6 =
315

256

1

(Im⌧)6
� 76545 ⇣(3)

1024⇡2

1

(Im⌧)8
+

1677375 ⇣(5)

2048⇡3

1

(Im⌧)9
+ . . . ,

g(0)8 =
2835

512

1

(Im⌧)8
� 280665 ⇣(3)

512⇡2

1

(Im⌧)10
+

1913625 ⇣(5)

256⇡3

1

(Im⌧)11
+ . . . ,

...



SU(N)
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•  More chiral ring generators: 

 non-trivial degeneracies...

•  In conventions where                     the tt* equations become

�` / Tr
⇥
'`

⇤
, ` = 2, 3, . . . , N

CK+L
K L = 1

@⌧̄
⇣
gM̄�L�@⌧gK�M̄�

⌘
= gK�+2,R̄�+2̄g

R̄�L� � gK�R̄�
gR̄��2̄,L��2 � g2�

L�
K�

Baggio-VN-Papadodimas ’15
to appear
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Preliminary observations

Assume there is a constant linear transformation 

that  1) diagonalizes 

and  2) retains the OPE       

☞ tt* eqs reduce to a decoupled sequence of Toda chains

gKL̄

�0
K = M L

K �L

�0
2 �

0
K = �0

K+2 + . . .
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Such a transformation requires highly non-trivial properties

•          need to obey specific relations

• gauge connection will be reducible

if chiral primaries at scaling dimension Δ have degeneracy D 

the holonomy is not U(D) but U(1)D 

(in primed basis no quantum mixing)

• OPE                                      requires group-theoretical identities 

at tree-level

gKL̄ `horizontal relations’

�2 �
0
K = �0

K+2 + ...

`vertical relations’



Examples. Assume                                       .   We need:

(1) the ratios                  

do not renormalize                                   (horizontal relations)

(2) ratios at different levels are related           (vertical relations) 

h(Tr['2])n(x) �̄K(0)i
h(Tr['2])n(x)(Tr['̄2])n(0)i

R2n,K̄ = R2n+2,K̄+2̄ =
h(Tr['2])n+1(x) (�̄KTr['̄2])(0)i
h(Tr['2])n+1(x)(Tr['̄2])n+1(0)i

R2n,K̄ =

24

(Tr[�2])n �!M (Tr[�2])n



Verified by explicit 3-loop computations !!!

Example: SU(4), Δ = 6 

Many more checks. 

Also preliminary evidence of full decoupling.

(Tr['2])3 , T r['2]Tr['4] , (Tr['3])2

g12

(16⇡)6

0

B@
232560- 8241345 ⇣(3) g4

4⇡4 99180 - 14058765 ⇣(3) g4

16⇡4 6480 - 229635 ⇣(3) g4

4⇡4

99180 - 14058765 ⇣(3) g4

16⇡4 55935 - 30324105 ⇣(3) g4

64⇡4 8100 - 1012095 ⇣(3) g4

16⇡4

6480 - 229635 ⇣(3) g4

4⇡4 8100 - 1012095 ⇣(3) g4

16⇡4 58320 - 1454355 ⇣(3) g4

4⇡4

1

CA

25



26

 Consequence: in general SU(N) theory  

continues to obey 

Horizontal & vertical relations fix many more mixed correlators

h�2n(x)�̄2n(0)i =
g2n(⌧, ⌧̄)

|x|4n

@⌧@⌧̄ log g2n =

g2n+2

g2n
� g2n

g2n�2
� g2

➡ solution from SU(N) S4 partition function



Outlook

• The above ansatz solves the SU(N) tt* equations

 - Is this the choice of the gauge theory?
   
(horizontal and vertical relations do not appear to come     
from Ward identities)

 - Specific external data are needed to solve the Toda chains.
   How are these computed exactly?

27
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• Fruitful approach to an unexplored class of non-perturbative    
dynamics in 4d QFTs

 Surprising lessons (non-renormalization theorems in N = 2?)

• Many more directions...
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