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Motivations and Setup

Time dependent processes are of special interest (and

usually difficult to study).

An example of such a process is Quench.

This is when a system with the Hamiltonian H0 is pre-

pared in a pure state, say the ground state |ψ0⟩, at time

t = 0 and evolves unitarily by a different Hamiltonian H

for times t > 0.

H0 and H might be related by changing parameters of

the system, external sources, boundary conditions...
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Quench can be global (homogeneous, inhomogeneous),

or local depending on how H0 and H are related.

The question of interest is how various quantities; cor-

relation functions, expectation values ..... change in

time.

• In this work we study an example of a local quench

in a 1 + 1 dimensional system;

Two identical one dimensional systems, each living on

a half line, and prepared in their ground states, are

attached to one another at their boundaries and make

up a system on the infinite line
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• We further require the two systems to be Conformally Invariant

with a Free Boundary Condition at their boundaries.

• We express each of the two Boundary Conformal Field

Theories (BCFT’s) in terms of their gravitational duals

via the AdS/BCFT proposal.

• We suggest that the process of quench is holograph-

ically described by the formation of a closed string in

the gravitational dual. Subsequent motion of the string

governs the time dependence.

• We provide some tests for the model.



• Quench by Field Theory

• AdS/BCFT

• Quench by Holography

• Entanglement Entropy (EE) after Quench
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Quench by Field Theory

Consider the state |ψ0⟩ that evolves from t = 0 by the

Hamiltonian H. The density matrix ρ at time t will be

ρ(t) ∼ e−itH−ϵH |ψ0⟩⟨ψ0|eitH−ϵH

e−ϵH is inserted for convergence. Upon analytical con-

tinuation, τ = it, the matrix element can be shown by

a path integral on a strip with the edges being in the

state ψ0 at the Euclidean times of τ1 = −ϵ − it and

τ2 = ϵ− it
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(from Calabrese and Cardy, ’09)
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Any quantity can hence be found by inserting proper

operators O on this manifold, sewing the two edges at

τ = 0 and calculating tr(ρO). That is

tr(ρO) = ⟨O⟩strip
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The case which is of interest in this work is when the-

ories on half lines join together at their boundaries at

time t = 0. The system then evolves for a time period

T at which we would like to calculate various quantities.

One can again make an analytic continuation, τ = it,

and construct the density matrix at time T . This amounts

to having a manifold with two slits parallel to the imagi-

nary time axis one from τ = −∞ to τ = −ϵ and one from

τ = +ϵ to τ = +∞.

There are two edges at τ = iT where one puts the

states ψ′ and ψ′′ to get the matrix element of the den-

sity matrix ⟨ψ′′|ρ(T )|ψ′⟩.

9



One can again insert proper operators, sew the edges

together and calculate the desired quantities.
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(from Calabrese and Cardy, ’09)
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The conformal transformation

w = z
ϵ +

√
(zϵ)

2 +1

takes one from the worldsheet (z, z̄), z = σ+ iτ , to the

upper half plane parametrized by (w, w̄). Again, ex-

pectation values after quench, tr(ρO), are mapped to

correlation functions in a BCFT .
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AdS/BCFT

This is a conjectured duality between CFT’s with a

boundary (BCFT’s) and gravity. We focus on AdS3/BCFT2.

The BCFT is defined on a manifold M with a boundary

∂M. The holographic dual is constructed by extend-

ing M to a 3-dimensional assymptotically AdS manifold

N. The boundary ∂M is extended to a 2-dimensional

manifold Q such that ∂M = ∂Q and ∂N = Q ∪M.

(from Takayanagi, ’11)
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The holographic description consists of N ∪ Q. The

action that describes this system is

S = SN + SQ

where

SN = 1
16πGN

∫
N d

3x
√
−G(R− 2Λ)

SQ = 1
8πGN

∫
Q d

2x
√
−h(K− T )

In these expressions hij and Kij are the induced metric

and extrinsic curvature of Q respectively and K = hijKij.

The constant T is the tension of Q.
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One should also include the boundary action associated

with M

SM = 1
8πGN

∫
M d2x

√
−gK ,

where again gij and Kij are the induced metric and

extrinsic curvature of M, respectively and K = gijKij.

We choose the usual Dirichlet boundary condition on

M but Neumann boundary condition on Q. Then vari-

ational principle gives us Einstein equation in the bulk

region, N, as well as the following constraint on the

boundary Q

Kij = hij(K− T )
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Using the Poincare coordinate for AdS

ds2 = L2

z2

(
−dt2 + dz2 + dx2

)
we can parameterize The hypersurface Q as xQ = xQ(z).

The unit normal on this surface reads

nµ =
(
nt, nz, nx

)
= z

L
√

1+x′2(z)

(
0,−x′(z),1

)
and the profile of Q is obtained as

xQ(z) = TL√
1−T2L2

z
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• The boundary state of a BCFT, |B⟩, defines a

Boundary Entropy, SB, through

SB = log gB , gB = ⟨0|B⟩

It can be shown that in the holographic setup

SB ∼ tan−1(LT )
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Quench by Holography

Consider a CFT living on a semi-infinite line M with
x < 0. Specify to the situation when the tension on Q

is zero. In the field theory language this means that the
boundary entropy for this system is zero. this is what
we mean by a free boundary condition.

A key observation is that for T = 0, the surface Q is
simply the world sheet of an open string which satisfies
the classical equations of motion for a bosonic Polyakov
string. The string attaches the boundary at z = 0 with
the usual Neumann boundary condition

∂zxQ|z=0 = 0 when T = 0

The string, however, is tensionless; α′ → ∞.
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Now consider an identical field theory which lives on

the semi-infinite line M̃ with x > 0. Again the same

situation holds as before
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Local quench occurs as a result of manipulations at

and around the point x = 0 which joins the two discon-

nected field theories into a single one. Our proposal is

that the bulk version corresponds to detaching each of

the open strings from the boundary and attaching the

two ends together

This will produce a folded closed string that can now

propagate in the bulk
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The Yo-Yo String

This is a classical configuration of the Polyakov string.

It describes a closed folded string where the folding

points move on light-like geodesics.

The folding point changes direction at

z∗ = 2LT
πE

where E is the total energy of the string.

This is called the snapback point.
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The folded string that is formed after quench is a Yo-Yo

string at the snapback point.

Being tensionless, one can consider the following limit

of this solution

E → 0 , T → 0

which defines the snapback point as

limT→0,E→0 z∗ = limT→0,E→0
2LT
πE ≡ δ
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To interpret the length δ in the field theory setup one

must address the question of how local the quench has

taken place. In other words to what extent have the

points around x = 0 have been disturbed or excited dur-

ing quench.

Assume that the process of attaching the two field the-

ories has affected a region of size ϵ. We wish to relate

ϵ and δ
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A natural identification for our holographic picture will

be

δ = 1
2 ϵ
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Some General Features

Dealing with zero boundary entropy for the initial BCFT’s,

the whole process is governed by causal effects rather

than energy transfer. In the field theory language this is

a result of propagation of quasi-particles in both direc-

tion on the line which deliver the message of manipula-

tions at x = 0. These quasi-particles have an arbitrarily

small energy.

In the bulk, the folded string falls freely away from the

boundary into the bulk. The folding point falls on a

light-like geodesic. The string has an arbitrarily small

energy and does not back react on the geometry, again

all that comes into play is the causal effects.
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The message of formation of the folded string propa-

gates into the bulk along the light-cone which divides

bulk points into those who know of the manipulations

and those who do not. The light front is identified as

the bulk version of quasi-particles
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Entanglement Entropy After Quench

We are using EE as a probe to see how the state of the

system changes in time. Denote the entangling region

by A and its EE by SA.

The example we pick up for illustration is when A is en-

tirely inside one of the original BCFT’s. The endpoints

of A are located at ℓ2 and ℓ1 with ℓ1 > ℓ2 > 0. The two

BCFT’s are joined at x = t = 0.
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In field theory, SA(t) is calculated by the BCFT tech-

niques

SA(t < ℓ2) = c
6 log (ℓ1−ℓ2)2

a2
+ c

6 log 4ℓ1ℓ2
a2

− c
6 log (ℓ1+ℓ2)

2

a2

SA(ℓ2 < t < ℓ1) = c
6 log ℓ1−ℓ2

ℓ1+ℓ2
ℓ1−t
ℓ1+t

t2−ℓ22
ϵa2

4ℓ1

SA(t > ℓ1) = c
3 log ℓ1−ℓ2

a

a is a short distance regulator.
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In the gravity side and before quench we have the Ryu-

Takatyanagi proposal to calculate SA. Denoting the

endpoints of A by (xi, xj), the holographic value for SA
is given by the RT curve through

SA =
A(γxixj)

4GN

where GN is the newton constant, γxixj is the geodesic

curve in the bulk that is homologous to A and A(γxixj)

is the length of γxixj.

In presence of a boundary Q, curves can end on the

boundary as well. This can be taken care of by intro-

ducing image points on M.
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For the case at hand, this prescription is summarised

as follows

with

SA =Min{A(γc),A(γd)}

A(γc) = c
6 log (ℓ1−ℓ2)2

a2
, A(γd) = c

6 log 4ℓ1ℓ2
a2
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The negative contribution is missing in the standard

RT prescription. In a time dependent situation, for ex-

ample when the entangling region moves with respect

to the boundary, this part plays an important role; it

smoothly interpolates between disconnected and con-

nected pieces.

In the limit of ℓ2 << ℓ1 − ℓ2, the negative part candles

the connected piece and the disconnected part domi-

nates.

In the limit of ℓ2 >> ℓ1 − ℓ2, the negative part cancels

the disconnected piece and the connected part domi-

nates.
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We thus propose the following modification of the RT

prescription

(Hubeny and Rangamani; 2007)

In absence of any back reactions, variations of EE in

time can only come through the deformations and

modifications of the RT curves.
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To motivate the modification we note that the comple-

mentary region to A, denoted by Ā, changes in time. At

early times when A has not yet received the message of

quench, its reduced density matrix ρA is unaffected and

hence SA remains unchanged. After the quasi-particle

has penetrated A (say at time t = t∗), part of the re-

gion, denoted by α ⊂ A, receives the message and the

entanglement pattern begins to change. This contin-

ues until the quasi-particle exits the interval when SA
assumes its steady state value. We are only interested

in the intermediate times ℓ2 < t < ℓ1 in the following.
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Entanglement entropy changes by two competing con-

tributions; one that decreases SA and one that increases

it. Some of the existing entanglements disappear and

some new ones form. In other words, the entanglement

between A and Ā(t < t∗) transfers to that between A

and Ā(t > t∗).

As the quasi-particle pair travel in both directions, the

degrees of freedom in α find new counterparts to en-

tangle with. These are those degrees of freedom which

have been swept by the pair. This in turn transfers

part of entanglement between A and Ā(t < t∗) to α and

Ā(t > t∗).
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The decreasing contribution can be best understood by

focusing on the image point ℓ′2. This point is swept off

to the left to ℓ̃′2 as the quasi-particle passes through

it. In terms of the RT curves, this decreases the pos-

itive contribution of A(γℓ′1ℓ
′
2
) → A(γℓ′1ℓ̃

′
2
) and increases

the negative contribution of A(γℓ1ℓ′2
) → A(γℓ1ℓ̃′2

). The

rest of the curves are unaffected
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We suggest the following modification
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The increasing contribution is a result of the new en-

tanglements that the subset α finds with those degrees

of freedom that have already received the quench mes-

sage. We suggest the following modification
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SD = A(Γ)− A(Γ̃) = c
6 log ℓ1−ℓ2

ℓ1+ℓ2
ℓ1−t
ℓ1+t

SI =
1
2A(γℓ2ℓ̃′2

) + 1
2A(γα) = c

6 log
t2−ℓ22
aδ (δ light-cone regulator)

SA = SD + SI +
1
2A(γℓ1ℓ′1

) = c
6 log ℓ1−ℓ2

ℓ1+ℓ2
ℓ1−t
ℓ1+t

t2−ℓ22
aδ

2ℓ1
a
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Summary

• We used AdS/BCFT to describe Local Quench by

Holography

• We learned that Yo-Yo string forms

• For free boundary condition all that comes into play

is causal effects

• We proposed how the light-cone of the string deforms

RT curves and reproduced field theory results for EE

as a function of time
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• The case of a non-zero boundary entropy, backreac-

tion,....

• A transformation in gravity side that parallels confor-

mal transformation of CC

• Using the CHM map to find a time dependent thermal

entropy

• ..............
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