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Conformal Field Theories in d dimensions play an important role in
many branches of Physics. For example, in statistical physics, they
describe second-order phase transitions as we dial the temperature.
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In the Ising model in d > 1-dimensions, there is a critical
temperature Tc for which the correlation length and various other
quantities diverge

ξ ∼ (T − Tc)−ν ,

C ∼ (T − Tc)−α

ν, α and other similar critical exponents can be understood in
terms of CFT data:

ν =
1

d −∆ε

α =
d − 2∆ε

d −∆ε
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At the critical point we have the d-dimensional Ising CFT given by
the Ginzburg-Landau description

S =

∫
ddx

(
(∇Φ)2 + λΦ4

)
.

The exponents can be computed exactly in d = 2 and for d ≥ 4
they take the mean-field values. In between, one can use the
epsilon expansion, Monte-Carlo simulations, Bootstrap Equations,
large N expansions, etc.

Zohar Komargodski Quantum Field Theory with Random Coupling Constants



There are two relevant operators, Φ and Φ2. The coupling of Φ
corresponds to an external magnetic field and the coupling of Φ2 is
proportional to T − Tc , thus it corresponds to changing the
temperature.

If T > Tc then we have a gapped theory with a single vacuum and
if T < Tc we have two gapped vacua and there is nonzero
magnetization.
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We would like to explore what happens when we study an
ensemble of Quantum Field Theories. Is there is any possible
critical behavior if we study a collection of many QFTs with some
probability distribution connecting them?

This question is very well motivated experimentally.
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Real systems are never exactly pure. For example, we can’t really
set the coefficients of Φ and Φ2 to be exactly zero. This
corresponds to having some magnetic and non-magnetic
impurities. Suppose, as an example, that the coefficients are taken
to be unknown variables, with a Gaussian probability distribution,
but with a very small variance:

δS = h(x)Φ + h′(x)Φ2 ,

h(x) = 0 , h(x)h(y) = c2δ(d)(x − y) ,

h′(x) = 0 , h′(x)h′(y) = c ′2δ(d)(x − y) .
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We can ask what does such a tiny randomness in the coupling
constants do to the phase transition (and the CFT). It may seem
surprising, but such tiny randomness may have very dramatic
consequences.
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Let the QFT degrees of freedom be Φ and the sources h. We have
an action S [Φ, h]. The probability to find the system in some
configuration Φ for a given h

P
(
Φ
∣∣h) =

e−S[Φ;h]∫
[DΦ]e−S[Φ;h]

We integrate over h with some probability distribution P(h), e.g.

P(h) = e
−1
2c2

∫
ddxh2(x)

and find the probability distribution of the ensemble QFT:

e−H(Φ) =

∫
[Dh]e

−1
2c2

∫
ddxh2(x) e−S[Φ;h]∫

[DΦ]e−S[Φ;h]
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Using

e−H(Φ) =

∫
[Dh]e

−1
2c2

∫
ddxh2(x) e−S[Φ;h]∫

[DΦ]e−S[Φ;h]

we can compute the ensemble averages in the usual way

〈O1(Φ)...On(Φ)〉 =

∫
[DΦ]O1(Φ)...On(Φ)e−H(Φ)

=

∫
[DΦ][Dh]O1(Φ)...On(Φ)

e−S[Φ;h]− 1
2c2

∫
ddxh2(x)∫

[DΦ]e−S[Φ;h]
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Let us consider the case of free field theory, with the tadpole
disorder

S [Φ, h] =

∫
ddx

(
1

2
(∂Φ)2 + hΦ

)
.

A straightforward computation yields

〈Φ2(0)〉 = 〈Φ2(0)〉+ c2

∫
ddp

1

p4
.

This is infrared convergent only if d > 4 [Imry-Ma].
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Very similar to the Coleman theorem; No symmetry breaking can
occur in systems with disorder in the magnetic field at or below
d = 4. The free CFT with disordered tadpole does not exist at or
below d = 4.
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Take an abstract CFT with “action” S0. Let O be a scalar primary
operator of dimension ∆. We define

S = S0 +

∫
ddxh(x)O(x) .

We can use this to define arbitrary correlation functions with the
prescription we explained before

〈O1(φ)...On(φ)〉

=

∫
[Dφ][Dh]O1...On

e
−S0−

∫
ddx

[
h(x)O(x)− 1

2c2 h
2(x)

]
∫

[Dφ]e−S0−
∫
ddxh(x)O(x)
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In the general setup

S = S0 +

∫
ddxh(x)O(x) ,

with probability distribution for h given by e−
1

2c2

∫
ddxh2(x) we

immediately see that

If ∆ > d/2 disorder is irrelevant since c has negative mass
dimension. Then the critical exponents are those of the pure
theory. (This criterion is the [Harris] bound.)
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If ∆ < d/2 then disorder is relevant and

One can get new critical exponents. (Is the theory even scale
invariant?)

Criticality may disappear (as in the free field example).

It would be very nice to

Find good theoretical and numerical methods to evaluate the
new critical exponents.

Understand under what general conditions disorder can make
the critical theory disappear altogether.

There is a lot of experimental data that one can hope to compare
to...
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We would like to study the case ∆ = d/2. It is the marginal case
(zero heat capacity exponent). We will now explain that

dc2

d logµ
= c4(2− 1

2
C 2
OOO) +O(c6) .

COOO is the OPE coefficient in O(x)O(0) ∼ 1
xd

+ 1
xd/2COOOO(0).

As long as the OPE coefficient is not too large, disorder is infrared
free.

c=0
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The disordered free energy

FD [c] = −
∫

[Dh]e
−1
2c2

∫
ddxh2(x) logZ [h]

Which we can study using the replica trick

FD [c] = − d

dn

∣∣∣∣
n=0

∫
[Dh]e

−1
2c2

∫
ddxh2(x)Zn[h]

So we can study n copies of the original theory coupled through

n∑
A=1

L0[ΦA] + h
n∑

A=1

OA −
1

2c2
h2(x)
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This is now a pretty much standard exercise in conformal
perturbation theory. We compute the beta function for c2 and
then analytically continue to n = 0. It boils down to integrating
out h and computing the term in the OPE that goes like 1/xd .∑
A6=B

OAOB(x)
∑
C 6=D

OCOD(x) ∼ 1

xd
(
4(n − 2) + 2C 2

OOO

) ∑
A6=B

OAOB(0) .

Single contraction: Insert the unit operator

Double Contraction: Use the OPE coefficient twice.
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This case of ∆ = d/2 is interesting since the simplest phase
transitions in 3d are very close:

O(1) model (3d Ising): ∆ε = 1.41...

O(2) model (He3): ∆ε = 1.51...

In particular, in the 3d Ising it is slightly relevant classically and we
obtain thus a Wilson-Fisher like beta function for the random
coupling theory

dc2

d logµ
= (−d + 2∆ε) c

2 +

(
2− 1

2
C 2
OOO

)
c4 + ... ,

c2
∗ =

d − 2∆ε

2− 1
2C

2
OOO

∼ 0.2
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We can thus compute observables in the random exchange Ising
model in d=3. For example we find for the operator ε(x) in the
infrared

∆IR = ∆ε +
d − 2∆ε

2− 1
2C

2
OOO

.

From this we can infer some of the critical exponents of the
disordered theory

αIR = −0.13± 0.03 , νIR = 0.7± 0.1 ,

Compare with experiment [e.g. Belanger]:

αIR
Exp = −0.10± 0.02 , νIRExp = 0.69± 0.01 .

This is very good compared to existing theoretical approaches.
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Large N and a ’t Hooft-like Limit

At large N we have a special set of operators, Oi , which are
generalized free fields

〈Oi1Oi2 · · · Oin〉 = 〈Oi1Oi2〉 · · · 〈Oin−1Oin〉+ permutations

For example, in vector models we can take O = ~φ2 and in adjoint
theories O = Tr(...). Let us couple disorder to such a generalized
free field

S = S0 +

∫
ddxhO .

We normalize the generalized free field such that
〈O(x)O(x)〉 = 1

x2∆ and we take h(x)h(y) = c2δ(d)(x − y). c is
order 1 in this normalization in the large N limit.
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Large N and a ’t Hooft-like Limit

We will see that this gives a nontrivial ’t Hooft-like limit with
critical exponents and beta functions that do not contain factors of
N.
For example, we can compute the disordered one-point function
exactly. It is

〈O2(0)〉 = 〈O2(0)〉+ c2

∫
ddz

1

z2∆z2∆

It is infrared divergent for

∆ ≤ d/4

In this case we lose the critical point!
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Large N and a ’t Hooft-like Limit

At least at large N we thus have a very concrete condition

∆ ≤ d/4

which determines whether or not the phase transition disappears.
If the original pure theory is unitary, then ∆ ≥ d/2− 1. So we can
only have ∆ ≤ d/4 if d ≤ 4.

Consequently, (at least at large N) above four dimensions a unitary
CFT cannot be completely destabilized by disorder.
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Large N and a ’t Hooft-like Limit

If ∆ > d/4 then we find that some critical exponents change due
to disorder and some remain intact

〈O(x)O(0)〉 − 〈O(x)〉〈O(0)〉 =
1

x2∆

Therefore the dimension of O stays ∆. But

〈O2(x)O2(0)〉−〈O2(x)〉〈O2(0)〉 ∼ 1

x4∆
+

1

x2∆
c2

∫
ddz

1

(x − z)2∆

1

z2∆

−→x→∞ c2 1

x6∆−d

Therefore the infrared dimension of O2 is 3∆− d/2.

Zohar Komargodski Quantum Field Theory with Random Coupling Constants



Interplay with Double-Trace Deformations

Let us recall that if we have a double trace deformation of a pure
Large N CFT,

δS =
λ

2

∫
ddxO2 ,

and if the UV dimension of O is ∆ < d/2, then the double trace
deformation is relevant and leads to an infrared CFT where

∆IR(O) = d −∆

Thus, if we introduce disorder
∫
ddxhO it would be relevant in the

UV and irrelevant in the infrared (because ∆IR > d/2).
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Interplay with Double-Trace Deformations

One can solve for 〈O(x)O(y)〉 − 〈O(x)〉〈O(y)〉 and
〈O2(x)O2(0)〉 − 〈O2(x)〉〈O2(0)〉 exactly in this theory.
These computations uphold the intuition in the previous slide,
suggesting the following picture of the RG flow:

(It turns out that the situation is more complicated, but at least at
the level of two-point functions this is true.)

Zohar Komargodski Quantum Field Theory with Random Coupling Constants



Interplay with Double-Trace Deformations

c=0 flow

Pure fixed point,

Disordered fixed point,

O 2

O 2
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In the marginal case of ∆ = d/2 one finds nonzero beta functions.
The presence of double trace operators changes the previous result
(for COOO = 0) dc2

d log µ = 2c4. One finds, instead, that

dc2

d logµ
= 2c2λ ,

dλ

d logµ
= λ2 .

So the double trace operators exactly cancel the beta function if
λ = 0. This leads at low energies to a decay of disorder as

c2 → 1

log2 µ
.
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Disorder Beta Functions From Holography

Disorder averaging is actually very natural in theories with a
holographic dual. We need to study the classical action as a
functional of the boundary conditions and then average over the
boundary conditions.
Recall that in the presence of double trace operators [Witten]

φ(x , z) = zd/2 ([λβ(x) + h(x)] log(zµ) + β(x)) + · · · ,

for our application we treat h(x) as a random variable

h(x) = 0 , h(x)h(y) = c2δ(d)(x − y) .
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Disorder Beta Functions From Holography

From this we find that

O(k) = β(k) =
h(k) log(k/µ)

1− λ log(k/µ)
,

which is consistent with the fact that O does not pick anomalous
dimension due to disorder. This also leads to λ→ − 1

log(µ) as
usual. Additionally, matching the boundary conditions we find that
the effective sources obeys

h(k, µ) = h(k, µ0)
1− λ(µ) log(k/µ)

1− λ0 log(k/µ0)

and hence, squaring this,

c2(µ) =
c2

0

λ2
0

λ2(µ)→ 1/ log2(µ) .
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Conclusions and Outlook

Disordered fixed point are very common.

Can be treated analytically in a variety of ways, e.g. the heat
capacity expansion we presented here.

The symmetries of disordered fixed points are currently
unclear. In some examples we find that even scale invariance
is not obeyed (though one does have power law correlators).

A ’t Hooft limit exists (in fact there are two nontrivial limits;
we discussed only one). The beta functions for disorder
receive interesting corrections from double trace operators.

One can follow the flows in the ’t Hooft limit all the way. For
example, we found that if ∆ < d/4 then the coupling to
disorder would be disastrous for the critical theory.

Due to lack of space/time we only discussed very briefly what
holography has to say about disordered fixed points.
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Thank You
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