Entanglement and anomalies

Amos Yarom

(Work in progress with T. Nishioka (Tokyo))

Entanglement

If our Hilbert space is separable, $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{\bar{A}}$, then the entanglement entropy of a state $|\psi\rangle$ is given by

$$
S_{A}=-\operatorname{Tr}\left(\rho_{A} \ln \rho_{A}\right)
$$

where

$$
\rho_{A}=\operatorname{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)
$$

Entanglement

If our Hilbert space is separable, $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{\bar{A}}$, then the entanglement entropy of a state $|\psi\rangle$ is given by

$$
S_{A}=-\operatorname{Tr}\left(\rho_{A} \ln \rho_{A}\right)
$$

where

$$
\rho_{A}=\operatorname{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)
$$

This is sometimes difficult to compute. Instead we can use the following trick:

$$
S_{A}=-\sum_{i} \lambda_{i} \ln \lambda_{i}
$$

Entanglement

If our Hilbert space is separable, $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{\bar{A}}$, then the entanglement entropy of a state $|\psi\rangle$ is given by

$$
S_{A}=-\operatorname{Tr}\left(\rho_{A} \ln \rho_{A}\right)
$$

where

$$
\rho_{A}=\operatorname{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)
$$

This is sometimes difficult to compute. Instead we can use the following trick:

$$
\begin{aligned}
S_{A} & =-\sum_{i} \lambda_{i} \ln \lambda_{i} \\
& =-\lim _{n \rightarrow 1^{+}} \partial_{n} \sum_{i} \lambda_{i}^{n}
\end{aligned}
$$

Entanglement

If our Hilbert space is separable, $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{\bar{A}}$, then the entanglement entropy of a state $|\psi\rangle$ is given by

$$
S_{A}=-\operatorname{Tr}\left(\rho_{A} \ln \rho_{A}\right)
$$

where

$$
\rho_{A}=\operatorname{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)
$$

This is sometimes difficult to compute. Instead we can use the following trick:

Thus,

$$
\begin{aligned}
S_{A} & =-\sum_{i} \lambda_{i} \ln \lambda_{i} \\
& =-\lim _{n \rightarrow 1^{+}} \partial_{n} \sum_{i} \lambda_{i}^{n}
\end{aligned}
$$

$$
S_{A}=-\lim _{n \rightarrow 1} \partial_{n} \operatorname{Tr} \rho_{A}^{n}
$$

Entanglement in QFT

In the context of quantum field theory one usually considers a separation of the Hilbert space into two spatial regions.

One usually assumes that the Hilbert space is separable.

Entanglement in QFT

In the context of quantum field theory one usually considers a separation of the Hilbert space into two spatial regions.

One usually assumes that the Hilbert space is separable. To compute the entanglement entropy it is sufficient to compute $\operatorname{Tr} \rho_{A}^{n}$ and use the replica trick.

Entanglement in QFT

In the context of quantum field theory one usually considers a separation of the Hilbert space into two spatial regions.

One usually assumes that the Hilbert space is separable. To compute the entanglement entropy it is sufficient to compute $\operatorname{Tr} \rho_{A}^{n}$ and use the replica trick.

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

where

$$
Z_{n}=\int_{\mathcal{M}_{n}} D \phi e^{-S}
$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

2d example:

where

$$
Z_{n}=\int_{\mathcal{M}_{n}} D \phi e^{-S}
$$

is the n -fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

where

$$
Z_{n}=\int_{\mathcal{M}_{n}} D \phi e^{-S}
$$

is the n -fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

where

$$
Z_{n}=\int_{\mathcal{M}_{n}} D \phi e^{-S}
$$

is the n -fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

where

$$
Z_{n}=\int_{\mathcal{M}_{n}} D \phi e^{-S}
$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

where

$$
Z_{n}=\int_{\mathcal{M}_{n}} D \phi e^{-S}
$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

where

$$
Z_{n}=\int_{\mathcal{M}_{n}} D \phi e^{-S}
$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

where

$$
Z_{n}=\int_{\mathcal{M}_{n}} D \phi e^{-S}
$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

2d example:

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

where

$$
Z_{n}=\int_{\mathcal{M}_{n}} D \phi e^{-S}
$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.
$\overrightarrow{\bar{A}} \quad A \quad \bar{A} \times$

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

2d example:

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

where

$$
Z_{n}=\int_{\mathcal{M}_{n}} D \phi e^{-S}
$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.
$\overrightarrow{\bar{A}} \quad A \quad \bar{A} \times$

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

2d example:

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

where

$$
Z_{n}=\int_{\mathcal{M}_{n}} D \phi e^{-S}
$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.
$\overrightarrow{\bar{A}} \quad A \quad \bar{A} \times$

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

So that

$$
S_{A}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr}\left(\rho_{A}^{n}\right)
$$

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

So that

$$
S_{A}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr}\left(\rho_{A}^{n}\right)
$$

Alternatively:

$$
Z_{n}=e^{W_{n}}
$$

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\operatorname{Tr} \rho_{A}^{n}$. The prescription is as follows.

$$
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\frac{Z_{n}}{Z_{1}^{n}}
$$

So that

$$
S_{A}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr}\left(\rho_{A}^{n}\right)
$$

Alternatively:

$$
Z_{n}=e^{W_{n}}
$$

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

Suppose our theory is conformal, and suppose we rescale the entangling region by a factor σ.

$$
\delta_{\sigma} S_{A}=-\lim _{n \rightarrow \infty}\left(\partial_{n}-1\right) \delta_{\sigma} W_{n}
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

Suppose our theory is conformal, and suppose we rescale the entangling region by a factor σ.

$$
\delta_{\sigma} S_{A}=-\lim _{n \rightarrow \infty}\left(\partial_{n}-1\right) \delta_{\sigma} W_{n}
$$

If there is no conformal anomaly then S_{A} should not depend on σ.

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

Suppose our theory is conformal, and suppose we rescale the entangling region by a factor σ.

$$
\delta_{\sigma} S_{A}=-\lim _{n \rightarrow \infty}\left(\partial_{n}-1\right) \delta_{\sigma} W_{n}
$$

If there is no conformal anomaly then S_{A} should not depend on σ. Otherwise, the variation of S_{A} is tied to the variation of W_{n} under scaling which is fixed by the central charges. e.g.,

$$
\delta_{\sigma} W=\frac{c}{24 \pi} \int d^{2} x \sqrt{g} \sigma R
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

Suppose our theory is conformal, and suppose we rescale the entangling region by a factor σ.

$$
\delta_{\sigma} S_{A}=-\lim _{n \rightarrow \infty}\left(\partial_{n}-1\right) \delta_{\sigma} W_{n}
$$

If there is no conformal anomaly then S_{A} should not depend on σ. Otherwise, the variation of S_{A} is tied to the variation of W_{n} under scaling which is fixed by the central charges. e.g.,

$$
\delta_{\sigma} W=\frac{c}{24 \pi} \int d^{2} x \sqrt{g} \sigma R
$$

Which can be shown to lead to

$$
S_{A}=\frac{c}{3} \ln (L / \epsilon)+\ldots
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
For example, $A=\left\{\vec{x} \mid x^{1}>0\right\}$,

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
For example, $A=\left\{\vec{x} \mid x^{1}>0\right\}$,
The metric on \mathcal{M}_{n} is given by

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}+\sum_{i}\left(d x^{i}\right)^{2}
$$

with

$$
0 \leq \phi<2 \pi n
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
For example, $A=\left\{\vec{x} \mid x^{1}>0\right\}$,

$$
\mathcal{M}_{n}
$$

The metric on \mathcal{M}_{n} is given by

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}+\sum_{i}\left(d x^{i}\right)^{2}
$$

with

$$
0 \leq \phi<2 \pi n
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
For example, $A=\left\{\vec{x} \mid x^{1}>0\right\}$,

$$
\mathcal{M}_{n}
$$

The metric on \mathcal{M}_{n} is given by

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}+\sum_{i}\left(d x^{i}\right)^{2}
$$

with

$$
0 \leq \phi<2 \pi n
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$ The partition function is given by:

$$
Z\left[\mathcal{M}_{n}\right]=\left\langle B_{\epsilon}\right| e^{-\ell H}\left|B_{\Lambda}\right\rangle
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$ The partition function is given by:

$$
Z\left[\mathcal{M}_{n}\right]=\left\langle B_{\epsilon}\right| e^{-\ell H}\left|B_{\Lambda}\right\rangle
$$

Using:

$$
H=\int_{0}^{2 \pi n} d \sigma T_{t t}=\frac{1}{n}\left(L_{0}+\bar{L}_{0}-\frac{c_{L}+c_{R}}{24}\right)
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$ The partition function is given by:

$$
Z\left[\mathcal{M}_{n}\right]=\left\langle B_{\epsilon}\right| e^{-\ell H}\left|B_{\Lambda}\right\rangle
$$

Using:

$$
H=\int_{0}^{2 \pi n} d \sigma T_{t t}=\frac{1}{n}\left(L_{0}+\bar{L}_{0}-\frac{c_{L}+c_{R}}{24}\right)
$$

we find:

$$
Z\left[\mathcal{M}_{n}\right]=\left\langle B_{\epsilon} \mid 0\right\rangle\left\langle 0 \mid B_{\Lambda}\right\rangle e^{\frac{c_{L}+c_{R}}{24 n} \ell}
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$ The partition function is given by:

$$
Z\left[\mathcal{M}_{n}\right]=\left\langle B_{\epsilon} \mid 0\right\rangle\left\langle 0 \mid B_{\Lambda}\right\rangle e^{\frac{c_{L}+c_{R}}{24 n} \ell}
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$ The partition function is given by:

$$
Z\left[\mathcal{M}_{n}\right]=\left\langle B_{\epsilon} \mid 0\right\rangle\left\langle 0 \mid B_{\Lambda}\right\rangle e^{\frac{c_{L}+c_{R}}{24 n} \ell}
$$

Thus:

$$
S_{A}=\frac{c_{L}+c_{R}}{12}(\ln \Lambda / \epsilon)
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$

$$
S_{A}=\frac{c_{L}+c_{R}}{12}(\ln \Lambda / \epsilon)
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$
We find:

$$
S_{A}=\frac{c_{L}+c_{R}}{12}(\ln \Lambda / \epsilon)
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$
We find:

$$
S_{A}=\frac{c_{L}+c_{R}}{12}(\ln \Lambda / \epsilon)
$$

What about a boosted interval?

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$
We find:

$$
S_{A}=\frac{c_{L}+c_{R}}{12}(\ln \Lambda / \epsilon)
$$

What about a boosted interval?

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$
We find:

$$
S_{A}=\frac{c_{L}+c_{R}}{12}(\ln \Lambda / \epsilon)
$$

What about a boosted interval?

$$
S_{A}(\theta)=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}(\theta)
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$ The partition function is given by:

$$
Z\left[\mathcal{M}_{n}\right]=\left\langle B_{\epsilon}\right| e^{-\ell H+i n \theta P}\left|B_{\Lambda}\right\rangle
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$ The partition function is given by:

$$
Z\left[\mathcal{M}_{n}\right]=\left\langle B_{\epsilon}\right| e^{-\ell H+i n \theta P}\left|B_{\Lambda}\right\rangle
$$

where now:

$$
P=\int_{0}^{2 \pi n} T_{\sigma \sigma} d \sigma=\frac{1}{n}\left(L_{0}-\bar{L}_{0}-\frac{c_{L}-c_{R}}{24}\right)
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$ The partition function is given by:

$$
Z\left[\mathcal{M}_{n}\right]=\left\langle B_{\epsilon}\right| e^{-\ell H+i n \theta P}\left|B_{\Lambda}\right\rangle
$$

where now:

$$
P=\int_{0}^{2 \pi n} T_{\sigma \sigma} d \sigma=\frac{1}{n}\left(L_{0}-\bar{L}_{0}-\frac{c_{L}-c_{R}}{24}\right)
$$

After going back to Lorentzian signature,

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.
Method 1: We can map the cone into a cylinder of radius n via $t+i \sigma=\ln \left(r e^{i \phi}\right)$ The partition function is given by:

$$
Z\left[\mathcal{M}_{n}\right]=\left\langle B_{\epsilon}\right| e^{-\ell H+i n \theta P}\left|B_{\Lambda}\right\rangle
$$

where now:

$$
P=\int_{0}^{2 \pi n} T_{\sigma \sigma} d \sigma=\frac{1}{n}\left(L_{0}-\bar{L}_{0}-\frac{c_{L}-c_{R}}{24}\right)
$$

After going back to Lorentzian signature,

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24} \text { (A related result has been obtained previously by Casto, Detournay, Iqaal, Perlmutter, 2014) }
$$

Entanglement in QFT

We find:

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

I would like to focus on entangling regions in which space is split in two.

Method 2: One can think of Z_{n} as the thermodynamic partition function on a semiinfinite line with non uniform temperature.

$$
T^{-1}=2 \pi n r
$$

W_{n} is the generating function for connected correlators in such a state.

Constructing W_{n}

In a two dimensional conformal field theory and in the absence of global charges we define

$$
T^{-1}=\beta r=2 \pi n r
$$

Constructing W_{n}

In a two dimensional conformal field theory and in the absence of global charges we define

$$
\begin{aligned}
& T^{-1}=\beta r=2 \pi n r \\
& u^{\mu} \partial_{\mu}=\frac{1}{r} \partial_{\theta}
\end{aligned}
$$

Constructing W_{n}

In a two dimensional conformal field theory and in the absence of global charges we define

$$
\begin{aligned}
& T^{-1}=\beta r=2 \pi n r \\
& u^{\mu} \partial_{\mu}=\frac{1}{r} \partial_{\theta} \quad\left(u^{\alpha} u_{\alpha}=1\right)
\end{aligned}
$$

Constructing W_{n}

In a two dimensional conformal field theory and in the absence of global charges we define

$$
\begin{aligned}
& T^{-1}=\beta r=2 \pi n r \\
& u^{\mu} \partial_{\mu}=\frac{1}{r} \partial_{\theta} \quad\left(u^{\alpha} u_{\alpha}=1\right)
\end{aligned}
$$

Then: (Jensen, Loganayagam, AY, 2012)

$$
\begin{aligned}
W=\int d^{2} x & \sqrt{-g}\left(\frac{\pi}{12}\left(c_{R}+c_{L}\right) T^{2}-\frac{\pi}{12}\left(c_{R}-c_{L}\right) \beta^{-1} T \epsilon^{0 \nu} u_{\nu}\right. \\
& \left.+\frac{c_{L}+c_{R}}{48 \pi} u^{\beta} \partial_{\beta} u_{\gamma} u^{\alpha} \partial_{\alpha} u^{\gamma}+\frac{c_{R}-c_{L}}{96 \pi} u_{\alpha} u^{\beta} \epsilon^{\mu \nu} \partial_{\mu} \Gamma^{\alpha}{ }_{\beta \nu}\right)
\end{aligned}
$$

Constructing W_{n}

$$
\begin{aligned}
W=\int d^{2} x & \sqrt{-g}\left(\frac{\pi}{12}\left(c_{R}+c_{L}\right) T^{2}-\frac{\pi}{12}\left(c_{R}-c_{L}\right) \beta^{-1} T \epsilon^{0 \nu} u_{\nu}\right. \\
& \left.+\frac{c_{L}+c_{R}}{48 \pi} u^{\beta} \partial_{\beta} u_{\gamma} u^{\alpha} \partial_{\alpha} u^{\gamma}+\frac{c_{R}-c_{L}}{96 \pi} u_{\alpha} u^{\beta} \epsilon^{\mu \nu} \partial_{\mu} \Gamma^{\alpha}{ }_{\beta \nu}\right)
\end{aligned}
$$

Constructing W_{n}

Given

$$
\begin{aligned}
W=\int d^{2} x & \sqrt{-g}\left(\frac{\pi}{12}\left(c_{R}+c_{L}\right) T^{2}-\frac{\pi}{12}\left(c_{R}-c_{L}\right) \beta^{-1} T \epsilon^{0 \nu} u_{\nu}\right. \\
& \left.+\frac{c_{L}+c_{R}}{48 \pi} u^{\beta} \partial_{\beta} u_{\gamma} u^{\alpha} \partial_{\alpha} u^{\gamma}+\frac{c_{R}-c_{L}}{96 \pi} u_{\alpha} u^{\beta} \epsilon^{\mu \nu} \partial_{\mu} \Gamma^{\alpha}{ }_{\beta \nu}\right)
\end{aligned}
$$

Constructing W_{n}

Given

$$
\begin{aligned}
W=\int d^{2} x & \sqrt{-g}\left(\frac{\pi}{12}\left(c_{R}+c_{L}\right) T^{2}-\frac{\pi}{12}\left(c_{R}-c_{L}\right) \beta^{-1} T \epsilon^{0 \nu} u_{\nu}\right. \\
& \left.+\frac{c_{L}+c_{R}}{48 \pi} u^{\beta} \partial_{\beta} u_{\gamma} u^{\alpha} \partial_{\alpha} u^{\gamma}+\frac{c_{R}-c_{L}}{96 \pi} u_{\alpha} u^{\beta} \epsilon^{\mu \nu} \partial_{\mu} \Gamma^{\alpha}{ }_{\beta \nu}\right)
\end{aligned}
$$

We can compute

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

Constructing W_{n}

Given

$$
\begin{aligned}
W=\int d^{2} x & \sqrt{-g}\left(\frac{\pi}{12}\left(c_{R}+c_{L}\right) T^{2}-\frac{\pi}{12}\left(c_{R}-c_{L}\right) \beta^{-1} T \epsilon^{0 \nu} u_{\nu}\right. \\
& \left.+\frac{c_{L}+c_{R}}{48 \pi} u^{\beta} \partial_{\beta} u_{\gamma} u^{\alpha} \partial_{\alpha} u^{\gamma}+\frac{c_{R}-c_{L}}{96 \pi} u_{\alpha} u^{\beta} \epsilon^{\mu \nu} \partial_{\mu} \Gamma^{\alpha}{ }_{\beta \nu}\right)
\end{aligned}
$$

We can compute

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

Unsurprisingly, we find:

$$
S_{A}=\frac{c_{L}+c_{R}}{12} \ln (\Lambda / \epsilon)
$$

Adding anomalies

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

For a boosted interval:

$$
S_{A}(\theta)=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}(\theta)
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

For a boosted interval:

$$
S_{A}(\theta)=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}(\theta)
$$

We find:

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

For a boosted interval:

We find:

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

This happens because of the gravitational anomaly
$W=\int d^{2} x \sqrt{-g}\left(\frac{\pi}{12}\left(c_{R}+c_{L}\right) T^{2}-\frac{\pi}{12}\left(c_{R}-c_{L}\right) \beta^{-1} T \epsilon^{0 \nu} u_{\nu}+\frac{c_{L}+c_{R}}{48 \pi} u^{\beta} \partial_{\beta} u_{\gamma} u^{\alpha} \partial_{\alpha} u^{\gamma}+\frac{c_{R}-c_{L}}{96 \pi} u_{\alpha} u^{\beta} \epsilon^{\mu \nu} \partial_{\mu} \Gamma^{\alpha}{ }_{\beta \nu}\right)$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

For a boosted interval:

We find:

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

This happens because of the gravitational anomaly
$W=\int d^{2} x \sqrt{-g}\left(\frac{\pi}{12}\left(c_{R}+c_{L}\right) T^{2}-\frac{\pi}{12}\left(c_{R}-c_{L}\right) \beta^{-1} T \epsilon^{0 \nu} u_{\nu}+\frac{c_{L}+c_{R}}{48 \pi} u^{\beta} \partial_{\beta} u_{\gamma} u^{\alpha} \partial_{\alpha} u^{\gamma}-\frac{c_{R}-c_{L}}{96 \pi} u_{\alpha} u^{\beta} \epsilon^{\mu \nu} \partial_{\mu} \Gamma^{\alpha}{ }_{\beta \nu}\right)$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

We find:

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

We find:

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

We find:

$$
\delta_{\theta} S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) \delta_{\theta} W_{n}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

We find:

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

We can understand this as follows:

$$
\delta_{\theta} S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) \delta_{\theta} W_{n}
$$

Acting with a coordinate transformation on W gives the derivative of the stress tensor

$$
\delta_{\xi} W_{n}=-\int d^{d} x \sqrt{g} \xi_{\mu} \partial_{\nu} T^{\mu \nu}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

We find:

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

Acting with a coordinate transformation on W gives the derivative of the stress tensor

$$
\delta_{\xi} W_{n}=-\int d^{d} x \sqrt{g} \xi_{\mu} \partial_{\nu} T^{\mu \nu}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

We find:

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

Acting with a coordinate transformation on W gives the derivative of the stress tensor

$$
\delta_{\xi} W_{n}=-\int d^{d} x \sqrt{g} \xi_{\mu} \partial_{\nu} T^{\mu \nu}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

We find:

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

Acting with a coordinate transformation on W gives the derivative of the stress tensor

$$
\delta_{\xi} W_{n}=-\int d^{d} x \sqrt{g} \xi_{\mu} \partial_{\nu} T^{\mu \nu}
$$

In the presence of anomalies, the stress tensor is not conserved,

$$
\partial_{\nu} T^{\mu \nu}=\tau^{\mu}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

We find:

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

Acting with a coordinate transformation on W gives the derivative of the stress tensor

$$
\delta_{\xi} W_{n}=-\int d^{d} x \sqrt{g} \xi_{\mu} \partial_{\nu} T^{\mu \nu}
$$

$$
\partial_{\nu} T^{\mu \nu}=\tau^{\mu}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

We find:

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

Acting with a coordinate transformation on W gives the derivative of the stress tensor

$$
\delta_{\xi} W_{n}=-\int d^{d} x \sqrt{g} \xi_{\mu} \tau^{\mu}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

We find:

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

Acting with a coordinate transformation on W gives the derivative of the stress tensor

$$
\delta_{\xi} W_{n}=-\int d^{d} x \sqrt{g} \xi_{\mu} \tau^{\mu}
$$

The form of τ is completely fixed by the Wess-Zumino consistency conditions e.g., in 2d:

$$
\tau^{\nu}=-c_{g} g^{\mu \nu} \frac{1}{\sqrt{g}} \partial_{\lambda}\left(\sqrt{g} \epsilon^{\alpha \beta} \partial_{\alpha} \Gamma_{\nu \beta}^{\lambda}\right)
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

We find:

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

Acting with a coordinate transformation on W gives the derivative of the stress tensor

$$
\delta_{\xi} W_{n}=-\int d^{d} x \sqrt{g} \xi_{\mu} \tau^{\mu}
$$

Thus,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

and for a 2d CFT,

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

and for a 2d CFT,

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

but we can also compute the same for non-conformal theories:

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=4 \pi c_{g}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

and for a 2d CFT,

$$
\partial_{\theta} S_{A}=\frac{c_{L}-c_{R}}{24}
$$

but we can also compute the same for non-conformal theories:

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=4 \pi c_{g} \quad\left(c_{g}=-\frac{2 \pi}{4!\left(8 \pi^{2}\right)} \sum_{i} \chi_{i} q_{i}\right)
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=4 \pi c_{g}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

In 2 dimensions

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=4 \pi c_{g}
$$

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

In 2 dimensions

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=4 \pi c_{g}
$$

In 4 dimensions there isn't a gravitational anomaly, but there is a mixed gaugegravitational anomaly.

Adding anomalies

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

In 2 dimensions

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=4 \pi c_{g}
$$

In 4 dimensions there isn't a gravitational anomaly, but there is a mixed gaugegravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum.

Adding anomalies

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

In 4 dimensions there isn't a gravitational anomaly, but there is a mixed gaugegravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum.

Adding anomalies

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

In 4 dimensions there isn't a gravitational anomaly, but there is a mixed gaugegravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface

Adding anomalies

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

In 4 dimensions there isn't a gravitational anomaly, but there is a mixed gaugegravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface

Adding anomalies

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

In 4 dimensions there isn't a gravitational anomaly, but there is a mixed gaugegravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface

Adding anomalies

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

In 4 dimensions there isn't a gravitational anomaly, but there is a mixed gaugegravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface

Adding anomalies

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

In 4 dimensions there isn't a gravitational anomaly, but there is a mixed gaugegravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface

Adding anomalies

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

In 4 dimensions there isn't a gravitational anomaly, but there is a mixed gaugegravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface

We find:

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-4 \pi \alpha c_{m} B \operatorname{vol}\left(\mathbb{R}^{2}\right)
$$

Adding anomalies

In the presence of a gravitational anomaly,

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

In 4 dimensions there isn't a gravitational anomaly, but there is a mixed gaugegravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface

We find:

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-4 \pi \alpha c_{m} B \operatorname{vol}\left(\mathbb{R}^{2}\right)
$$

$$
c_{m}=-\frac{2 \pi}{4!\left(8 \pi^{2}\right)(2 \pi)} \sum_{i} \chi_{i} q_{i}
$$

Summary

Entanglement entropy is given by
\mathcal{M}_{n}

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

Summary

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

and will be susceptible to gravitational anomalies, viz.

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

\mathcal{M}_{n}

Summary

Entanglement entropy is given by

$$
S_{A}=-\lim _{n \rightarrow 1}\left(\partial_{n}-1\right) W_{n}
$$

and will be susceptible to gravitational anomalies, viz.

$$
\left.\partial_{\theta} S_{A}\right|_{\theta=0}=-\int d^{d} x \sqrt{g} \tau^{\theta}
$$

\mathcal{M}_{n}

Explicitly,

$$
\begin{align*}
& \left.\partial_{\theta} S_{A}\right|_{\theta=0}=4 \pi c_{g} \tag{2d}\\
& \left.\partial_{\theta} S_{A}\right|_{\theta=0}=-4 \pi \alpha c_{m} B \operatorname{vol}\left(\mathbb{R}^{2}\right) \tag{4d}
\end{align*}
$$

Thank you

