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Ā

One usually assumes that the Hilbert space is separable. To compute the 
entanglement entropy it is sufficient to compute             and use the replica trick.Tr⇢nA

In 2004 Calabrese and Cardy gave a prescription for computing             . The 
prescription is as follows.

Tr⇢nA



In 2004 Calabrese and Cardy gave a prescription for computing             . The 
prescription is as follows.

Tr⇢nA

Entanglement in QFT



In 2004 Calabrese and Cardy gave a prescription for computing             . The 
prescription is as follows.

Tr⇢nA

Entanglement in QFT

Tr (⇢nA) =
Zn

Zn
1



is the n-fold cover of the space-time       on 
which the theory is defined, each sheet is 
connected to the other along the entangling 
region    .A

In 2004 Calabrese and Cardy gave a prescription for computing             . The 
prescription is as follows.

Tr⇢nA

Entanglement in QFT

Tr (⇢nA) =
Zn

Zn
1

where

Zn =

Z

Mn

D�e�S

M



is the n-fold cover of the space-time       on 
which the theory is defined, each sheet is 
connected to the other along the entangling 
region    .A

In 2004 Calabrese and Cardy gave a prescription for computing             . The 
prescription is as follows.

Tr⇢nA

Entanglement in QFT

Tr (⇢nA) =
Zn

Zn
1

where

Zn =

Z

Mn

D�e�S

x
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Ā A

B = F
xy



In the presence of a gravitational anomaly,

@✓SA

��
✓=0

= �
Z

d

d
x

p
g⌧

✓

In 4 dimensions there isn’t a gravitational anomaly, but there is a mixed gauge-
gravitational anomaly. As one may expect, this anomaly does not contribute to the 
entanglement entropy of the vacuum. Consider instead turning on an (external) 
magnetic field orthogonal to the entangling surface

We find:

@✓SA

��
✓=0

= �4⇡↵cmBvol(R2
)

cm = � 2⇡

4!(8⇡2)(2⇡)

X

i

�iqi

Adding anomalies

x
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