Entanglement and anomalies

Amos Yarom

(Work in progress with T. Nishioka (Tokyo))
If our Hilbert space is separable, $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}}$, then the entanglement entropy of a state $|\psi\rangle$ is given by

$$S_A = -\text{Tr} \left(\rho_A \ln \rho_A \right)$$

where

$$\rho_A = \text{Tr}_{\bar{A}} \left(|\psi\rangle \langle \psi| \right)$$
If our Hilbert space is separable, $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}}$, then the entanglement entropy of a state $|\psi\rangle$ is given by

$$S_A = -\operatorname{Tr} (\rho_A \ln \rho_A)$$

where

$$\rho_A = \operatorname{Tr}_{\bar{A}} (|\psi\rangle\langle\psi|)$$

This is sometimes difficult to compute. Instead we can use the following trick:

$$S'_A = - \sum_i \lambda_i \ln \lambda_i$$
If our Hilbert space is separable, $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}}$, then the entanglement entropy of a state $|\psi\rangle$ is given by

$$S_A = -\text{Tr} \left(\rho_A \ln \rho_A \right)$$

where

$$\rho_A = \text{Tr}_{\bar{A}} (|\psi\rangle\langle\psi|)$$

This is sometimes difficult to compute. Instead we can use the following trick:

$$S_A = - \sum_i \lambda_i \ln \lambda_i$$

$$= - \lim_{n \to 1^+} \partial_n \sum_i \lambda_i^n$$
If our Hilbert space is separable, $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}}$, then the entanglement entropy of a state $|\psi\rangle$ is given by

$$S_A = -\text{Tr} (\rho_A \ln \rho_A)$$

where

$$\rho_A = \text{Tr}_{\bar{A}} (|\psi\rangle \langle \psi|)$$

This is sometimes difficult to compute. Instead we can use the following trick:

$$S_A = - \sum_i \lambda_i \ln \lambda_i$$

$$= - \lim_{n \to 1^+} \partial_n \sum_i \lambda_i^n$$

Thus,

$$S_A = - \lim_{n \to 1} \partial_n \text{Tr} \rho_A^n$$
Entanglement in QFT

In the context of quantum field theory one usually considers a separation of the Hilbert space into two spatial regions.

One usually assumes that the Hilbert space is separable.
Entanglement in QFT

In the context of quantum field theory one usually considers a separation of the Hilbert space into two spatial regions.

One usually assumes that the Hilbert space is separable. To compute the entanglement entropy it is sufficient to compute $\text{Tr} \rho_A^n$ and use the replica trick.
Entanglement in QFT

In the context of quantum field theory one usually considers a separation of the Hilbert space into two spatial regions.

One usually assumes that the Hilbert space is separable. To compute the entanglement entropy it is sufficient to compute $\text{Tr} \rho^n_A$ and use the replica trick.

In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho^n_A$. The prescription is as follows.
In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho_A^n$. The prescription is as follows.
In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho_A^n$. The prescription is as follows.

$$\text{Tr} (\rho_A^n) = \frac{Z^n}{Z_1^n}$$
Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho_A^n$. The prescription is as follows.

$$\text{Tr} (\rho_A^n) = \frac{Z_n}{Z_1^n}$$

where

$$Z_n = \int_{\mathcal{M}_n} D\phi e^{-S}$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho_A^n$. The prescription is as follows.

$$\text{Tr} \left(\rho_A^n \right) = \frac{Z^n}{Z_1^n}$$

where

$$Z_n = \int_{\mathcal{M}_n} D\phi e^{-S}$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region \bar{A}.

2d example:

\bar{A} A \bar{A} x
In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho^n_A$. The prescription is as follows.

$$\text{Tr} \left(\rho^n_A \right) = \frac{Z_n}{Z^n_1}$$

where

$$Z_n = \int_{\mathcal{M}_n} D\phi e^{-S}$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

2d example:
Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho^A_n$. The prescription is as follows.

$$\text{Tr} (\rho^A_n) = \frac{Z_n}{Z^n_1}$$

where

$$Z_n = \int_{\mathcal{M}_n} D\phi e^{-S}$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

2d example:
Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho^n_A$. The prescription is as follows.

$$\text{Tr} (\rho^n_A) = \frac{Z^n}{Z^n_1}$$

where

$$Z^n = \int_{\mathcal{M}_n} D\phi e^{-S}$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

2d example:
Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho^n_A$. The prescription is as follows.

$$\text{Tr} \left(\rho^n_A \right) = \frac{Z_n}{Z^n_1}$$

where

$$Z_n = \int_{\mathcal{M}_n} D\phi e^{-S}$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region \bar{A}. 2d example:
Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho^n_A$. The prescription is as follows.

$$\text{Tr} \left(\rho^n_A \right) = \frac{Z_n}{Z^n_1}$$

where

$$Z_n = \int_{\mathcal{M}_n} D\phi e^{-S}$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

2d example:
Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho^n_A$. The prescription is as follows.

$$\text{Tr} (\rho^n_A) = \frac{Z_n}{Z^n_1}$$

where

$$Z_n = \int_{\mathcal{M}_n} D\phi e^{-S}$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region \bar{A}.

2d example:
In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho_A^n$. The prescription is as follows.

$$\text{Tr} (\rho_A^n) = \frac{Z_n}{Z_1^n}$$

where

$$Z_n = \int_{\mathcal{M}_n} D\phi e^{-S}$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

2d example:
Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho_A^n$. The prescription is as follows.

$$\text{Tr} \left(\rho_A^n \right) = \frac{Z_n}{Z_1^n}$$

where

$$Z_n = \int_{\mathcal{M}_n} D\phi e^{-S}$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.
In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho_A^n$. The prescription is as follows.

$$\text{Tr} (\rho_A^n) = \frac{Z_n}{Z_1^n}$$

where

$$Z_n = \int_{\mathcal{M}_n} D\phi e^{-S}$$

is the n-fold cover of the space-time \mathcal{M} on which the theory is defined, each sheet is connected to the other along the entangling region A.

2d example:
Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho^n_A$. The prescription is as follows.

$\text{Tr} (\rho^n_A) = \frac{Z^n}{Z^n_1}$
Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho_A^n$. The prescription is as follows.

$$\text{Tr} (\rho_A^n) = \frac{Z^n}{Z_1^n}$$

So that

$$S_A = - \lim_{n \to 1} \frac{\partial}{\partial n} \text{Tr} (\rho_A^n)$$
Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing \(\text{Tr} \rho_A^n \). The prescription is as follows.

\[
\text{Tr} (\rho^n_A) = \frac{Z_n}{Z^n_1}
\]

So that

\[
S_A = - \lim_{n \to 1} \frac{\partial}{\partial n} \text{Tr} (\rho^n_A)
\]

Alternatively:

\[
Z_n = e^{W_n}
\]
Entanglement in QFT

In 2004 Calabrese and Cardy gave a prescription for computing $\text{Tr} \rho^n_A$. The prescription is as follows.

$$\text{Tr} \left(\rho^n_A \right) = \frac{Z_n}{Z^n_1}$$

So that

$$S_A = - \lim_{n \to 1} \frac{\partial}{\partial n} \text{Tr} \left(\rho^n_A \right)$$

Alternatively:

$$Z_n = e^{W_n}$$

We find:

$$S_A = - \lim_{n \to 1} \left(\partial_n - 1 \right) W_n$$
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

Suppose our theory is conformal, and suppose we rescale the entangling region by a factor \(\sigma \).

\[\delta_\sigma S_A = - \lim_{n \to \infty} (\partial_n - 1) \delta_\sigma W_n \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

Suppose our theory is conformal, and suppose we rescale the entangling region by a factor \(\sigma \).

\[\delta_\sigma S_A = - \lim_{n \to \infty} (\partial_n - 1) \delta_\sigma W_n \]

If there is no conformal anomaly then \(S_A \) should not depend on \(\sigma \).
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

Suppose our theory is conformal, and suppose we rescale the entangling region by a factor \(\sigma \).

\[\delta \sigma S_A = - \lim_{n \to \infty} (\partial_n - 1) \delta \sigma W_n \]

If there is no conformal anomaly then \(S_A \) should not depend on \(\sigma \). Otherwise, the variation of \(S_A \) is tied to the variation of \(W_n \) under scaling which is fixed by the central charges. e.g.,

\[\delta \sigma W = \frac{c}{24\pi} \int d^2 x \sqrt{g} \sigma R \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

Suppose our theory is conformal, and suppose we rescale the entangling region by a factor \(\sigma \).

\[\delta_{\sigma} S_A = - \lim_{n \to \infty} (\partial_n - 1) \delta_{\sigma} W_n \]

If there is no conformal anomaly then \(S_A \) should not depend on \(\sigma \). Otherwise, the variation of \(S_A \) is tied to the variation of \(W_n \) under scaling which is fixed by the central charges. e.g.,

\[\delta_{\sigma} W = \frac{c}{24\pi} \int d^2x \sqrt{g} \sigma R \]

Which can be shown to lead to

\[S_A = \frac{c}{3} \ln \left(\frac{L}{\epsilon} \right) + \ldots \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

For example, \(A = \{ \bar{x} | x^1 > 0 \} \),

\[\mathcal{M}_n \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} \left(\partial_n - 1 \right) W_n \]

I would like to focus on entangling regions in which space is split in two.

For example, \(A = \{ \bar{x} | x^1 > 0 \} \),

The metric on \(M_n \) is given by

\[ds^2 = dr^2 + r^2 d\phi^2 + \sum_i (dx^i)^2 \]

with

\[0 \leq \phi < 2\pi n \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

For example, \[A = \{ \vec{x} | x^1 > 0 \} \], \[\mathcal{M}_n \]

The metric on \[\mathcal{M}_n \] is given by

\[ds^2 = dr^2 + r^2 d\phi^2 + \sum_i (dx^i)^2 \]

with

\[0 \leq \phi < 2\pi n \]
We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

For example, \(A = \{ \bar{x} | x^1 > 0 \} \), \(M_n \)

The metric on \(M_n \) is given by

\[ds^2 = dr^2 + r^2 d\phi^2 + \sum_i (dx^i)^2 \]

with

\[0 \leq \phi < 2\pi n \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via

\[t + i\sigma = \ln(\sqrt{2} \pi n) \]

\[t + i\sigma = \ln(\sqrt{2} \pi n) \]

\[t + i\sigma = \ln(\sqrt{2} \pi n) \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius n via
\[t + i\sigma = \ln(re^{i\phi}) \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via

\[t + i\sigma = \ln(re^{i\phi}) \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via

\[t + i\sigma = \ln(re^{i\phi}) \]

The partition function is given by:

\[Z[M_n] = \langle B_\epsilon | e^{-\ell H} | B_\Lambda \rangle \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via

\[t + i\sigma = \ln(\rho e^{i\phi}) \]

The partition function is given by:

\[Z[\mathcal{M}_n] = \langle B_\epsilon | e^{-\ell H} | B_\Lambda \rangle \]

Using:

\[H = \int_0^{2\pi n} d\sigma T_{tt} = \frac{1}{n} \left(L_0 + \bar{L}_0 - \frac{c_L + c_R}{24} \right) \]
Entanglement in QFT

We find:

$$S_A = - \lim_{n \to 1} (\partial_n - 1) W_n$$

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius n via $t + i\sigma = \ln(re^{i\phi})$

The partition function is given by:

$$Z[\mathcal{M}_n] = \langle B_\epsilon | e^{-\ell H} | B_\Lambda \rangle$$

Using:

$$H = \int_0^{2\pi n} d\sigma T_{tt} = \frac{1}{n} \left(L_0 + \bar{L}_0 - \frac{c_L + c_R}{24} \right)$$

we find:

$$Z[\mathcal{M}_n] = \langle B_\epsilon | 0 \rangle \langle 0 | B_\Lambda \rangle e^{\frac{c_L + c_R}{24n} \ell}$$
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via

\[t + i\sigma = \ln(re^{i\phi}) \]

The partition function is given by:

\[Z[\mathcal{M}_n] = \langle B_\epsilon | 0 \rangle \langle 0 | B_\Lambda \rangle e^{\frac{c_L + c_R}{24n} \ell} \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius n via

\[t + i\sigma = \ln(r e^{i\phi}) \]

The partition function is given by:

\[Z[\mathcal{M}_n] = \langle B_\epsilon | 0 \rangle \langle 0 | B_\Lambda \rangle e^{\frac{c_L + c_R}{24n} \ell} \]

Thus:

\[S_A = \frac{c_L + c_R}{12} \left(\ln \Lambda / \epsilon \right) \]
Entanglement in QFT

We find:

\[S_A = -\lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via

\[t + i\sigma = \ln(re^{i\phi}) \]

\[S_A = \frac{c_L + c_R}{12} (\ln \Lambda/\epsilon) \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via

\[t + i\sigma = \ln(re^{i\phi}) \]

We find:

\[S_A = \frac{c_L + c_R}{12} \left(\ln \Lambda / \epsilon \right) \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via

\[t + i\sigma = \ln(r e^{i\phi}) \]

We find:

\[S_A = \frac{c_L + c_R}{12} (\ln \Lambda/\epsilon) \]

What about a boosted interval?
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via

\[t + i\sigma = \ln(re^{i\phi}) \]

We find:

\[S_A = \frac{c_L + c_R}{12} \left(\ln \Lambda / \epsilon \right) \]

What about a boosted interval?
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius n via \(t + i\sigma = \ln(re^{i\phi}) \).

We find:

\[S_A = \frac{C_L + C_R}{12} (\ln \Lambda/\epsilon) \]

What about a boosted interval?

\[S_A(\theta) = - \lim_{n \to 1} (\partial_n - 1)W_n(\theta) \]
We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius n via \(t + i\sigma = \ln(re^{i\phi}) \)
Entanglement in QFT

We find:

$$S_A = - \lim_{n \to 1} (\partial_n - 1) W_n$$

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius n via
\[t + i\sigma = \ln(r e^{i\phi}) \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via

\[t + i \sigma = \ln(\rho e^{i\phi}) \]
We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via

\[t + i \sigma = \ln(Re^{i\phi}) \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via \(t + i\sigma = \ln(\Re e^{i\phi}) \)

The partition function is given by:

\[Z[\mathcal{M}_n] = \langle B_\epsilon | e^{-\ell H + i n \theta P} | B_\Lambda \rangle \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius n via
\[t + i\sigma = \ln(re^{i\phi}) \]

The partition function is given by:

\[Z[\mathcal{M}_n] = \langle B_\epsilon | e^{-\ell H + i\theta P} | B_\Lambda \rangle \]

where now:

\[P = \int_0^{2\pi n} T_{\sigma \sigma} d\sigma = \frac{1}{n} \left(L_0 - \bar{L}_0 - \frac{c_L - c_R}{24} \right) \]
We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via \(t + i\sigma = \ln(re^{i\phi}) \)

The partition function is given by:

\[Z[\mathcal{M}_n] = \langle B_\epsilon | e^{-\ell H + i n \theta P} | B_\Lambda \rangle \]

where now:

\[P = \int_0^{2\pi n} T_{\sigma \sigma} d\sigma = \frac{1}{n} \left(L_0 - \bar{L}_0 - \frac{c_L - c_R}{24} \right) \]

After going back to Lorentzian signature,

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 1: We can map the cone into a cylinder of radius \(n \) via \(t + i\sigma = \ln(re^{i\phi}) \)

The partition function is given by:

\[Z[\mathcal{M}_n] = \langle B_\epsilon | e^{-\ell H + i n \theta P} | B_\Lambda \rangle \]

where now:

\[P = \int_0^{2\pi n} T_{\sigma \sigma} d\sigma = \frac{1}{n} \left(L_0 - \bar{L}_0 - \frac{c_L - c_R}{24} \right) \]

After going back to Lorentzian signature,

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \quad \text{(A related result has been obtained previously by Castro, Detournay, Iqbal, Perlmutter, 2014)} \]
Entanglement in QFT

We find:

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

I would like to focus on entangling regions in which space is split in two.

Method 2: One can think of \(Z_n \) as the thermodynamic partition function on a semi-infinite line with non-uniform temperature.

\[T^{-1} = 2\pi n r \]

\(W_n \) is the generating function for connected correlators in such a state.
Constructing W_n

In a two dimensional conformal field theory and in the absence of global charges we define

$$T^{-1} = \beta r = 2\pi n r$$
Constructing W_n

In a two dimensional conformal field theory and in the absence of global charges we define

$$T^{-1} = \beta r = 2\pi nr$$

$$u^\mu \partial_\mu = \frac{1}{r} \partial_\theta$$
Constructing W_n

In a two dimensional conformal field theory and in the absence of global charges we define

$$T^{-1} = \beta r = 2\pi n r$$

$$u^\mu \partial_\mu = \frac{1}{r} \partial_\theta \quad (u^\alpha u_\alpha = 1)$$
Constructing W_n

In a two dimensional conformal field theory and in the absence of global charges we define

$$T^{-1} = \beta r = 2\pi n r$$

$$u^\mu \partial_\mu = \frac{1}{r} \partial_\theta \quad (u^\alpha u_\alpha = 1)$$

Then: (Jensen, Loganayagam, AY, 2012)

$$W = \int d^2x \sqrt{-g} \left(\frac{\pi}{12} (c_R + c_L) T^2 - \frac{\pi}{12} (c_R - c_L) \beta^{-1} T \epsilon^{0\nu} u_\nu
ight.$$

$$+ \frac{c_L + c_R}{48\pi} u^\beta \partial_\beta u_\gamma u^\alpha \partial_\alpha u_\gamma + \frac{c_R - c_L}{96\pi} u_\alpha u^\beta \epsilon^{\mu\nu} \partial_\mu \Gamma^\alpha_{\beta\nu} \left. \right)$$
Constructing W_n

\[W = \int d^2 x \sqrt{-g} \left(\frac{\pi}{12} (c_R + c_L) T^2 - \frac{\pi}{12} (c_R - c_L) \beta^{-1} T \epsilon^{0\nu} u_{\nu} \right. \]

\[+ \frac{c_L + c_R}{48\pi} u^\beta \partial^\gamma u^\alpha \partial_\alpha u^\gamma + \frac{c_R - c_L}{96\pi} u_\alpha u^\beta \epsilon^{\mu\nu} \partial_\mu \Gamma_\beta^\alpha_{\nu} \left. \right) \]
Constructing W_n

Given

$$W = \int d^2 x \sqrt{-g} \left(\frac{\pi}{12} (c_R + c_L) T^2 - \frac{\pi}{12} (c_R - c_L) \beta^{-1} T \epsilon^{0\nu} u_\nu
ight. $$

$$+ \frac{c_L + c_R}{48\pi} u^\beta \partial_\beta u_\gamma u^\alpha \partial_\alpha u^\gamma + \frac{c_R - c_L}{96\pi} u_\alpha u^\beta \epsilon^{\mu\nu} \partial_\mu \Gamma^\alpha_{\beta\nu} \right)$$
Constructing \(W_n \)

Given

\[
W = \int d^2 x \sqrt{-g} \left(\frac{\pi}{12} (c_R + c_L) T^2 - \frac{\pi}{12} (c_R - c_L) \beta^{-1} T \epsilon^{0\nu} u_{\nu} \\
+ \frac{c_L + c_R}{48\pi} u^\beta \partial_\beta u_\gamma u^\alpha \partial_\alpha u^\gamma + \frac{c_R - c_L}{96\pi} u_\alpha u^\beta \epsilon^{\mu\nu} \partial_\mu \Gamma^\alpha_{\beta\nu} \right)
\]

We can compute

\[
S_A = - \lim_{n \to 1} (\partial_n - 1) W_n
\]
Constructing \(W_n \)

Given

\[
W = \int d^2 x \sqrt{-g} \left(\frac{\pi}{12} (c_R + c_L) T^2 - \frac{\pi}{12} (c_R - c_L) \beta^{-1} T \epsilon^{0\nu} u_\nu \\
+ \frac{c_L + c_R}{48\pi} u^\beta \partial_\beta u_\gamma u^\alpha \partial_\alpha u^\gamma + \frac{c_R - c_L}{96\pi} u_\alpha u^\beta \epsilon^{\mu\nu} \partial_\mu \Gamma^\alpha_{\beta\nu} \right)
\]

We can compute

\[
S_A = - \lim_{n \to 1} (\partial_n - 1) W_n
\]

Unsurprisingly, we find:

\[
S_A = \frac{c_L + c_R}{12} \ln(\Lambda/\epsilon)
\]
Adding anomalies

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]
Adding anomalies

Entanglement entropy is given by

$$S_A = - \lim_{n \to 1} (\partial_n - 1) W_n$$

For a boosted interval:

$$S_A(\theta) = - \lim_{n \to 1} (\partial_n - 1) W_n(\theta)$$
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

For a boosted interval:

\[S_A(\theta) = - \lim_{n \to 1} (\partial_n - 1) W_n(\theta) \]

We find:

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

For a boosted interval:

\[S_A(\theta) = - \lim_{n \to 1} (\partial_n - 1) W_n(\theta) \]

We find:

\[\partial_{\theta} S_A = \frac{c_L - c_R}{24} \]

This happens because of the gravitational anomaly

\[W = \int d^2x \sqrt{-g} \left(\frac{\pi}{12} (c_R + c_L) T^2 - \frac{\pi}{12} (c_R - c_L) \beta^{-1} T \epsilon^{0\nu} u_\nu + \frac{c_L + c_R}{48\pi} u^\beta \partial_\beta u_\gamma u^\alpha \partial_\alpha u^\gamma + \frac{c_R - c_L}{96\pi} u_\alpha u^\beta \epsilon^{\mu\nu} \partial_\mu \Gamma_\alpha^\beta\nu \right) \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

For a boosted interval:

\[S_A(\theta) = - \lim_{n \to 1} (\partial_n - 1) W_n(\theta) \]

We find:

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]

This happens because of the gravitational anomaly

\[W = \int d^2 x \sqrt{-g} \left(\frac{\pi}{12} (c_R + c_L) T^2 - \frac{\pi}{12} (c_R - c_L) \beta^{-1} T \epsilon^{0\nu} u_\nu + \frac{c_L + c_R}{48\pi} u^\beta \partial_\beta u^{\alpha} \partial_\alpha u^\gamma - \frac{c_R - c_L}{96\pi} u_\alpha u^\beta \epsilon^{\mu\nu} \partial_\mu \Gamma^\alpha_{\beta\nu} \right) \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

We find:

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

We find:

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

We find:

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]

We can understand this as follows:

\[\delta_\theta S_A = - \lim_{n \to 1} (\partial_n - 1) \delta_\theta W_n \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

We find:

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]

We can understand this as follows:

\[\delta_\theta S_A = - \lim_{n \to 1} (\partial_n - 1) \delta_\theta W_n \]

Acting with a coordinate transformation on \(\tilde{W} \) gives the derivative of the stress tensor

\[\delta_\xi W_n = - \int d^d x \sqrt{g} \xi_\mu \partial_\nu T^{\mu\nu} \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

We find:

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]

Acting with a coordinate transformation on \(W \) gives the derivative of the stress tensor

\[\delta_\xi W_n = - \int d^d x \sqrt{g} \xi_\mu \partial_\nu T^{\mu\nu} \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

We find:

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]

Acting with a coordinate transformation on \(W \) gives the derivative of the stress tensor

\[\delta_\xi W_n = - \int d^d x \sqrt{g} \xi_\mu \partial_\nu T^{\mu \nu} \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

We find:

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]

Acting with a coordinate transformation on \(W \) gives the derivative of the stress tensor

\[\delta_\xi W_n = - \int d^d x \sqrt{g} \xi_\mu \partial_\nu T^{\mu\nu} \]

In the presence of anomalies, the stress tensor is not conserved,

\[\partial_\nu T^{\mu\nu} = \tau^\mu \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

We find:

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]

Acting with a coordinate transformation on \(W \) gives the derivative of the stress tensor

\[\delta_\xi W_n = - \int d^d x \sqrt{g} \, \xi_\mu \partial_\nu T^{\mu\nu} \]

\[\partial_\nu T^{\mu\nu} = \tau^\mu \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

We find:

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]

Acting with a coordinate transformation on \(W \) gives the derivative of the stress tensor

\[\delta_\xi W_n = - \int d^d x \sqrt{g} \xi_\mu \tau^\mu \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) \, W_n \]

We find:

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]

Acting with a coordinate transformation on \(W \) gives the derivative of the stress tensor

\[\delta_\xi W_n = - \int d^d x \sqrt{g} \xi_\mu \tau^\mu \]

The form of \(\tau \) is completely fixed by the Wess-Zumino consistency conditions e.g., in 2d:

\[\tau^\nu = -c_g g^{\mu \nu} \frac{1}{\sqrt{g}} \partial_\lambda \left(\sqrt{g} \epsilon^{\alpha \beta} \partial_\alpha \Gamma_\lambda^{\mu \nu} \right) \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

We find:

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]

Acting with a coordinate transformation on \(W \) gives the derivative of the stress tensor

\[\delta_\xi W_n = - \int d^d x \sqrt{g} \xi_\mu \tau^\mu \]

Thus,

\[\partial_\theta S_A \bigg|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

\[\partial_\theta S_A \big|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

In the presence of a gravitational anomaly,

\[\partial_\theta S_A \big|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

In the presence of a gravitational anomaly,

\[\partial_\theta S_A \big|_{\theta = 0} = - \int d^d x \sqrt{g} \tau^\theta \]

and for a 2d CFT,

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

In the presence of a gravitational anomaly,

\[\partial_\theta S_A \big|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta \]

and for a 2d CFT,

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]

but we can also compute the same for non-conformal theories:

\[\partial_\theta S_A \big|_{\theta=0} = 4\pi c_g \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} \left(\partial_n - 1 \right) W_n \]

In the presence of a gravitational anomaly,

\[\partial_\theta S_A \bigg|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta \]

and for a 2d CFT,

\[\partial_\theta S_A = \frac{c_L - c_R}{24} \]

but we can also compute the same for non-conformal theories:

\[\partial_\theta S_A \bigg|_{\theta=0} = 4\pi c_g \left(c_g = - \frac{2\pi}{4!(8\pi^2)} \sum_i \chi_i q_i \right) \]
Adding anomalies

Entanglement entropy is given by

$$S_A = - \lim_{n \to 1} (\partial_n - 1) W_n$$

In the presence of a gravitational anomaly,

$$\partial_\theta S_A \big|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta$$

$$\partial_\theta S_A \big|_{\theta=0} = 4\pi c_g$$
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

In the presence of a gravitational anomaly,

\[\partial_\theta S_A \bigg|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta \]

In 2 dimensions

\[\partial_\theta S_A \bigg|_{\theta=0} = 4\pi c_g \]
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

In the presence of a gravitational anomaly,

\[\partial_\theta S_A \bigg|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta \]

In 2 dimensions

\[\partial_\theta S_A \bigg|_{\theta=0} = 4\pi c_g \]

In 4 dimensions there isn’t a gravitational anomaly, but there is a mixed gauge-gravitational anomaly.
Adding anomalies

Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

In the presence of a gravitational anomaly,

\[\partial_\theta S_A \bigg|_{\theta=0} = -\int d^d x \sqrt{g} \tau^\theta \]

In 2 dimensions

\[\partial_\theta S_A \bigg|_{\theta=0} = 4\pi c_g \]

In 4 dimensions there isn’t a gravitational anomaly, but there is a mixed gauge-gravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum.
Adding anomalies

In the presence of a gravitational anomaly,

$$\left. \partial_\theta S_A \right|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta$$

In 4 dimensions there isn’t a gravitational anomaly, but there is a mixed gauge-gravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum.
In 4 dimensions there isn’t a gravitational anomaly, but there is a mixed gauge-gravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface.

\[\partial_\theta S_A \bigg|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta \]

In 4 dimensions there isn’t a gravitational anomaly, but there is a mixed gauge-gravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface.
In the presence of a gravitational anomaly,

\[\partial_\theta S_A \big|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta \]

In 4 dimensions there isn’t a gravitational anomaly, but there is a mixed gauge-gravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface.
Adding anomalies

In the presence of a gravitational anomaly,

\[
\frac{\partial \theta S_A}{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta
\]

In 4 dimensions there isn’t a gravitational anomaly, but there is a mixed gauge-gravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface.
Adding anomalies

In the presence of a gravitational anomaly,

$$\partial_\theta S_A \bigg|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta$$

In 4 dimensions there isn’t a gravitational anomaly, but there is a mixed gauge-gravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface.
Adding anomalies

In the presence of a gravitational anomaly,

$$\partial_\theta S_A \big|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta$$

In 4 dimensions there isn’t a gravitational anomaly, but there is a mixed gauge-gravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface

$$B = F_{xy}$$
Adding anomalies

In the presence of a gravitational anomaly,

$$\partial_{\theta} S_A \bigg|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta$$

In 4 dimensions there isn’t a gravitational anomaly, but there is a mixed gauge-gravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface.

We find:

$$\partial_{\theta} S_A \bigg|_{\theta=0} = -4\pi \alpha c_m B \text{vol}(\mathbb{R}^2)$$
Adding anomalies

In the presence of a gravitational anomaly,

\[
\partial_\theta S_A \bigg|_{\theta=0} = - \int d^d x \sqrt{g} F_\theta^\theta
\]

In 4 dimensions there isn’t a gravitational anomaly, but there is a mixed gauge-gravitational anomaly. As one may expect, this anomaly does not contribute to the entanglement entropy of the vacuum. Consider instead turning on an (external) magnetic field orthogonal to the entangling surface

We find:

\[
\partial_\theta S_A \bigg|_{\theta=0} = -4\pi \alpha c_m B \text{vol}(\mathbb{R}^2)
\]

\[
c_m = - \frac{2\pi}{4!(8\pi^2)(2\pi)} \sum_i \chi_i q_i
\]
Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]
Summary

Entanglement entropy is given by

\[
S_A = - \lim_{n \to 1} (\partial_n - 1) W_n
\]

and will be susceptible to gravitational anomalies, viz.

\[
\partial_\theta S_A \bigg|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta
\]
Entanglement entropy is given by

\[S_A = - \lim_{n \to 1} (\partial_n - 1) W_n \]

and will be susceptible to gravitational anomalies, viz.

\[\partial_\theta S_A \big|_{\theta=0} = - \int d^d x \sqrt{g} \tau^\theta \]

Explicitly,

\[\partial_\theta S_A \big|_{\theta=0} = 4\pi c_g \quad \text{(2d)} \]

\[\partial_\theta S_A \big|_{\theta=0} = -4\pi \alpha c_m B \text{vol}(\mathbb{R}^2) \quad \text{(4d)} \]
Thank you