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Double Field Theory

• From sector of String Field Theory. Features 
some stringy physics, including T-duality, in 
simpler setting

• Strings see a doubled space-time

• Necessary consequence of string theory

• Needed for non-geometric backgrounds

• What is geometry and physics of doubled 
space?

Hull & Zwiebach
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Strings on a Torus

• States: momentum p, winding w

• String: Infinite set of fields

• Fourier transform to doubled space:

• “Double Field Theory” from closed string field 
theory. Some non-locality in doubled space            

• Subsector? e.g.

�(p, w)

�(x, x̃)

gij(x, x̃), bij(x, x̃), �(x, x̃)
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Double Field Theory
• Double field theory on doubled torus

• General solution of string theory: involves 
doubled fields 

• Real dependence on full doubled geometry, 
dual dimensions not auxiliary or gauge artifact. 
Double geom. physical and dynamical

• Strong constraint restricts to subsector in which 
extra coordinates auxiliary: get conventional 
field theory locally. Recover Siegel’s duality 
covariant formulation of (super)gravity

�(x, x̃)
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Strings on Td

X = XL(σ + τ) + XR(σ − τ), X̃ = XL − XR

X X̃conjugate to momentum, to winding no.

dX = ∗dX̃ ∂aX = ϵab∂
bX̃
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Strings on Td

X = XL(σ + τ) + XR(σ − τ), X̃ = XL − XR

X X̃conjugate to momentum, to winding no.

dX = ∗dX̃ ∂aX = ϵab∂
bX̃

Need “auxiliary”     for interacting theory
i) Vertex operators 
ii) String field Kugo & Zwiebach

X̃

eikL·XL , eikR·XR

�[x, x̃, a, ã]
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Strings on Td

X = XL(σ + τ) + XR(σ − τ), X̃ = XL − XR

X X̃conjugate to momentum, to winding no.

dX = ∗dX̃ ∂aX = ϵab∂
bX̃

Doubled Torus  2d coordinates
Transform linearly under
Sigma model on doubled torus

O(d, d; Z) X �
�

x̃i

xi

⇥

Strings on torus see DOUBLED GEOMETRY!

Tseytlin; Hull

T-duality group O(d, d; Z)
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T-Duality
• Space has d-torus fibration

• G,B on fibres

• T-Duality O(d,d;Z), mixes G,B

• Mixes Momentum and Winding

• Changes geometry and topology
E → (aE + b)(cE + d)−1

h =

(

a b

c d

)

∈ O(d, d; Z)

Xi

Y m

G(Y ), B(Y )

On circle, radius R: O(1, 1; Z) = Z2 : R !→

1

R

Eij = Gij + Bij
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T-Folds
• Spacetime constructed from local patches

• All symmetries of physics used in patching

• Patching with diffeomorphisms, gives manifold

• Patching with gauge symmetries: bundles

• String theory has new symmetries, not 
present in field theory. New non-geometric 
string backgrounds e.g. for torus fibrations

• Patching with T-duality: T-FOLDS

• Patching with U-duality: U-FOLDS

Hull 2004
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T-fold patching

R 1/R

Glue big circle (R) to small (1/R)
Glue momentum modes to winding modes
(or linear combination of momentum and winding)
Not conventional smooth geometry
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U U ′

Y ′Y

E(Y ) E′(Y ′)

Geometric background: G, H=dB tensorial

T-fold:Transition functions involve T-dualities (as well 
as diffeomorphisms and 2-form gauge transformations)

E=G+B Non-tensorial

Glue using T-dualities also ➞  T-fold
Physics smooth, as T-duality a symmetry

Torus 
fibration

E′ = (aE + b)(cE + d)−1 in U ∩ U ′O(d, d; Z)

Not conventional smooth geometry
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Duality covariant formulation in terms of
Transition functions 
can be used to construct bundle with fibres T2d

Doubled Geometry for T-fold
X

I =

(

Xi

˜Xi

)

I = 1, ..., 2d

X

O(d, d; Z) ⊂ GL(2d; Z)

Doubled space is smooth manifold!

Hull

Transforms linearly under
T-fold transition: mixes
No global way of separating “real” space coordinate
     from “auxiliary”

O(d, d; Z)

X ˜X

X, X̃

Sigma Model on doubled space. T-duality manifest.

Td  torus fibres have 
doubled coords
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• More general non-geometric backgrounds. 
Gives uplift of GENERIC gauged Sugras

• Explicit doubled geometries constructed for 
T-folds and “spaces with R-flux”

• Sigma models on doubled spaces; constraints 
from gauging. Quantisation.

• Other approaches to quantisation

Dabholkar & Hull 2005 Shelton, Taylor & Wecht 2005

Hull & Reid-Edwards 2008-9

Hull 2004-6

Tseytlin; Berman, Thompson, Copland; Hackett-Jones & Motsopoulos
Lust et al; Bakas & Lust,.... 
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String Field Theory
on Minkowski Space

String field �[X(�), c(�)]

Expand to get infinite set of fields

Xi(�)� xi, oscillators

gij(x), bij(x), �(x), . . . , Cijk...l(x), . . .

Integrating out massive fields gives field theory for

gij(x), bij(x), �(x)

Closed SFT: 
Zwiebach
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String Field Theory
on a torus

String field �[X(�), c(�)]

Expand to get infinite set of double fields

Seek double field theory for

Xi(�)� xi, x̃i, oscillators

gij(x, x̃), bij(x, x̃), �(x, x̃), . . . , Cijk...l(x, x̃), . . .

gij(x, x̃), bij(x, x̃), �(x, x̃)
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Free Field Equations (B=0)
L0 + L̄0 = 2

L0 � L̄0 = 0
piw

i = N � N̄

p2 + w2 = N + N̄ � 2
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Free Field Equations (B=0)
L0 + L̄0 = 2

L0 � L̄0 = 0
piw

i = N � N̄

p2 + w2 = N + N̄ � 2

Treat as field equation, kinetic operator in doubled space

Gij �2

�xi�xj
+Gij

�2

�x̃i�x̃j

Treat as constraint on double fields

� ⌘ �2

�xi�x̃i
(�� µ)� = 0

Friday, 10 July 15



Free Field Equations (B=0)
L0 + L̄0 = 2

L0 � L̄0 = 0
piw

i = N � N̄

p2 + w2 = N + N̄ � 2

Treat as field equation, kinetic operator in doubled space

Gij �2

�xi�xj
+Gij

�2

�x̃i�x̃j

Treat as constraint on double fields

� ⌘ �2

�xi�x̃i
(�� µ)� = 0

Laplacian for metric
ds

2 = dx

i
dx̃i

Laplacian for metric
ds

2 = Gijdx
i
dx

j +G

ij
dx̃idx̃j
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gij(x, x̃), bij(x, x̃), �(x, x̃)

N = N̄ = 1

p2 + w2 = 0

p · w = 0

“Double Massless”
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DFT gives O(D,D) covariant formulation
O(D,D) Covariant Notation

�MN =
�

0 I
I 0

⇥
M = 1, ..., 2D

XM �
�

x̃i

xi

⇥

Constraint �M�MA = 0

� ⌘ @

2

@x

i
@x̃i

=
1

2
@

M
@M

Arises from string theory constraint

Weak Constraint or
weak section conditionon all fields and parameters

(L0 � L̄0) = 0

@M ⌘
 
@̃i

@i

!
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• Weakly constrained DFT non-local. 
Constructed to cubic order Hull & Zwiebach

• ALL doubled geometry dynamical, evolution 
in all doubled dimensions

• Restrict to simpler theory: STRONG 
CONSTRAINT

• Fields then depend on only half the doubled 
coordinates

• Locally, just conventional SUGRA written in 
duality symmetric form
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Strong Constraint for DFT

�M�M (AB) = 0 (�MA) (�MB) = 0

If impose this, then it implies weak form,  but 
product of constrained fields satisfies constraint.

Locally, it implies fields only depend on at most half 
of the coordinates, fields are restricted to null 
subspace N.
Looks like conventional field theory on subspace N

This gives Restricted DFT, a subtheory of DFT

on all fields and parameters

Hohm, H &Z

Friday, 10 July 15



• If fields supported only on submanifold N of 
doubled space M, recover Siegel’s duality covariant 
form of (super)gravity on N

• In general get this only locally. In each 2D-dim 
patch of doubled space, fields supported on D-dim 
sub-patch, but sub-patches don’t fit together to 
form a manifold with smooth fields.

• DFT ‘background independent’ HHZ. Can write on 
doubling of any space. What is double if not 
derived from string theory?

• Extension to WZW models Blumenhagen, Hassler & Lust
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E ⇥(X ⇥) = (aE(X) + b)(cE(X) + d)�1

Generalised T-duality transformations:

d�(X �) = d(X)

h in O(d,d;Z) acts on toroidal coordinates only

X �M �
⇤

x̃�
i

x�i

⌅
= hXM =

�
a b
c d

⇥ �
x̃i

xi

⇥

Buscher if fields independent of toroidal coordinates
Generalisation to case without isometries

Eij = gij + bij

HHZ
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�hij = ⇧i⇥j + ⇧j⇥i + ⇧̃i⇥̃j + ⇧̃j ⇥̃i ,

�bij = �(⇧̃i⇥j � ⇧̃j⇥i)� (⇧i⇥̃j � ⇧j ⇥̃i) ,

�d = � ⇧ · ⇥ + ⇧̃ · ⇥̃ . Invariance needs constraint

If fields indep of     , conventional theory
      parameter for diffeomorphisms
      parameter for B-field gauge transformations

X

M =

✓
x̃m

x

m

◆
⇠M =

✓
✏̃m
✏m

◆

Linearised Gauge Transformations

Diffeos and B-field transformations mixed.  

✏̃m

✏m
x̃m gij(x), bij(x), d(x)
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Generalised Metric Formulation

HMN =
�

gij �gikbkj

bikgkj gij � bikgklblj

⇥
.

HMN � �MPHPQ�QN

HMPHPN = �M
N

2 Metrics on double space HMN , �MN

Constrained metric

Hohm, H &Z
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Generalised Metric Formulation

HMN =
�

gij �gikbkj

bikgkj gij � bikgklblj

⇥
.

hP
MhQ

NH�
PQ(X �) = HMN (X)

X � = hX h � O(D,D)

HMN � �MPHPQ�QN

HMPHPN = �M
N

2 Metrics on double space HMN , �MN

Constrained metric

Covariant O(D,D) Transformation

Hohm, H &Z
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L =
1
8
HMN�MHKL �NHKL �

1
2
HMN�NHKL �LHMK

� 2 �Md �NHMN + 4HMN �Md �Nd

S =
�

dxdx̃ e�2d L

��HMN = ⇥P ⇤PHMN

+ (⇤M⇥P � ⇤P ⇥M )HPN + (⇤N⇥P � ⇤P ⇥N )HMP

��HMN = �L�HMN

Gauge Transformation

Write as “Generalised Lie Derivative”

O(D,D) covariant action
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Generalised Lie Derivative A M1...
N1...

bL⇠AM
N ⌘ ⇠P@PAM

N

+(@M⇠P�@P ⇠M )AP
N + (@N⇠P � @P ⇠

N )AM
P

bL⇠AM
N = L⇠AM

N

� ⌘PQ⌘MR @Q⇠
R AP

N

+ ⌘PQ⌘
NR @R⇠

Q AM
P

Usual Lie derivative, plus terms involving ⌘MN
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Strong Constraint: Gauge symm ~ diffeos and b-field trans

O(D,D) X � = hX

Symmetry for flat doubled space M = R2D

Torus spacetime N = Rn�1,1 ⇥ T d M = R2n�2,2 ⇥ T 2d

O(D,D) broken to subgroup containing B-shifts and

O(n, n)⇥O(d, d;Z)

General Spacetime: No natural action of O(D,D)

B-shifts and                 arise from local symmetries. GL(D,R)
Isometries: if fields indep of some coords, more of O(D,D) 
can arise from local symmetries                         HHZ
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 DFT geometry

• Simple explicit form of finite gauge 
transformations.  Associative and commuative.

• Doubled space is a manifold, not flat, despite 
constant ‘metric’   in DFT.

• Gives geometric understanding of ‘generalised 
tensors’ & relation to generalised geometry

• Transition functions give global picture

• T-folds: non-geometric backgrounds included

arXiv:1406.7794

⌘
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O(D,D) covariant vectors and tensors

V M =

✓
vm

ṽm

◆

X

M =

✓
x

m

x̃m

◆
Doubled space coordinates

HMN

Suggestive of tensors on doubled space, but 
transformations not those of diffeomorphisms on 
doubled space, as generated by generalised Lie derivative, 
not usual Lie derivative.

If not tensors on doubled space, what are they?

What is the Geometry of Generalised Tensors?
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X

M =

✓
x

m

x̃m

◆
@M =

✓
@m
@̃m

◆
�MN =

�
0 I
I 0

⇥

Constraint �M�MA = 0

Strong Constraint for restricted DFT

�M�M (AB) = 0 (�MA) (�MB) = 0

@̃i = 0

ÛGeneric solution in patch   : fields and parameters 
independent of half the coordinates:

Fields live on null patch U, coordinates x:
U ‘physical’ spacetime

�(xm)
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bLV W
M = V P@PW

M +WP (@MVP � @PV
M )

Generalised Lie derivative

V M =

✓
vm

ṽm

◆
Vectors
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bLV W
M = V P@PW

M +WP (@MVP � @PV
M )

Generalised Lie derivative

has the components

Lv is usual Lie derivative

V M =

✓
vm

ṽm

◆
Vectors

Lvw̃m = vp@pw̃m + w̃p@mvp
Lvw

m = vp@pw
m � wp@pv

m

( bLV W )m = Lvw̃m + wp(@mṽp � @pṽm)

( bLV W )m = Lvw
m
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Under infinitesimal transformation �WM = bLV W
M

�wm = Lvw
m

�w̃m = Lvw̃m + wp(@mṽp � @pṽm)
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Under infinitesimal transformation �WM = bLV W
M

�wm = Lvw
m

�w̃m = Lvw̃m + wp(@mṽp � @pṽm)

Introduce a gerbe connection b with transformations
�vbmn = Lvbmn + @mṽn � @nṽm

ŵm = w̃m � bmnw
nDefine
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Under infinitesimal transformation �WM = bLV W
M

�wm = Lvw
m

�w̃m = Lvw̃m + wp(@mṽp � @pṽm)

Introduce a gerbe connection b with transformations
�vbmn = Lvbmn + @mṽn � @nṽm

ŵm = w̃m � bmnw
n

�ŵm = Lvŵm

Define

Then
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Under infinitesimal transformation �WM = bLV W
M

�wm = Lvw
m

�w̃m = Lvw̃m + wp(@mṽp � @pṽm)

Introduce a gerbe connection b with transformations
�vbmn = Lvbmn + @mṽn � @nṽm

ŵm = w̃m � bmnw
n

�ŵm = Lvŵm

    transforms as 1-form under v-transformations and is 
invariant under   transformations!
ŵ

ṽ

Define

Then
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WM =

✓
wm

w̃m

◆
Then given

can define ŴM =

✓
wm

ŵm

◆
=

✓
wm

w̃m � bmnwn

◆

�ŴM = LvŴ
M

It is invariant under    transformationsṽ

COVARIANT  TRANSFORMATIONS
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WM =

✓
wm

w̃m

◆
Then given

can define ŴM =

✓
wm

ŵm

◆
=

✓
wm

w̃m � bmnwn

◆

�ŴM = LvŴ
M

It is invariant under    transformationsṽ

w

0m(x0) = w

n(x)
@x

0m

@x

n
ŵ

0
m(x0) = ŵn(x)

@x

n

@x

0m

Gives finite transformations!

x ! x

0(x) = e

�vm@m
x

COVARIANT  TRANSFORMATIONS
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b

0
mn(x

0) = [bpq(x) + (@pṽq � @q ṽp)(x)]
@x

p

@x

0m
@x

q

@x

0n

w̃

0
m(x0) =

h
w̃n(x) + (@nṽq � @q ṽn)w

q(x)
i
@x

n

@x

0m

Can also find the transformation of w̃

Standard finite transformations of gerbe connection:

gives

w

0m(x0) = w

n(x)
@x

0m

@x

n
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w � ŵ is a section of 

This is Hitchin’s generalised tangent bundle on N

w transforms as a tangent vector on N and    transforms 
as a cotangent vector under diff(N). 
Both invariant under    transformations.

ŵ

ṽ

w � w̃

is section of E, which is            twisted by a gerbeT � T ⇤

0 ! T ⇤ ! E ! T ! 0

DFT and GENERALISED GEOMETRY
Consider case fields restricted to submanifold N of M

(T � T ⇤)N
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Then ‘generalized vectors’ WM =

✓
wm

w̃m

◆

are not really vectors on doubled space, but are sections 
of generalised tangent bundle over ‘physical space’ N, 
twisted by a gerbe

        symmetries are diffeomorphisms of N
        symmetries are b-field gauge transformations on N
v

m(x)
ṽm(x)

Gauge symmetry of DFT same as that of string/sugra

Global O(D,D)

Di↵(N)n ⇤2
closed

(N)
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1)Vector fields on M: 
        Sections of TM, 
        transform under diff(M)
2)Hatted generalised vector fields     on M:
        Sections of       
        transform under diff(N)
3)Generalised vector fields W on M
        Sections of  E(N)    
        transform under       

2D dimensional doubled space M, D dim. subspace N

(T � T ⇤)N

Ŵ

Di↵(N)n ⇤2
closed

(N)

Extends to tensors, generalised tensors and 
untwisted generalised tensors

3 kinds of vectors V M (X)

Friday, 10 July 15



ĤMN =

✓
gmn 0
0 gmn

◆

Untwisted form of generalised metric

Finite transformations give usual ones for g,b

HMN =

✓
gmn � bmkgklbln bmkgkn

�gmkbkn gmn

◆

Generalised Metric

Natural metric on T � T ⇤
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⌘MN =

✓
0 1
1 0

◆
Matrix with constant components:

If this is tensor on M, then it is flat metric and this would 
greatly restrict possible M.  Not invariant under Diff(M)

Constant O(D,D) Metric
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⌘MN =

✓
0 1
1 0

◆

⌘̂MN = ⌘MN

Matrix with constant components:

If this is tensor on M, then it is flat metric and this would 
greatly restrict possible M.  Not invariant under Diff(M)

If it is generalised tensor, section of

Invariant under DFT gauge transformations, natural 
object in DFT. Metric for E(N), not T(M)
No restriction on geometry

Constant O(D,D) Metric

E⇤ ⌦ E⇤(N)
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Transition Functions and Non-Geometry

U U ′

       patches in
Fibres 

R2n

T 2d
U,U 0

Transition functions:
DFT gauge transformations and
O(d, d;Z)
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Transition Functions and Non-Geometry

U U ′

       patches in
Fibres 

R2n

T 2d
U,U 0

Transition functions:
DFT gauge transformations and
O(d, d;Z)

If transition functions include T-duality, then can 
construct T-folds.  As
coordinate transition functions are a diffeomorphism 
on doubled space, so doubled space is a manifold

O(d, d; Z) ⊂ GL(2d; Z)
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Transition Functions and Non-Geometry

U U ′

       patches in
Fibres 

R2n

T 2d
U,U 0

Transition functions:
DFT gauge transformations and
O(d, d;Z)

Can construct explicit doubled geometries of
Dabholkar & Hull; Hull & Reid-Edwards
in this way, including those with ‘R-flux’
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Example: T3 with H-flux

H = N × (V ol)

Hxyz = N

Regard as product S1
× T 2

x

x y, z

Byz = B0 +
1

2π
Nx
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T-dual on z-circle:

y, z

x

Torus bundle over circle,  H=0

τ(x) = τ0 +
1

2π
Nx

Nilfold: Heisenberg group manifold 
identified under discrete subgroup

Next,T-dual on y-circle
No global Killing vector. Do fibrewise duality, use 
Buscher rules locally, using local gauging CMH
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T-dual of T3 with flux:

y, z

x

Torus bundle over circle?

ds2 = dx2 +
1

1 + N2x2

(

dy2 + dz2
)

Byz =
Nx

1 + N2x2

But x periodic

E(x + 2π) = (aE + b)(cE + d)−1

Monodromy

T-fold.  Realise as doubled torus T4 bundle over S1.

(

a b

c d

)

∈ O(2, 2; Z) T-duality

CMH
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• Doubled geometry: non-compact group 
identified under discrete subgroup

• Gives T-fold and its T-duals 

• Transition functions are diffeomorphisms of 
base space + T-duality, so allowed in DFT

• Not solution. Solution obtained by adding 
dependence on a 4th dimension.

• Gives explicit DFT solution with patching 
by DFT symmetries. 

CMH & Reid-Edwards
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• DFT: conventional sugra in duality symmetric 
formulation, using generalised geometry on N

• Covariant formulation of generalised 
geometry, indep. of choice of duality frame

• More generally, this applies locally in patches. 
Use DFT gauge and O(D,D) symmetries in 
transition functions. Get T-folds etc.

Conclusions
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• DFT extends field theory to non-geometric 
spaces: T-folds, withT-duality transition 
functions. 

• What is full theory with weak constraint?

• Winding modes: doubling of torus or torus 
fibres

• Other topologies may not have windings, or 
have different numbers of momenta and 
windings. No T-duality? No doubling?
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