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|. Hydrodynamics vs. hydrostatics.

2. A generating function for hydrostatics.
3. Components of the generating function.
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We construct the partition function for an equilibrated
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A theory of hydrostatics

We construct the partition function for an equilibrated
theory from the Euclidian partition function:

W =InZz

Prescription:

|. Start with a metric and gauge field for which K¥is  Lxg,, =0
a timelike symmetry. LxA, =0

2. Identify the velocity field, temperature and
chemical potential with the gauge field and metric
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We construct the partition function for an equilibrated
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A theory of hydrostatics

We construct the partition function for an equilibrated
theory from the Euclidian partition function:

W =InZz

Prescription:

|. Start with a metric and gauge field for which Ktis  Lxg,, =
a timelike symmetry.

LrxA,=0
B
2. Identify the velocity field, temperature and 71 _ / \/KﬂgWK’/dT
chemical potential with the gauge field and metric 0
B n ef Anda”
= =
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A theory of hydrostatics

We construct the partition function for an equilibrated
theory from the Euclidian partition function:

W =InZ/

Prescription:

|. Start with a metric and gauge field for which Ktis  Lxg,, =
a timelike symmetry.

LrxA,=0
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chemical potential with the gauge field and metric 0 9
Ho oy of Auda” T K
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3. Write down a local, gauge invariant generating
function for the Euclidian theory. (Order by order in
derivatives.)
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A theory of hydrostatics

We construct the partition function for an equilibrated
theory from the Euclidian partition function:

W =InZ/

Prescription:

|. Start with a metric and gauge field for which Ktis  Lxg,, =
a timelike symmetry.

LrxA,=0
B
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chemical potential with the gauge field and metric 0 9
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A theory of hydrostatics

Leading order terms

Prescription:
|. Start with a metric and gauge field for which Ktis  Lxg,, =
a timelike symmetry. LA, =0
p
2. Identify the velocity field, temperature and 71 _ / \/KﬂgWK’/dT
chemical potential with the gauge field and metric 0 o
L In e$ Andz” uMt =
T _ K2

3. Write down a local, gauge invariant generating

function for the Euclidian theory. (Order by order in |}/ = / o d%
derivatives.)
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A theory of hydrostatics

Leading order terms

W = / VP (T, p)d>xdt

Prescription:
|. Start with a metric and gauge field for which Ktis  Lxg,, =
a timelike symmetry. LA, =0
p
2. Identify the velocity field, temperature and 71 _ / \/KﬂgWK’/dT
chemical potential with the gauge field and metric 0 o
L In e$ Andz” uMt =
T _ K2

3. Write down a local, gauge invariant generating

function for the Euclidian theory. (Order by order in |}/ = / o d%
derivatives.)
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Possible parity preserving contributions: (Choose K#2,=p3.)
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| st order corrections:
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Possible parity preserving contributions: (Choose K#2,=p3.)
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| st order corrections: (parity preserving)
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We've seen that in general:
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| st order corrections: (parity preserving)

W= / JGP(T, 1) + O(?)d3xdt
We've seen that in general:
JP = p(T, p)u" — (T, u) P** 0, = T adit x P o,T
In a hydrostatlc configuration
B,

pvrg, L i = BP9, A0 = "' 2
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A theory of hydrostatics

| st order corrections: (parity preserving)

W= / JGP(T, 1) + O(?)d3xdt
We've seen that in general:
JP = p(T, p)u" — (T, u) P** 0, = T adit x P o,T
In a hydrostatlc configuration
B,

P, = BP9, Ag = g" 24 = 0

1)

EY = FF*Yq,,
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A theory of hydrostatics

| st order corrections: (parity preserving)

W = / VIP(T, ) + O(0%)d’ zdt
We've seen that in general:
T = p(T, pyu = K(T, p) PP 9, = + xP*9,T

In a hydrostatic configuration

E
PV“(? — BP""9,A) = ¢""— =0
T = f 1410 g T

The hydrostatic current is then:

JP = p(T, p)u” + xP*"0,T
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A theory of hydrostatics

| st order corrections: (parity preserving)

W= / JGP(T, 1) + O(?)d3xdt

In a hydrostatic configuration:

JP = p(T, p)u" + xP*”0,T




A theory of hydrostatics

| st order corrections: (parity preserving)

W= / JGP(T, 1) + O(?)d3xdt

In a hydrostatic configuration:
JP = p(T, p)u" + xP*”0,T
Hence:

x =70




Parity violation

W =InZz

uuuuuuuuuuuuuuuuu



Parity violation

W=1InZ :/...d%dt

uuuuuuuuuuuuuuuuu



Parity violation

W=1InZ :/...dgxdt :5/...053:[;

uuuuuuuuuuuuuuuuu



Parity violation

W=1InZ :/...d%dt :5/...053:[;

uuuuuuuuuuuuuuuuu



Parity violation

W=1InZ :/...d%dt :5/...0[%

ds® = —625(dt + Cl) + gijdxidxj
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A class of parity violating terms are Chern-Simons terms.

Tuesday, June 18, 13



Parity violation

W=1InZ :/...d%dt :5/...d3x

ds® = —625(6175 + Cl) + giijCidCEj
A class of parity violating terms are Chern-Simons terms. e.g.,

Wtrans — 62/1& A da

in 3+ | dimensions.
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W=1InZ :/...d%dt :5/...d3x

ds® = —625(6175 + Cl) + gijdxidxj
A class of parity violating terms are Chern-Simons terms. e.g.,

Wtrans — 52/1& A da

in 3+ | dimensions. There are others.
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Parity violation

W=1InZ :/...d%dt :5/..@%

— WO + Wtrafn,s

A class of parity violating terms are Chern-Simons terms. e.g.,

Wtrans — 62/1& A da

in 3+ | dimensions. There are others.
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Parity violation

W =InzZ = WO = Wtrans

A class of parity violating terms are Chern-Simons terms. e.g.,

Wtrans — 62/1& A da

in 3+ | dimensions. There are others.
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Parity violation

W =InzZ = WO + Wtrans

e.g. (in 3+1d),

Wirans = 5° /A Ada = /TQAMe“”p“uV@puad?’xdt
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Parity violation

W =InzZ = WO + Wtrans

e.g. (in 3+1d),
Wirans = 5° /A Ada = /TQAMe“”p"uV@puadedt

In 3+1 d these are the only parity violating
terms at order O(0).

Tuesday, June 18, 13



Parity violation

W =In/ = WO + Wtrans

e.g. (in 3+1d),
Wirans = 5° /A Ada = /TQAMe“”p"uV@puadedt

In 3+1 d these are the only parity violating
terms at order O(0).

W = /\/§(P(T, ) + leQGWWAMuV(‘?puG)dS:I;dt
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Parity violation

W =InzZ = WO + Wtrans

e.g. (in 3+1d),

W = /\/§<P(T, ) + leQGW’O"AMuyﬁpug)dedt
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Parity violation

W =InzZ = WO + Wtrans

e.g. (in 3+1d),
W = /\/§<P(T, ) + leQGW’O"AMuV@pug)dB:Edt
Thus,

JH = pul + leQGWP"uV@puU

Tuesday, June 18, 13



Anomalies

W =Inz = WO + Wtrans




Anomalies

W =In/ = WO + Wtrans

Wess-Zumino consistency condition:

5152W — 5251W — 5[17Q]W
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Wess-Zumino consistency condition:

5152W — 5251W — 5[172]W

Solution:
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Claim:

Tuesday, June 18, 13



Anomalies

W — 111 /= WO + Wtrans ‘|‘Wanom

Wess-Zumino consistency condition:

5152W — 5251W — 5[1’2]W

Solution:

P =dl g 5103 = dG OW gmom = — / G

Claim:
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W — 111 /= WO + Wtrans ‘|‘Wanom

Tuesday, June 18, 13



Anomalies

W =InzZ = WO + Wtrans anom

6IC’S = dG anom — /G
Claim:
u n
anom — /WC’S WC’S — 2_ (ICS — ICS)
W
Where:

_ v
u = uudx
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5IC’S = dG anom — /G
Claim:
u n
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W
Where:
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Anomalies

W =InzZ = WO + Wtrans anom

5ICS = dG anom — /G
Claim:
u n
a,nom — /WC’S WC’S — 2_ (ICS — ICS)
W
Where:
u = u,dz" w=du+uAu"Vyu,dz"

A:A+,uu
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Anomalies

W =InzZ = WO + Wtrans anom

6ICS = dG Wanom = /G
Claim:
u N
a,nom — /WC’S WC’S — 2_ (ICS — ICS)
W
Where:
u = u,dz" w =du-+uANu“Vau,dz"”
A=A+ uu

F = dA
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W
Where:
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6ICS = dG Wanom = /G
Claim:
u N
a,nom — /WC’S WC’S — 2_ (ICS — ICS)
W
Where:
u = u,dz" w =du-+uANu“Vau,dz"”
A=A+ uu
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Tuesday, June 18, 13



Anomalies

W InzZ = WO + Wtrans anom

6ICS = dG anom — /G
Claim:
u n
a,nom — /WC’S WC’S — 2_ (ICS — ICS)
W
Where:
u = u,dz" w =du-+uANu“Vau,dz"”
A — A —+ pua Hatted connections are

transverse and so are their

F:dA :B_|_21uw (F:B+u/\E)ﬁe|dstrengths:
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6ICS = dG Wanom = /G
Claim:
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Where:
u = u,dz" w =du-+uANu“Vau,dz"”
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F = B + Q,UW field strengths:

Tuesday, June 18, 13



Anomalies

W InzZ = WO + Wtrans anom

0lcs = dG Weanom = /G
Claim:
Wanom = / Wes Ios — ics)
Where: _ Vﬂ
u = u,dx" w =du+ uPuV,u,dz"
A=A+ pu I' =T + ugu Hatted connections are

transverse and so are their

F = B + Q,UW field strengths:
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6ICS = dG Wanom = /G
Claim:
u N
a,nom — /WC’S WC’S — 2_ (ICS — ICS)
W
Where:
u = u,dz" w =du-+uANu“Vau,dz"”
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Anomalies

W — 111 /= WO + Wtrans ‘|‘Wanom

5105 = dG 5Wanom — GA N A A A
Ics =1cs(A,F,.T',R)
Claim: *
u N
a,nom — /WC’S WC’S — 2_ (ICS — ICS)
W
Where:
u = u,dz" w =du-+uANu“Vau,dz"”
A = A - pua f =TI -+ pHru Hatted connections are

transverse and so are their

]'__:‘ — B —|— Zl[j,w ]_f\{ — BR _|_ ZMRW field strengths:
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Anomalies

W — 111 /= WO + Wtrans ‘|‘Wanom

0log = dG OW gnom = — / G X |
| Ios —Ios =) ow
Claim: i=1
u ~
a,nom — /WC’S WC’S — 2_ (ICS — ICS)
W
Where:
u = u,dz" w =du-+uANu“Vau,dz"”
A = A - pua f =TI -+ pHru Hatted connections are

transverse and so are their

]'__:‘ — B —|— ZMW ]_f\{ — BR _|_ ZMRW field strengths:
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Anomalies

W =InzZ = WO + Wtrans anom

6ICS = dG anom — /G
Claim:
u n
a,nom — /WC’S WC’S — 2_ (ICS — ICS)
W

Example: U(1)? anomaly

Ios = A AF?
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6ICS = dG anom — /G
Claim:
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W

Example: U(1)? anomaly
Ios = A AF?
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Anomalies

W =InzZ = WO + Wtrans anom

6ICS = dG anom — /G
Claim:
u A
a,nom — /WC’S WC’S — 2_ (ICS — ICS)
W
Example: U(1)? anomaly
Ics = AAF? Wos = 5— (AAB? = A A (B +2uw)?)

oalcs = d (AF?)
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Anomalies

W=InzZ = WO + Wtrans anom

6ICS = dG anom — /G
Claim:
u A
a,nom — /WC’S WC’S — 2_ (ICS — ICS)
W
Example: U(1)? anomaly
Ics = AAF? Wos = 5— (AAB? = A A (B +2uw)?)

5AICS =d (AFQ) 5AWC’S — AF2
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Anomalies

W — 111 /= WO + Wtrans ‘i‘Wanom
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Anomalies

W — 111 /= WO + Wtrans ‘i‘Wanom

X

Non gauge-
Invariant
contribution
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Anomalies

W — 111 /= WO + Wtrans ‘|‘Wanom

1

Chern-Simons
terms on the
base manifold
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Anomalies

W — lIl /= WO + Wtrans ‘i‘Wanom

1

All the rest
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Hydrodynamics with anomalies

W — 111 /= WO + Wtrans ‘i‘Wanom

Consistent currents:
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Hydrodynamics with anomalies

W — 111 /= WO + Wtrans ‘i‘Wanom

Consistent currents

Consistent currents: . .
are not gauge invariant:

LW
V904,
2 OW

_\/ﬁégu
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Consistent currents

Consistent currents: . .
are not gauge invariant:
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o \/§5AM 5A5W=55AW
o 2 W

_\/ﬁégu

Tuesday, June 18, 13



Hydrodynamics with anomalies

W — 111 /= WO + Wtrans ‘|‘Wanom

Consistent currents

Consistent currents: . .
are not gauge invariant:

T 1 oW
o \/§5AM 5A5W=55AW
OAOW = G / VIOA, T d x
T 2 oW

_\/ﬁégu
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Hydrodynamics with anomalies

W — 111 /= WO + Wtrans ‘|‘Wanom

Consistent currents

Consistent currents: . .
are not gauge invariant:

T 1 oW
o \/§5AM 5A5W=55AW
OAOW = G / VIOA, T d x
T 2 oW

VY 09 _ / JGOA Sp i d

Tuesday, June 18, 13



Hydrodynamics with anomalies

W — 111 /= WO + Wtrans ‘|‘Wanom

Consistent currents

Consistent currents: . .
are not gauge invariant:

L OW
o \/§5AM 5A5W=55AW
N OAOW = dp / VIOA, JHd
TH =
VY 09 _ / JGOA Sp i d

SONW =6 / AF?d%x
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Hydrodynamics with anomalies

W — 111 /= WO + Wtrans ‘i‘Wanom

Consistent currents: Define Covariant currents
Bardeen & Zumino (1984)
u_ LW
VG 0A,
2 OW

_\/ﬁégu
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Hydrodynamics with anomalies

W — 111 /= WO + Wtrans ‘i‘Wanom

Consistent currents: Define Covariant currents
1 oW Bardeen & Zumino (1984)
JH = ‘](/:jdov:t]'u_FJgZ
VG OAL

_\/ﬁégu
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Hydrodynamics with anomalies

W — 111 /= WO + Wtrans ‘i‘Wanom

Consistent currents: Define Covariant currents
1 oW Bardeen & Zumino (1984)
JH = ‘](/:jdov:t]'u_FJgZ
VoA,
T = = THY — TH 4 TR

o \/§ N 9. COV
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Hydrodynamics with anomalies

W — lIl /= WO + Wtrans ‘|‘Wanom

Consistent currents: Define Covariant currents
1 W Bardeen & Zumino (1984)
— 0
JM:\/E(SA ‘](IIZLOU_JH_FJBZ
L
2 oW
T:uV — \/g 59 TéLOIZ) — T,ul/ _|_ng
I

For U(1)3 anomaly in 3+1 d

no Voo
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Hydrodynamics with anomalies

W — 111 /= WO + Wtrans ‘i‘Wanom

Wcov =W + /IC’S

Define Covariant currents

J,“

COv

THY = TH 4 T

COv
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Hydrodynamics with anomalies

W — 111 /= WO + Wtrans ‘i‘Wanom

Wcov =W + /IC’S

Define Covariant currents

L 0Weow

JH
V9 04y

COv

:J“_|_ngz

THY = TH 4 T

COv
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Hydrodynamics with anomalies

W — 111 /= WO + Wtrans ‘i‘Wanom

Wcov =W + /IC’S

Define Covariant currents

1 5Wcov
Vg 04y

2 5Wcov
V9 0Guv

J,u

COv

:J“_|_ngz

T:UJV :T:UJV_I_T'EZ —

COv
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Hydrodynamics with anomalies

Define Covariant currents

1 oW
Jcl:Lov — ‘]lu + JgZ — —

V9 04,
THY — THY 4 THY = 2 O Weon
cov BZ \/g 5g,uy

Claim:
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Hydrodynamics with anomalies

Define Covariant currents

1 oW
Jgov — ‘]'u + ng — —

V9 04,
THY = THY 4 THY = 2 O Weon
cov BZ \/g 59/1,1/

Claim:

VP:lA(P—fD)

2W
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Hydrodynamics with anomalies

Define Covariant currents

1 oW
Jgov — ‘]'u + ‘]]gZ — —

V9 04,
THY = THY 4 THY = 2 O Weon
cov BZ \/g 59/“/

Claim:

A

VP:l/\(P_P) VP(U,BR,B,W)

2W
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Hydrodynamics with anomalies

Define Covariant currents

b T b 1 0Weoy
Jcov_‘] _I_‘]BZ _\/g 514“
T = TH + ThY, = 2 OWeon
Ccov \/§ 5g/w
Claim:
Vp = — (P—f’) Vp(u,Br,B,w)
2W
*JP _ @VP
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Hydrodynamics with anomalies

Define Covariant currents

b T B 1 0Weoy
Jcov_‘] _I_‘]BZ o \/g 5A,u,
T = TH + ThY, = 2 OWeon

Ccov \/§ 5g/w

Claim:
Vp = — (P —15) Vp(u,Bp,B,w)

2W
* @VP
IP = 5p

TE = ubtgh + u’ql + V7, (LLPL)[VP] n L;[up] _ L/;)(,LW))
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Hydrodynamics with anomalies

Define Covariant currents

1 0Weon
Jgov:JN_I_JgZ:\/g 5A,u
T = TH + ThY, = 2 OWeon
Ccov \/§ 5g/w
Claim:
Vp = — A (P —15) Vp(u,Bg,B,w)
2W
V N 1 8VP " 8Vp
Jp = @aBP P =5 Hw Lp = OB R
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Hydrodynamics with anomalies

Claim:
Vp_lA(P 15) Vp(u,Bp,B,w)
2W
(‘)VP . 1 8VP N 8Vp
* — — L —
Jp=—5" P75 P~ 9Bj




Hydrodynamics with anomalies

Claim:
VP:i/\(P_IS) VP(uaBRvaw)
2W
OVp . 1 0Vp N OVp
* — — L p—
Jp OB qp 2 OW v 0B pr

TE = ublglh + u’ gl + Y, (L’f,[yp] n L;[up] _ L%(,LW))

Sketch of proof:
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Hydrodynamics with anomalies

Claim:
VP:i/\(P_P) VP(uaBR7B7W)
2W
OVp . 1 0Vp . OVp
* p— — L p—
Jp OB qp 2 OW P 0B pr

TE = ublglh + u’ql + Y, (LAPL)[VP] n L;[up] B L%(MV))
Sketch of proof:

Formally: ; (i) .,

2W
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Hydrodynamics with anomalies

Claim:
VP:i/\(P_P) VP(uaBRvBaw)
2W
OVp . 1 0Vp . OVp
* p— — L p—
Jp OB qp 2 OW P 0B pr

TE = ublglh + u’ql + Y, (L;[Vp] n L;[up] B L%(MV))
Sketch of proof:

Formally: d( u ) .,

2W

Thus,

A u N
Ics —Ics =d (2— A (ICS — ICS)) + Vp
W
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Hydrodynamics with anomalies

Claim:
VP:i/\(P_P) VP(uaBRvBaw)
2W
OVp . 1 0Vp . OVp
* p— — L p—
Jp OB qp 2 OW P 0B pr

TE = ublglh + u’ql + Y, (L;[Vp] n L;[up] B L%(MV))
Sketch of proof:

Formally: d( u ) .,

2W

Thus,

A u N
Ics —Ics =d (2— A (ICS — ICS)) + Vp
W

/ICS Z/VP+dWCS
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Hydrodynamics with anomalies

W — 111 /= W() + Wtrans ‘|‘Wanom
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Hydrodynamics with anomalies

W = In/ :Wanom
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Hydrodynamics with anomalies

Determined by
anomaly coefficients

Gauge invariant Anomalous
Wanom A4 VP
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Hydrodynamics with anomalies

Wanom + Wtrans A VT

Determined by
anomaly coefficients

Gauge invariant Anomalous
Wanom A4 VP
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Relating Wirans and Wanom

W — 111 /= WO + Wtrans ‘i‘Wanom

In 3+1 dimensions:

1 W 1 0Weo
Ju — i JgZ

COv \/§ 614“

Tuesday, June 18, 13



Relating Wirans and Wanom

W — 111 /= WO + Wtrans ‘i‘Wanom

In 3+1 dimensions:

1 oW 1 0Weoy
Jc'l:Lov — | ng — or >|<JP

V304,
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Relating Wirans and Wanom

W — 111 /= WO + Wtrans ‘|‘Wanom

In 3+1 dimensions:

1 oW 1 5Wcov oV
Jgov — | ng — or >|<JP — >

V304,

JM

COv

= put + (k1T2 — QCA,LLQ) e"P7u,0,u, + O(0°)
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Relating Wirans and Wanom

W — 111 /= WO + Wtrans ‘|‘Wanom
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W — 111 /= WO + Wtrans ‘|‘Wanom

In 3+1 dimen@ons:
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Relating Wirans and Wanom

W InzZ = WO + Wtrans anom

— QCA/L e“”pguyﬁ Us + @ (0

In 3+1 dimen@ons:
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Relating Wirans and Wanom

W InzZ = WO + Wtrans anom

— QCA/L e“”pguyﬁ Us + @ (0

In 3+1 dimen@ons:
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Relating Wirans and Wanom

W InzZ = WO + Wtrans anom

—(2cap?) P u, Opuy + QO

In 3+1 dimen@ons:
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Relating Wirans and Wanom

W — lIl /= WO + Wtrans ‘|‘Wanom

In 3+1 dimensions:

1 oW
JE ., = - J 5
Cov \/§ 614“ BZ
JE = put + (k117 — 2cap®) €7 u,0,uy, + O(0°)
Claim:

kl — 87T20m
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Relating Wirans and Wanom

JE = put + (k1T2 — QCA/LQ) e""P7u,0,uy + O(0°)

COv

Claim:

]Cl — 87T26m

Proof:




Relating Wirans and Wanom

JH = put + (k1T2 — QCA,LLQ) e"P7u,0,uy + O(0°)

Claim:
kl — 87T26m
Proof:

Find a background ps such that:

lim Tr(psT*") = (0|TH"|0)
0—1
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Relating Wirans and Wanom

JH = put + (k1T2 — QCA,LLQ) e"P7u,0,uy + O(0°)

Claim:
kl — 87T26m
Proof:

Find a background ps such that:

lim Tr(osTH") = (0|TH"]0) ~ g™
0—1

Tuesday, June 18, 13



Relating Wirans and Wanom

JH = put + (k1T2 — QCA,uQ) e"P7u,0,uy + O(0°)

Claim:
kl — 87T26m
Proof:
ds® = dr® + r*do* + dz? + dy*
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Relating Wirans and Wanom

JH = put + (k1T2 — ZCA,LLQ) e"P7u,0,uy + O(0°)

Claim:
kl — 87T26m
Proof:
ds® = dr® + r*do* + dz? + dy*

X L /

O~ @+ 2m0
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Relating Wirans and Wanom

JH = put + (k1T2 — ZCA,LLQ) e"P7u,0,uy + O(0°)

Claim:
kl — 87T26m
Proof:
ds® = dr® + r*do* + dz? + dy*

X L /
F = Bdx N dy
O~ @+ 2m0
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Relating Wirans and Wanom

JE = put + (k1T2 — QCA,LLQ) " U, 0pus + 0(5’3)

Claim:
kl — 87T26m
Proof:
ds® = dr® + r*do* + dz? + dy*

« A

F = Bdx N dy
O~ ¢+ 210
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Relating Wirans and Wanom

JE = put + (k1T2 — 2(:A,u2) e""P%u,0puy + (9(5’3)

Claim:
kl — 87T26m
Proof:
ds® = dr® + r*do* + dz? + dy*

F:de/\dy
O~ ¢+ 210
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Relating Wirans and Wanom

JE = put + (k1T2 — QCA,LLQ) e""P%u,0puy + 0(5’3)

COv

Claim:

kl — 87T26m

Proof:

% /mﬂm% oy /x/mmmW




Relating Wirans and Wanom

JE = put + (k1T2 — QCA,LLQ) e""P%u,0puy + 0(5’3)

COv

Claim:

kl — 87T26m

Proof:

iﬁ /mm% oy /x/mmmW

ki — 8m%6%¢c,,
A2 23

1r QconeTtr) =B
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Relating Wirans and Wanom

JE = put + (k1T2 — 2(:A,u2) e""P%u,0puy + (9(5’3)

COv

Claim:

kl — 87T26m

Proof:

iﬁ /mm% oy /x/mmmW

ki — 8m28%¢c,, 50| |0) 5 = 0
4r2523

1r QconeTtr) =B
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Relating Wirans and Wanom

JE = put + (k1T2 — 2(:A,u2) e""P%u,0puy + (9(5’3)

COv

Claim:

kl — 87T26m

Proof:

iﬁ /mm% oy /x/mmmW

ki — 8m28%¢c,, 50| |0) 5 = 0
4r2523

1r QconeTtr) =B

kl — 87T20m
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The “cone” argument

ds® = dr® + ridg¢’

—
AV E R a—

e — 0
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The “cone” argument

ds® = dr® + ridg¢’

—
VA YL B R a—

e — 0
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The “cone” argument

Modes localized at the tip

ds® = dr® + r*d¢”

A VLR

. e — 0

N
N
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The “cone” argument

Modes localized at the tip
W%W%—/(S(r)...de

ds® = dr® + r*d¢”

AV

. e — 0

sssssssssssssssss



The “cone” argument

Modes localized at the tip
W%W%—/(S(r)...de
won't affect our argument

TH = T + O(5(r))
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Loganayagam (2012)




The “cone” argument

Modes localized at the tip won’t affect our argument

Modes which delocalize in the flat space limit will

Loganayagam (2012)

ds® = dr® + r*d¢”

—
[T

e — 0

(See also Eling, Oz, Theisen, Yankielowicz (201 3))
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Relating Wirans and Wanom

W — 111 /= WO + Wtrans ‘|‘Wanom

In 3+1 dimensions:

1 oW 1 5Wcov oV
Jgov — | ng — or >|<JP — >

V304,

JM

COv

= put + (k1T2 — QCA,LLQ) e"P7u,0,u, + O(0°)
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Relating Wirans and Wanom

W — 111 /= WO + Wtrans ‘|‘Wanom

In 3+1 dimen@ons:

L 5Wcov aVP

BZ @ 514” or aB

- QCA/LQ) e"P7u,0,u, + @(0°
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Relating Wirans and Wanom

W — 111 /= WO + Wtrans ‘|‘Wanom

In 3+1 dimen@ons:

L 5Wcov aVP

BZ @ 514” or 8B

- QCA/LQ) e"P7u,0,u, + @(0°
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Relating Wirans and Wanom

In 3+1 dimen@ons:

. 5Wcov 6’Vp

H _
BZ @ 514“ or P — 9B

o —|— @/ * —2cap”) P, 0,u, + Q07
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Constructing Vr

W — 111 /= WO + Wtrans ‘|‘Wanom

Start with the anomaly polynomial:
P (Tr(R*™), Tr(F*™))
Introduce a spurious abelian gauge field:

AT FT — dAT KT




Constructing Vr

W — 111 /= WO + Wtrans ‘|‘Wanom

Start with the anomaly polynomial:
P (Tr(R*™), Tr(F*™))

Introduce a spurious abelian gauge field:
AN Fr =dAr Vg

Construct a thermal anomaly polynomial:

Pr =P (Tr(R*") + 2F7", Tr(F°™))
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Constructing Vr

Start with the anomaly polynomial:
P (Tr(R*"), Tr(F*™))
Introduce a spurious abelian gauge field:
A Fr = dAr %%,
Construct a thermal anomaly polynomial:
Pr =P (Tr(R*™) + 2F7", Tr(F*™))

Construct a potential:

VT:lA(PT—PT)

2W
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Constructing Vr

Start with the anomaly polynomial:
P (Tr(R*"), Tr(F*™))
Introduce a spurious abelian gauge field:
A Fr = dAr %%,
Construct a thermal anomaly polynomial:
Pr =P (Tr(R*™) + 2F7", Tr(F*™))

Construct a potential:

Vo = el A (PT — f’T) (Compare with: Vp = — A (P —~ ]?’))
IW 2W
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Constructing Vr

Start with the anomaly polynomial:
P (Tr(R"), Tr(F*™))
Introduce a spurious abelian gauge field:
At Fr =dAr %)
Construct a thermal anomaly polynomial:
Pr =P (Tr(R*™) + 2F7", Tr(F*™))

Construct a potential:

VT:lA(PT—PT)

2W
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Constructing Vr

Start with the anomaly polynomial:
P (Tr(R"), Tr(F*™))
Introduce a spurious abelian gauge field:
At Fr =dAr %)
Construct a thermal anomaly polynomial:
Pr =P (Tr(R*™) + 2F7", Tr(F*™))

Construct a potential:

VT:i/\(PT_PT> Vr(Br,Br,B,w)

2W
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Start with the anomaly polynomial:
P (TI(RQ”), Tr(FQm))
Introduce a spurious abelian gauge field:
A Fr = dAr %%,
Construct a thermal anomaly polynomial:
Pr =P (Tr(R*") + 2F7", Tr(F*™))

Construct a potential:

VT:%/\(PT—].ST) VT(BR,BT,B,W)
The covariant current is given via:
oV
o PR )
OB | 1,

,LLT:27TT
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Start with the anomaly polynomial:
P (Tr(R*"), Tr(F*™))
Introduce a spurious abelian gauge field:
A Fr=dAr pT
Construct a thermal anomaly polynomial:
Pr =P (Tr(R*") + 2F7", Tr(F*™))

Construct a potential:

VTZZL/\(PT_I:)T) Vr(Br,Br,B,w)
W
The covariant current is given via:
oV
o PR )
OB | g

,LLT:27TT
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Start with the anomaly polynomial:
P (Tr(R*"), Tr(F*™))
Introduce a spurious abelian gauge field:
A Fr=dAr pT
Construct a thermal anomaly polynomial:
Pr =P (Tr(R*") + 2F7", Tr(F*™))

Construct a potential:

VT:ZL/\(PT_PT) VT(BRyBT,B,W)
W
The covariant current and stress tensor:
OV ) 1OV A%
“Jr = qr = T = B
OB | p,—o 2 OW | p,—o R| Fr=0
pr =271 ur =271 ur=2m1T
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Start with the anomaly polynomial:

P (Tr(R*"), Tr(F*™))

Introduce a spurious abelian gauge field:

Ar Fr =dAr

KT

Construct a thermal anomaly polynomial:
Pr =P (Tr(R*") + 2F7", Tr(F*™))

Construct a potential:

u

VT:—A(PT—PT)

2W

The covariant current and stress tensor:

OB | g, g
,LLT:27TT

qr

1OV

:28W

Fr=0
,LLT:27TT

&LT::

\ﬂFGBRaI}raEL‘N)

OV

0BRr

Fr=0
,uT:27TT

TH = ublgh +u’g + Y, (L%[Vp] 4 L;[up] . L%(MW)
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Constructing V7

Vr=o—A(Pr—Pr)  Vi(Bg,Br,B,w)
W
The covariant current and stress tensor:
OV ) 1OV A%
“Jr = qr = T = B
OB | p,—o 2 OW | p,—o R| Fr=0
pr =271 ur =271 ur=27T

TH = ulgh +u’ gl + V, (Lég[vp] n L;[up] _ LPT(W))
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Constructing Vr

W — 111 /= WO + Wtrans ‘|‘Wanom

u
Vp = — A
T 2W

(po-t)

The covariant current and stress tensor:

OV

*J:
L OB

X

Fr=0
,LLT:27TT

qr

1OV

:28W

Fr=0
,LLT:27TT

*LT _

VT(BRaBTanw)

OV

0BRr

Fr=0
,uTZQ’iTT

TH = ulgh +u’ gl + V, (L%[Vp] n L;[up] _ LPT(W))
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u
Vp = — A
T 2W

Constructing Vr

W — 111 /= WO —+ Wtrans ‘|‘Wanom

(po-t)

The covariant current and stress tensor:

OV

*J:
L OB

X

Fr=0
,u,T:27TT

qr

1OV

:28W

Fr=0
,LLT:27TT

*LT _

VT(BRaBTanw)

OV

0BRr

Fr=0
,uT:27TT

TH = ulgh +u’ gl + V, (Lég[vp] n L;[up] _ LPT(W)>
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W=Inz =Wj

Constructing Vr

- Wtrans

_|_

The covariant current and stress tensor:

OV

*J:
L OB

X

Fr=0
,LLT:27TT

qr

1OV

:28W

Fr=0
,LLT:27TT

OV

0BRr

Fr=0
MT:27TT

TH = ulgh +u’ gl + V, (L/q{[vp] n L;[up] _ L’:}(“”)>
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Summary

Constructed a thermal anomaly polynomial using a
“replacement rule”

Pr =P (Tr(R*™) 4+ 2F7", Tr(F*™))
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Summary

Constructed a thermal anomaly polynomial using a
“replacement rule”
Pr =P (Tr(R*™) 4+ 2F7", Tr(F*™))

Constructed a potential
u

VT:—A(PT—f’T)
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Summary

Constructed a thermal anomaly polynomial using a
“replacement rule”
Pr =P (Tr(R*™) 4+ 2F7", Tr(F*™))

Constructed a potential
u

VT:—A(PT—f’T)

2W
From which the anomalous contribution to the

current can be computed

OV

OB | g, —g
/LT:27TT

*JT:
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Summary

Constructed a thermal anomaly polynomial using a
“replacement rule”
Pr =P (Tr(R*™) 4+ 2F7", Tr(F*™))

Constructed a potential
u

VT:—A(PT—f)T)

2W
From which the anomalous contribution to the

current can be computed

OV
OB | g, —g
e.g., pr =211l

JH = put + (87T2CmT2 — cA,uz)e“”p"uV@pug

*JT:
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Summary

JM = put + (87T26mT2 — CA,uQ)eWp"u,,ﬁpug
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Summary

JH = put + (87%c,, T? — cap®)e" P7u, 0, u,

4D
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Thank you
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