Anomalies and

 hydrodynamics

 hydrodynamics}

Amos Yarom
(Together with K. Jensen, R. Loganayagam)

Anomalies

Anomalies

In 3+| dimensions:

$$
\nabla_{\mu} J^{\mu}=0
$$

Anomalies

In 3+1 dimensions:

$$
\nabla_{\mu} J^{\mu}=\frac{3}{4} c_{A} \epsilon^{\kappa \sigma \alpha \beta} F_{\kappa \sigma} F_{\alpha \beta}
$$

Anomalies

In 3+1 dimensions:

$$
\begin{aligned}
\nabla_{\mu} T^{\mu \nu} & =F^{\nu \alpha} J_{\alpha} \\
\nabla_{\mu} J^{\mu} & =\frac{3}{4} c_{A} \epsilon^{\kappa \sigma \alpha \beta} F_{\kappa \sigma} F_{\alpha \beta}
\end{aligned}
$$

Anomalies

In 3+1 dimensions:

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=F^{\nu \alpha} J_{\alpha}+\frac{1}{2} c_{m} \epsilon^{\kappa \sigma \alpha \beta} \nabla_{\mu}\left(F_{\kappa \sigma} R_{\alpha \beta}^{\nu \mu}\right) \\
& \nabla_{\mu} J^{\mu}=\frac{3}{4} c_{A} \epsilon^{\kappa \sigma \alpha \beta} F_{\kappa \sigma} F_{\alpha \beta}+\frac{1}{4} c_{m} \epsilon^{\kappa \sigma \alpha \beta} R_{\lambda \kappa \sigma}^{\nu} R_{\nu \alpha \beta}^{\lambda}
\end{aligned}
$$

The role of anomalies in hydrodynamics

The role of anomalies in hydrodynamics

The role of anomalies in hydrodynamics

The role of anomalies in hydrodynamics

The role of anomalies in hydrodynamics

The role of anomalies in hydrodynamics

The role of anomalies in hydrodynamics

The role of anomalies in hydrodynamics

Vilenkin (1980)
Erdmenger, Haack, Kaminski, AY (2008)
Banerjee, Bhattacharya, Bhattacharyya, Dutta, Loganyagam, Surowka, (2008)

The role of anomalies in hydrodynamics

Vilenkin (1980)
Erdmenger, Haack, Kaminski, AY (2008)
Banerjee, Bhattacharya, Bhattacharyya, Dutta, Loganyagam, Surowka, (2008)
Son, Surowka (2009)

The role of anomalies in hydrodynamics

Vilenkin (1980)
Erdmenger, Haack, Kaminski, AY (2008)
Banerjee, Bhattacharya, Bhattacharyya, Dutta, Loganyagam, Surowka, (2008)
Son, Surowka (2009)
Neiman, Oz (2010)

The role of anomalies in hydrodynamics

Vilenkin (1980)
Erdmenger, Haack, Kaminski, AY (2008)
Banerjee, Bhattacharya, Bhattacharyya, Dutta, Loganyagam, Surowka, (2008)
Son, Surowka (2009)
Neiman, Oz (2010)
Landsteinr, Megias, Pena-Benitez (201I)

The role of anomalies in hydrodynamics

Vilenkin (1980)
Erdmenger, Haack, Kaminski, AY (2008)

$$
\vec{J} \sim \nabla \times \vec{v}
$$

Banerjee, Bhattacharya, Bhattacharyya, Dutta, Loganyagam, Surowka, (2008) Son, Surowka (2009)
Neiman, Oz (2010)
Landsteinr, Megias, Pena-Benitez (201I)
Jensen, Loganayagam, AY (2012)

The role of anomalies in hydrodynamics

Vilenkin (1980)
Erdmenger, Haack, Kaminski, AY (2008)

$$
\vec{J} \sim \nabla \times \vec{v}
$$

Banerjee, Bhattacharya, Bhattacharyya, Dutta, Loganyagam, Surowka, (2008) Son, Surowka (2009)
Neiman, Oz (2010)
Landsteinr, Megias, Pena-Benitez (201I)
Jensen, Loganayagam, AY (2012)
Golkar, Son (2012)

The role of anomalies in hydrodynamics


```
Vilenkin (1980)
\[
J^{\mu}=\rho u^{\mu}+\left(8 \pi^{2} c_{m} T^{2}-c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}
\]
Erdmenger, Haack, Kaminski, AY (2008)
Banerjee, Bhattacharya, Bhattacharyya, Dutta, Loganyagam, Surowka, (2008)
Son, Surowka (2009)
Neiman, Oz (2010)
Landsteinr, Megias, Pena-Benitez (201I)
Jensen, Loganayagam, AY (2012)
Golkar, Son (2012)
```


The role of anomalies in hydrodynamics

Vilenkin (1980)

$$
{ }^{*}, \mathbf{J}=\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}}
$$

Erdmenger, Haack, Kaminski, AY (2008) $\partial \mathbf{B}$
Banerjee, Bhattacharya, Bhattacharyya, Dutta, Loganyagam, Surowka, (2008)
Son, Surowka (2009)
Neiman, Oz (2010)
Landsteinr, Megias, Pena-Benitez (201I)
Jensen, Loganayagam, AY (2012)
Golkar, Son (2012)

The role of anomalies in hydrodynamics

Vilenkin (1980)
Erdmenger, Haack, Kaminski, AY (2008) $=\overline{\partial \mathbf{B}}$
$\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right)$
Banerjee, Bhattacharya, Bhattacharyya, Dutta, Loganyagam, Surowka, (2008)
Son, Surowka (2009)
Neiman, Oz (2010)
Landsteinr, Megias, Pena-Benitez (20II)
Jensen, Loganayagam, AY (2012)
Golkar, Son (2012)

Plan

I. Hydrodynamics vs. hydrostatics.
2. A generating function for hydrostatics.
3. Components of the generating function.
4. Constructing the potential V_{T}.

Hydrodynamics

Hydrodynamics

Hydrodynamics

$$
L \gg \ell_{\mathrm{mfp}}
$$

Hydrodynamics

$$
L \gg \ell_{\mathrm{mfp}}
$$

Hydrodynamics

$L \gg \ell_{\operatorname{mfp}}$

Hydrodynamics

$L \gg \ell_{\operatorname{mfp}}$

Hydrodynamics

$T\left(x^{\alpha}\right)$
Temperature

$$
L \gg \ell_{\mathrm{mfp}}
$$

Hydrodynamics

$$
\begin{array}{ll}
T\left(x^{\alpha}\right) & \text { Temperature } \\
\mu\left(x^{\alpha}\right) & \text { Chemical potential }
\end{array}
$$

$$
L \gg \ell_{\mathrm{mfp}}
$$

Hydrodynamics

$T\left(x^{\alpha}\right)$
$\mu\left(x^{\alpha}\right)$
$u^{\nu}\left(x^{\mu}\right)$

Temperature
Chemical potential
Velocity field

$$
L \gg \ell_{\operatorname{mfp}}
$$

Hydrodynamics

$T\left(x^{\alpha}\right)$ $\mu\left(x^{\alpha}\right)$ $u^{\nu}\left(x^{\mu}\right)$

Temperature
Chemical potential
Velocity field $\quad\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\operatorname{mfp}}
$$

Hydrodynamics

$$
\begin{array}{ll}
T\left(x^{\alpha}\right) & \text { Temperature } \\
\mu\left(x^{\alpha}\right) & \text { Chemical potential } \\
u^{\nu}\left(x^{\mu}\right) & \text { Velocity field } \quad\left(u_{\mu} u^{\mu}=-1\right)
\end{array}
$$

$$
L \gg \ell_{\mathrm{mfp}}
$$

$$
\begin{gathered}
T^{\mu \nu}\left[u^{\alpha}, \mu, T\right] \\
J^{\mu}\left[u^{\alpha}, \mu, T\right]
\end{gathered}
$$

Hydrodynamics

$T\left(x^{\alpha}\right)$	Temperature
$\mu\left(x^{\alpha}\right)$	Chemical potential

$u^{\nu}\left(x^{\mu}\right) \quad$ Velocity field $\quad\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right] \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right] \\
& \partial_{\mu} T^{\mu \nu}=0 \\
& \partial_{\mu} J^{\mu}=0
\end{aligned}
$$

Hydrodynamics

$T\left(x^{\alpha}\right)$
$u^{\nu}\left(x^{\mu}\right)$

Temperature
Chemical potential
Velocity field $\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

To leading order the fields are uniform.

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right] \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right] \\
& \partial_{\mu} T^{\mu \nu}=0 \\
& \partial_{\mu} J^{\mu}=0
\end{aligned}
$$

Hydrodynamics

$T\left(x^{\alpha}\right)$
$u^{\nu}\left(x^{\mu}\right)$

Temperature
Chemical potential
Velocity field $\quad\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

To leading order the fields are uniform.

$\partial_{\mu} T^{\mu \nu}=0$
$\partial_{\mu} J^{\mu}=0$

Hydrodynamics

$T\left(x^{\alpha}\right)$	Temperature
$\mu\left(x^{\alpha}\right)$	Chemical potential
$u^{\nu}\left(x^{\mu}\right)$	Velocity field $\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

To leading order the fields are uniform.
$\partial_{\mu} T^{\mu \nu}=0$
$\partial_{\mu} J^{\mu}=0$

We need to construct a vector out of:
μ, T, u^{μ}

Hyoroovnanico

$T\left(x^{\alpha}\right)$	Temperature
$\mu\left(x^{\alpha}\right)$	Chemical potential
$u^{\nu}\left(x^{\mu}\right)$	Velocity field $\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

To leading order the fields are uniform.

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right] \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}
\end{aligned}
$$

$\partial_{\mu} T^{\mu \nu}=0$
$\partial_{\mu} J^{\mu}=0$

We need to construct a vector out of:
μ, T, u^{μ}

Hydrodynamics

$T\left(x^{\alpha}\right)$	Temperature
$\mu\left(x^{\alpha}\right)$	Chemical potential
$u^{\nu}\left(x^{\mu}\right)$	Velocity field $\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

To leading order the fields are uniform.

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right] \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}+\mathcal{O}(\partial) \\
& \partial_{\mu} T^{\mu \nu}=0 \\
& \partial_{\mu} J^{\mu}=0
\end{aligned}
$$

Hyoroovnanico

$T\left(x^{\alpha}\right)$	Temperature
$\mu\left(x^{\alpha}\right)$	Chemical potential
$u^{\nu}\left(x^{\mu}\right)$	Velocity field $\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

To leading order the fields are uniform.

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right] \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}+\mathcal{O}(\partial)
\end{aligned}
$$

$\partial_{\mu} T^{\mu \nu}=0$
$\partial_{\mu} J^{\mu}=0$

We need to construct a tensor out of:
$\mu, T, u^{\mu}, \eta^{\mu \nu}$

Hyoroovnanilas

$T\left(x^{\alpha}\right)$	Temperature
$\mu\left(x^{\alpha}\right)$	Chemical potential
$u^{\nu}\left(x^{\mu}\right)$	Velocity field $\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

To leading order the fields are uniform.

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu)\left(u^{\mu} u^{\nu}+\eta^{\mu \nu}\right)+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}+\mathcal{O}(\partial)
\end{aligned}
$$

$\partial_{\mu} T^{\mu \nu}=0$
$\partial_{\mu} J^{\mu}=0$

We need to construct a tensor out of:
$\mu, T, u^{\mu}, \eta^{\mu \nu}$

Hyoroovnanilas

$T\left(x^{\alpha}\right)$	Temperature
$\mu\left(x^{\alpha}\right)$	Chemical potential

$u^{\nu}\left(x^{\mu}\right) \quad$ Velocity field $\quad\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

To leading order the fields are uniform.

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) u^{\mu} u^{\nu}+\eta^{\mu \nu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}+\mathcal{O}(\partial) \\
& \partial_{\mu} T^{\mu \nu}=0 \\
& \partial_{\mu} J^{\mu}=0
\end{aligned}
$$

Hyoroovnanilas

$T\left(x^{\alpha}\right)$
Temperature
$\mu\left(x^{\alpha}\right) \quad$ Chemical potential
$u^{\nu}\left(x^{\mu}\right) \quad$ Velocity field $\quad\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

To leading order the fields are uniform.

$$
\begin{aligned}
& \left.T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) u^{\mu} u^{\nu}+\eta^{\mu \nu}\right)+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}+\mathcal{O}(\partial) \\
& \partial_{\mu} T^{\mu \nu}=0 \\
& \partial_{\mu} J^{\mu}=0
\end{aligned}
$$

Hyoroovnanilas

$T\left(x^{\alpha}\right)$	Temperature
$\mu\left(x^{\alpha}\right)$	Chemical potential
$u^{\nu}\left(x^{\mu}\right)$	Velocity field $\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

To leading order the fields are uniform.

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}+\mathcal{O}(\partial) \\
& \partial_{\mu} T^{\mu \nu}=0 \\
& \partial_{\mu} J^{\mu}=0
\end{aligned}
$$

Hyoroovnanilas

$T\left(x^{\alpha}\right)$
$\mu\left(x^{\alpha}\right)$
Temperature
Chemical potential
$u^{\nu}\left(x^{\mu}\right) \quad$ Velocity field $\quad\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

At subleading order we allow slowly varying fields

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}+\mathcal{O}(\partial) \\
& \partial_{\mu} T^{\mu \nu}=0 \\
& \partial_{\mu} J^{\mu}=0
\end{aligned}
$$

Hyoroovnanico

$T\left(x^{\alpha}\right)$	Temperature
$\mu\left(x^{\alpha}\right)$	Chemical potential
$u^{\nu}\left(x^{\mu}\right)$	Velocity field $\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

At subleading order we allow slowly varying fields

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}+\mathcal{O}(\partial)
\end{aligned}
$$

A field redefinition of the charge density fixes the
$\partial_{\mu} T^{\mu \nu}=0$
$\partial_{\mu} J^{\mu}=0$ longitudinal part of the current. The allowed transverse vectors at first order in derivatives are:

Hyoroovnanico

$T\left(x^{\alpha}\right)$	Temperature
$\mu\left(x^{\alpha}\right)$	Chemical potential
$u^{\nu}\left(x^{\mu}\right)$	Velocity field $\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

At subleading order we allow slowly varying fields

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}+\mathcal{O}(\partial)
\end{aligned}
$$

A field redefinition of the charge density fixes the
$\partial_{\mu} T^{\mu \nu}=0$
$\partial_{\mu} J^{\mu}=0$ longitudinal part of the current. The allowed transverse vectors at first order in derivatives are:

$$
P^{\mu \nu} \partial_{\nu} \frac{\mu}{T} \quad P^{\mu \nu} \partial_{\nu} T \quad \omega^{\mu}=\epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}
$$

Hyoroovnanico

$T\left(x^{\alpha}\right) \quad$ Temperature
$\mu\left(x^{\alpha}\right) \quad$ Chemical potential
$u^{\nu}\left(x^{\mu}\right) \quad$ Velocity field $\quad\left(u_{\mu} u^{\mu}=-1\right)$

$$
L \gg \ell_{\mathrm{mfp}}
$$

At subleading order we allow slowly varying fields

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T+\theta \omega^{\mu}
\end{aligned}
$$

$\partial_{\mu} T^{\mu \nu}=0$
$\partial_{\mu} J^{\mu}=0$

A field redefinition of the charge density fixes the longitudinal part of the current. The allowed transverse vectors at first order in derivatives are:

$$
P^{\mu \nu} \partial_{\nu} \frac{\mu}{T} \quad P^{\mu \nu} \partial_{\nu} T \quad \omega^{\mu}=\epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}
$$

Kubo formula

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T+\theta \omega^{\mu}
\end{aligned}
$$

Kubo formula

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T+\theta \omega^{\mu} \\
& \kappa T=\lim _{\omega \rightarrow 0} \frac{i}{2 \omega} \operatorname{Tr}\left(e^{-\beta H} J^{i} J^{j}\right)_{k=0} \delta_{i j}
\end{aligned}
$$

Kubo formula

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T+\theta \omega^{\mu}
\end{aligned}
$$

$$
\kappa T=\lim _{\omega \rightarrow 0} \frac{i}{2 \omega} \operatorname{Tr}\left(e^{-\beta H} J^{i} J^{j}\right)_{k=0} \delta_{i j}
$$

$$
\theta=\lim _{k_{l} \rightarrow 0} \epsilon_{i j l} \frac{i}{2 k_{l}} \operatorname{Tr}\left(e^{-\beta H} J^{i} T^{0 j}\right)_{\omega=0}
$$

Kubo formula

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T+\theta \omega^{\mu}
\end{aligned}
$$

$\kappa T=\lim _{\omega \rightarrow 0} \frac{i}{2 \omega} \operatorname{Tr}\left(e^{-\beta H} J^{i} J^{j}\right)_{k=0} \delta_{i j}$ Defined at non zero frequency.

$$
\theta=\lim _{k_{l} \rightarrow 0} \epsilon_{i j l} \frac{i}{2 k_{l}} \operatorname{Tr}\left(e^{-\beta H} J^{i} T^{0 j}\right)_{\omega=0}
$$

Kubo formula

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T+\theta \omega^{\mu}
\end{aligned}
$$

$\kappa T=\lim _{\omega \rightarrow 0} \frac{i}{2 \omega} \operatorname{Tr}\left(e^{-\beta H} J^{i} J^{j}\right)_{k=0} \delta_{i j}$ Defined at non zero frequency.

$$
\theta=\lim _{k_{l} \rightarrow 0} \epsilon_{i j l} \frac{i}{2 k_{l}} \operatorname{Tr}\left(e^{-\beta H} J^{i} T^{0 j}\right)_{\omega=0} \quad \text { Defined at zero frequency. }
$$

Kubo formula

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T+\theta \omega^{\mu}
\end{aligned}
$$

$\kappa T=\lim _{\omega \rightarrow 0} \frac{i}{2 \omega} \operatorname{Tr}\left(e^{-\beta H} J^{i} J^{j}\right)_{k=0} \delta_{i j}$ Defined at non zero frequency.
Tells us about transport out of equilibrium

$$
\theta=\lim _{k_{l} \rightarrow 0} \epsilon_{i j l} \frac{i}{2 k_{l}} \operatorname{Tr}\left(e^{-\beta H} J^{i} T^{0 j}\right)_{\omega=0}
$$

Defined at zero frequency.

Kubo formula

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T+\theta \omega^{\mu}
\end{aligned}
$$

$\kappa T=\lim _{\omega \rightarrow 0} \frac{i}{2 \omega} \operatorname{Tr}\left(e^{-\beta H} J^{i} J^{j}\right)_{k=0} \delta_{i j}$ Defined at non zero frequency.
Tells us about transport out of equilibrium

$$
\theta=\lim _{k_{l} \rightarrow 0} \epsilon_{i j l} \frac{i}{2 k_{l}} \operatorname{Tr}\left(e^{-\beta H} J^{i} T^{0 j}\right)_{\omega=0}
$$

Defined at zero frequency. Tells us about response in hydrostatic equilibrium

Kubo formula

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T+\theta \omega^{\mu}
\end{aligned}
$$

$\kappa T=\lim _{\omega \rightarrow 0} \frac{i}{2 \omega} \operatorname{Tr}\left(e^{-\beta H} J^{i} J^{j}\right)_{k=0} \delta_{i j}$ Defined at non zero frequency.
Tells us about transport out of equilibrium

$$
\theta=\lim _{k_{l} \rightarrow 0} \epsilon_{i j l} \frac{i}{2 k_{l}} \operatorname{Tr}\left(e^{-\beta H} J^{i} T^{0 j}\right)_{\omega=0}
$$

Defined at zero frequency. Tells us about response in hydrostatic equilibrium

Kubo formula

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T+\theta \omega^{\mu}
\end{aligned}
$$

$\kappa T=\lim _{\omega \rightarrow 0} \frac{i}{2 \omega} \operatorname{Tr}\left(e^{-\beta H} J^{i} J^{j}\right)_{k=0} \delta_{i j}$ Defined at non zero frequency.
Tells us about transport out of equilibrium

transport

$$
\theta=\lim _{k_{l} \rightarrow 0} \epsilon_{i j l} \frac{i}{2 k_{l}} \operatorname{Tr}\left(e^{-\beta H} J^{i} T^{0 j}\right)_{\omega=0}
$$

Defined at zero frequency. Tells us about response in hydrostatic equilibrium
response

Kubo formula

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T+\theta \omega^{\mu}
\end{aligned}
$$

$$
\kappa T=\lim _{\omega \rightarrow 0} \frac{i}{2 \omega} \operatorname{Tr}\left(e^{-\beta H} J^{i} J^{j}\right)_{k=0} \delta_{i j} \text { Defined at non zero frequency. }
$$

Tells us about transport out of equilibrium
Defined at zero frequency. Tells us about response in hydrostatic equilibrium
response

Kubo formula

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T+\theta \omega^{\mu}
\end{aligned}
$$

$\kappa T=\lim _{\omega \rightarrow 0} \frac{i}{2 \omega} \operatorname{Tr}\left(e^{-\beta H} J^{i} J^{j}\right)_{k=0} \delta_{i j}$ Defined at non zero frequency.
Tells us about transport out of equilibrium
transport
$\theta=\lim _{k_{l} \rightarrow 0} \epsilon_{i j l} \frac{i}{2 k_{l}} \operatorname{Tr}\left(e^{-\beta H} J^{i} T^{0 j}\right)_{\omega=0}$

\square
response

Defined at zero frequency.
Tells us about response in hydrostatic equilibrium
η

Kubo formula

$$
\begin{aligned}
& T^{\mu \nu}\left[u^{\alpha}, \mu, T\right]=\epsilon(T, \mu) u^{\mu} u^{\nu}+P(T, \mu) P^{\mu \nu}+\mathcal{O}(\partial) \\
& J^{\mu}\left[u^{\alpha}, \mu, T\right]=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T+\theta \omega^{\mu}
\end{aligned}
$$

$\kappa T=\lim _{\omega \rightarrow 0} \frac{i}{2 \omega} \operatorname{Tr}\left(e^{-\beta H} J^{i} J^{j}\right)_{k=0} \delta_{i j}$ Defined at non zero frequency.
Tells us about transport out of equilibrium
transport
$\theta=\lim _{k_{l} \rightarrow 0} \epsilon_{i j l} \frac{i}{2 k_{l}} \operatorname{Tr}\left(e^{-\beta H} J^{i} T^{0 j}\right)_{\omega=0} \quad$ Defined at zero frequency. Tello-us avout response in hydrostatic equilibrium
response

Hydrostatic equilibrium

(Time independent fluid configurations)

Hydrostatic equilibrium

 ("Time independent fluid configurations")
Hydrostatic equilibrium

("Time independent fluid configurations")

Thermodynamic equilibrium

Hydrostatic equilibrium

("Time independent fluid configurations")

Thermodynamic equilibrium
Column of air

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time-independent slowly varying sources)

Thermodynamic equilibrium
Column of air

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Spatial manifold

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Spatial manifold

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (2012)
Banerjee, Bhattacharya, Bhatacharyya, Jain, Minwalla, Sharma (2012)

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (2012)
Banerjee, Bhattacharya, Bhatacharyya, Jain, Minwalla, Sharma (20I2)

$$
T^{-1}=\underset{\substack{\text { Inverse length } \\ \text { of time circle }}}{\substack{\text { and }}}
$$

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (20I2)
Banerjee, Bhattacharya, Bhatacharyya, Jain, Minwalla, Sharma (2012)
$T^{-1}=\underset{\text { of time circle }}{\substack{\text { Inverse length }}}$

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (20I2)
Banerjee, Bhattacharya, Bhatacharyya, Jain, Minwalla, Sharma (2012)

$$
T^{-1}=\underset{\substack{\text { Inverse length } \\ \text { of time circle }}}{\substack{g_{00}}}
$$

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (20I2)
Banerjee, Bhattacharya, Bhatacharyya, Jain, Minwalla, Sharma (2012)

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (20I2)
Banerjee, Bhattacharya, Bhatacharyya, Jain, Minwalla, Sharma (2012)

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (2012)
Banerjee, Bhattacharya, Bhatacharyya, Jain, Minwalla, Sharma (2012)
$T^{-1}=\underset{\substack{\text { Inverse length } \\ \text { of time circle }}}{\substack{g_{00}}}$
$\frac{\mu}{T}=\underset{\text { loop }}{\text { Lof Polyakov }}=A_{0} \beta$
$u^{\mu}=\underset{\text { Killing vector }}{\substack{\text { Normalized }}}$

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (2012)
Banerjee, Bhattacharya, Bhatacharyya, Jain, Minwalla, Sharma (2012)

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (20I2)
Banerjee, Bhattacharya, Bhatacharyya, Jain, Minwalla, Sharma (20I2)

$$
Z=\operatorname{Tr}\left(e^{-\beta H+\beta \mu Q}\right)=\int_{\text {periodic }} e^{-S_{E}} D[\phi]
$$

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (20I2)
Banerjee, Bhattacharya, Bhatacharyya, Jain, Minwalla, Sharma (20I2)

$$
Z=\operatorname{Tr}\left(e^{-\beta H+\beta \mu Q}\right)=\int_{\text {periodic }} e^{-S_{E}} D[\phi]
$$

$W=\ln Z$

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (2012)
Banerjee, Bhattacharya, Bhatacharyya, Jain, Minwalla, Sharma (2012)

$$
\begin{aligned}
& Z=\operatorname{Tr}\left(e^{-\beta H+\beta \mu Q}\right)=\int_{\text {periodic }} e^{-S_{E}} D[\phi] \\
& W=\ln Z \\
& \operatorname{Tr}\left(e^{-\beta H+\beta \mu Q} T^{\mu_{1} \nu_{1}}\left(\vec{x}_{1}\right) \ldots T^{\mu_{n} \nu_{n}}\left(\vec{x}_{n}\right)\right) \\
& \\
& \qquad=\frac{2}{\sqrt{g}} \frac{\delta^{n} W}{\delta h_{\mu_{1} \nu_{1}}\left(\overrightarrow{x_{1}}\right) \ldots \delta h_{\mu_{n} \nu_{n}}\left(\vec{x}_{n}\right)}
\end{aligned}
$$

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (2012)

$$
\begin{aligned}
& Z=\operatorname{Tr}\left(e^{-\beta H+\beta \mu Q}\right)=\int_{\text {periodic }} e^{-S_{E}} D[\phi] \\
& \begin{aligned}
\text { Baneriee, Bhatachary, Bhatacharyz, Jain, Minwalla, Sharma (2012) }
\end{aligned} \\
& \begin{aligned}
& \operatorname{Tr}\left(e^{-\beta H+\beta \mu Q} T^{\mu_{1} \nu_{1}}\left(\vec{x}_{1}\right) \ldots T^{\mu_{n} \nu_{n}}\left(\vec{x}_{n}\right)\right) \\
&=\frac{2}{\sqrt{g}} \frac{\delta^{n} W}{\delta h_{\mu_{1} \nu_{1}}\left(\overrightarrow{x_{1}}\right) \ldots \delta h_{\mu_{n} \nu_{n}}\left(\vec{x}_{n}\right)} \\
& \operatorname{Tr}\left(e^{-\beta H+\beta \mu Q} J^{\mu_{1}}\left(\vec{x}_{1}\right) \ldots J^{\mu_{n}}\left(\vec{x}_{n}\right)\right)=\frac{1}{\sqrt{g}} \frac{\delta^{n} W}{\delta A_{\mu_{1}}\left(\vec{x}_{1}\right) \ldots \delta A_{\mu_{n}}\left(\vec{x}_{n}\right)}
\end{aligned}
\end{aligned}
$$

Hydrostatic equilibrium

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (2012)

$$
\begin{aligned}
& Z=\operatorname{Tr}\left(e^{-\beta H+\beta \mu Q}\right)=\int_{\text {periodic }} e^{-S_{E}} D[\phi] \\
& \begin{aligned}
\text { Baneriee, Bhatachary, Bhatacharyz, Jain, Minwalla, Sharma (2012) }
\end{aligned} \\
& \begin{aligned}
& \operatorname{Tr}\left(e^{-\beta H+\beta \mu Q} T^{\mu_{1} \nu_{1}}\left(\vec{x}_{1}\right) \ldots T^{\mu_{n} \nu_{n}}\left(\vec{x}_{n}\right)\right) \\
&=\frac{2}{\sqrt{g}} \frac{\delta^{n} W}{\delta h_{\mu_{1} \nu_{1}}\left(\overrightarrow{x_{1}}\right) \ldots \delta h_{\mu_{n} \nu_{n}}\left(\vec{x}_{n}\right)} \\
& \operatorname{Tr}\left(e^{-\beta H+\beta \mu Q} J^{\mu_{1}}\left(\vec{x}_{1}\right) \ldots J^{\mu_{n}}\left(\vec{x}_{n}\right)\right)=\frac{1}{\sqrt{g}} \frac{\delta^{n} W}{\delta A_{\mu_{1}}\left(\vec{x}_{1}\right) \ldots \delta A_{\mu_{n}}\left(\vec{x}_{n}\right)}
\end{aligned}
\end{aligned}
$$

A theory of hydrostatics

(A time independent fluid configuration which is a local function of time independent slowly varying sources)

Jensen, Kaminski, Kovtun, Myer, Ritz, AY (2012)

$$
\begin{aligned}
& Z=\operatorname{Tr}\left(e^{-\beta H+\beta \mu Q}\right)=\int_{\text {periodic }} e^{-S_{E}} D[\phi] \\
& \begin{aligned}
\text { Banerije, Bhattachary, Bhatacharyy, Jain, Minwalla, Sharma (2012) }
\end{aligned} \\
& \begin{aligned}
& \operatorname{Tr}\left(e^{-\beta H+\beta \mu Q} T^{\mu_{1} \nu_{1}}\left(\vec{x}_{1}\right) \ldots T^{\mu_{n} \nu_{n}}\left(\vec{x}_{n}\right)\right) \\
&=\frac{2}{\sqrt{g}} \frac{\delta^{n} W}{\delta h_{\mu_{1} \nu_{1}}\left(\overrightarrow{x_{1}}\right) \ldots \delta h_{\mu_{n} \nu_{n}}\left(\vec{x}_{n}\right)} \\
& \operatorname{Tr}\left(e^{-\beta H+\beta \mu Q} J^{\mu_{1}}\left(\vec{x}_{1}\right) \ldots J^{\mu_{n}}\left(\vec{x}_{n}\right)\right)=\frac{1}{\sqrt{g}} \frac{\delta^{n} W}{\delta A_{\mu_{1}}\left(\vec{x}_{1}\right) \ldots \delta A_{\mu_{n}}\left(\vec{x}_{n}\right)}
\end{aligned}
\end{aligned}
$$

A theory of hydrostatics

We construct the partition function for an equilibrated theory from the Euclidian partition function:

$$
W=\ln Z
$$

A theory of hydrostatics

We construct the partition function for an equilibrated theory from the Euclidian partition function:

$$
W=\ln Z
$$

Prescription:

A theory of hydrostatics

We construct the partition function for an equilibrated theory from the Euclidian partition function:

$$
W=\ln Z
$$

Prescription:

I. Start with a metric and gauge field for which K^{μ} is a timelike symmetry.

A theory of hydrostatics

We construct the partition function for an equilibrated theory from the Euclidian partition function:

$$
W=\ln Z
$$

Prescription:

I. Start with a metric and gauge field for which K^{μ} is a timelike symmetry.

$$
\begin{aligned}
& \mathcal{L}_{K} g_{\mu \nu}=0 \\
& \mathcal{L}_{K} A_{\mu}=0
\end{aligned}
$$

A theory of hydrostatics

We construct the partition function for an equilibrated theory from the Euclidian partition function:
$W=\ln Z$

Prescription:

I. Start with a metric and gauge field for which K^{μ} is a timelike symmetry.

$$
\begin{aligned}
& \mathcal{L}_{K} g_{\mu \nu}=0 \\
& \mathcal{L}_{K} A_{\mu}=0
\end{aligned}
$$

2. Identify the velocity field, temperature and chemical potential with the gauge field and metric

A theory of hydrostatics

We construct the partition function for an equilibrated theory from the Euclidian partition function:
$W=\ln Z$

Prescription:

I. Start with a metric and gauge field for which K^{μ} is a timelike symmetry.

$$
\begin{aligned}
& \mathcal{L}_{K} g_{\mu \nu}=0 \\
& \mathcal{L}_{K} A_{\mu}=0
\end{aligned}
$$

2. Identify the velocity field, temperature and chemical potential with the gauge field and metric

$$
T^{-1}=\int_{0}^{\beta} \sqrt{K^{\mu} g_{\mu \nu} K^{\nu}} d \tau
$$

A theory of hydrostatics

We construct the partition function for an equilibrated theory from the Euclidian partition function:
$W=\ln Z$

Prescription:

I. Start with a metric and gauge field for which K^{μ} is a timelike symmetry.

$$
\begin{aligned}
& \mathcal{L}_{K} g_{\mu \nu}=0 \\
& \mathcal{L}_{K} A_{\mu}=0
\end{aligned}
$$

2. Identify the velocity field, temperature and chemical potential with the gauge field and metric

$$
\begin{aligned}
& T^{-1}=\int_{0}^{\beta} \sqrt{K^{\mu} g_{\mu \nu} K^{\nu}} d \tau \\
& \frac{\mu}{T}=\ln e^{\oint A_{\mu} d x^{\mu}}
\end{aligned}
$$

A theory of hydrostatics

We construct the partition function for an equilibrated theory from the Euclidian partition function:

$$
W=\ln Z
$$

Prescription:

I. Start with a metric and gauge field for which K^{μ} is a timelike symmetry.

$$
\begin{aligned}
& \mathcal{L}_{K} g_{\mu \nu}=0 \\
& \mathcal{L}_{K} A_{\mu}=0
\end{aligned}
$$

$$
\begin{aligned}
& T^{-1}=\int_{0}^{\beta} \sqrt{K^{\mu} g_{\mu \nu} K^{\nu}} d \tau \\
& \frac{\mu}{T}=\ln e^{\oint A_{\mu} d x^{\mu}} \quad u^{\mu}=\frac{K^{\mu}}{\sqrt{-K^{2}}}
\end{aligned}
$$

A theory of hydrostatics

We construct the partition function for an equilibrated theory from the Euclidian partition function:

$$
W=\ln Z
$$

Prescription:

I. Start with a metric and gauge field for which K^{μ} is a timelike symmetry.

$$
\begin{aligned}
& \mathcal{L}_{K} g_{\mu \nu}=0 \\
& \mathcal{L}_{K} A_{\mu}=0
\end{aligned}
$$

2. Identify the velocity field, temperature and chemical potential with the gauge field and metric

$$
\begin{aligned}
& T^{-1}=\int_{0}^{\beta} \sqrt{K^{\mu} g_{\mu \nu} K^{\nu}} d \tau \\
& \frac{\mu}{T}=\ln e^{\oint A_{\mu} d x^{\mu}} \quad u^{\mu}=\frac{K^{\mu}}{\sqrt{-K^{2}}}
\end{aligned}
$$

3. Write down a local, gauge invariant generating function for the Euclidian theory. (Order by order in derivatives.)

A theory of hydrostatics

We construct the partition function for an equilibrated theory from the Euclidian partition function:

$$
W=\ln Z
$$

Prescription:

I. Start with a metric and gauge field for which K^{μ} is a timelike symmetry.

$$
\begin{aligned}
& \mathcal{L}_{K} g_{\mu \nu}=0 \\
& \mathcal{L}_{K} A_{\mu}=0
\end{aligned}
$$

3. Write down a local, gauge invariant generating function for the Euclidian theory. (Order by order in derivatives.)
4. Identify the velocity field, temperature and chemical potential with the gauge field and metric

$$
T^{-1}=\int_{0}^{\beta} \sqrt{K^{\mu} g_{\mu \nu} K^{\nu}} d \tau
$$

$$
\frac{\mu}{T}=\ln e^{\oint A_{\mu} d x^{\mu}} \quad u^{\mu}=\frac{K^{\mu}}{\sqrt{-K^{2}}}
$$

A theory of hydrostatics

Leading order terms

Prescription:

I. Start with a metric and gauge field for which K^{μ} is a timelike symmetry.

$$
\begin{aligned}
& \mathcal{L}_{K} g_{\mu \nu}=0 \\
& \mathcal{L}_{K} A_{\mu}=0
\end{aligned}
$$

2. Identify the velocity field, temperature and chemical potential with the gauge field and metric

$$
\begin{aligned}
& T^{-1}=\int_{0}^{\beta} \sqrt{K^{\mu} g_{\mu \nu} K^{\nu}} d \tau \\
& \frac{\mu}{T}=\ln e^{\oint A_{\mu} d x^{\mu}} \quad u^{\mu}=\frac{K^{\mu}}{\sqrt{-K^{2}}}
\end{aligned}
$$

3. Write down a local, gauge invariant generating function for the Euclidian theory. (Order by order in derivatives.)

A theory of hydrostatics

Leading order terms

$$
W=\int \sqrt{g} P(T, \mu) d^{3} x d t
$$

Prescription:

I. Start with a metric and gauge field for which K^{μ} is a timelike symmetry.

$$
\begin{aligned}
& \mathcal{L}_{K} g_{\mu \nu}=0 \\
& \mathcal{L}_{K} A_{\mu}=0
\end{aligned}
$$

2. Identify the velocity field, temperature and chemical potential with the gauge field and metric

$$
\begin{aligned}
& T^{-1}=\int_{0}^{\beta} \sqrt{K^{\mu} g_{\mu \nu} K^{\nu}} d \tau \\
& \frac{\mu}{T}=\ln e^{\oint A_{\mu} d x^{\mu}} \quad u^{\mu}=\frac{K^{\mu}}{\sqrt{-K^{2}}}
\end{aligned}
$$

3. Write down a local, gauge invariant generating function for the Euclidian theory. (Order by order in derivatives.)

A theory of hydrostatics

Leading order terms

$$
\begin{aligned}
W & =\int \sqrt{g} P(T, \mu) d^{3} x d t \\
T^{\mu \nu} & =\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu \nu}}
\end{aligned}
$$

A theory of hydrostatics

Leading order terms

$$
\begin{aligned}
W & =\int \sqrt{g} P(T, \mu) d^{3} x d t \\
T^{\mu \nu} & =\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu \nu}} \\
& \xrightarrow[t_{E} \rightarrow t]{\longrightarrow}\left(T \frac{\partial P}{\partial T}+\mu \frac{\partial P}{\partial \mu}-P\right) u^{\mu} u^{\nu}+\left(g^{\mu \nu}+u^{\mu} u^{\nu}\right) P
\end{aligned}
$$

A theory of hydrostatics

Leading order terms

$$
\begin{aligned}
W & =\int \sqrt{g} P(T, \mu) d^{3} x d t \\
T^{\mu \nu} & =\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu \nu}} \\
& \xrightarrow[t_{E} \rightarrow t]{\longrightarrow}\left(T \frac{\partial P}{\partial T}+\mu \frac{\partial P}{\partial \mu}-P\right) u^{\mu} u^{\nu}+\left(g^{\mu \nu}+u^{\mu} u^{\nu}\right) P \\
& =\epsilon u^{\mu} u^{\nu}+\left(g^{\mu \nu}+u^{\mu} u^{\nu}\right) P
\end{aligned}
$$

A theory of hydrostatics

Leading order terms

$$
W=\int \sqrt{g} P(T, \mu) d^{3} x d t
$$

A theory of hydrostatics

Ist order corrections:

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}(\partial) d^{3} x d t
$$

A theory of hydrostatics

Ist order corrections:

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}(\partial) d^{3} x d t
$$

Possible parity preserving contributions:

A theory of hydrostatics

Ist order corrections:

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}(\partial) d^{3} x d t
$$

Possible parity preserving contributions:

$$
\nabla_{\mu} u^{\mu}
$$

A theory of hydrostatics

Ist order corrections:

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}(\partial) d^{3} x d t
$$

Possible parity preserving contributions:

$$
\begin{gathered}
\nabla_{\mu} u^{\mu} \\
u^{\alpha} \nabla_{\alpha} T
\end{gathered}
$$

A theory of hydrostatics

Ist order corrections:

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}(\partial) d^{3} x d t
$$

Possible parity preserving contributions:

$$
\begin{gathered}
\nabla_{\mu} u^{\mu} \\
u^{\alpha} \nabla_{\alpha} T \\
u^{\alpha} \nabla_{\alpha} \mu
\end{gathered}
$$

A theory of hydrostatics

Ist order corrections:

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}(\partial) d^{3} x d t
$$

Possible parity preserving contributions: (Choose $\left.K^{\mu} \partial_{\mu}=\beta \partial_{\tau}\right)$

$$
\begin{gathered}
\nabla_{\mu} u^{\mu} \\
u^{\alpha} \nabla_{\alpha} T \\
u^{\alpha} \nabla_{\alpha} \mu
\end{gathered}
$$

A theory of hydrostatics

Ist order corrections:

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}(\partial) d^{3} x d t
$$

Possible parity preserving contributions: (Choose $\mathrm{K}^{\mu} \partial_{\mu}=\beta \partial_{\mathrm{t}}$)

$$
\begin{aligned}
& \nabla_{\mu} u^{\mu} \sim \partial_{t} \sqrt{g} u^{t} \\
& u^{\alpha} \nabla_{\alpha} T \\
& u^{\alpha} \nabla_{\alpha} \mu
\end{aligned}
$$

A theory of hydrostatics

Ist order corrections:

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}(\partial) d^{3} x d t
$$

Possible parity preserving contributions: (Choose $\mathrm{K}^{\mu} \partial_{\mu}=\beta \partial_{\mathrm{t}}$)

$$
\begin{aligned}
& \nabla_{\mu} u^{\mu} \sim \partial_{t} \sqrt{g} u^{t}=0 \\
& u^{\alpha} \nabla_{\alpha} T \\
& u^{\alpha} \nabla_{\alpha} \mu
\end{aligned}
$$

A theory of hydrostatics

Ist order corrections:

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}(\partial) d^{3} x d t
$$

Possible parity preserving contributions: (Choose $\mathrm{K}^{\mu} \partial_{\mu}=\beta \partial_{\mathrm{t}}$)

$$
\begin{aligned}
& \nabla_{\mu} u^{\mu} \sim \partial_{t} \sqrt{g} u^{t}=0 \\
& u^{\alpha} \nabla_{\alpha} T \sim \partial_{t} T \\
& u^{\alpha} \nabla_{\alpha} \mu
\end{aligned}
$$

A theory of hydrostatics

Ist order corrections:

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}(\partial) d^{3} x d t
$$

Possible parity preserving contributions: (Choose $\mathrm{K}^{\mu} \partial_{\mu}=\beta \partial_{\mathrm{t}}$)

$$
\begin{aligned}
& \nabla_{\mu} u^{\mu} \sim \partial_{t} \sqrt{g} u^{t}=0 \\
& u^{\alpha} \nabla_{\alpha} T \sim \partial_{t} T=0 \\
& u^{\alpha} \nabla_{\alpha} \mu
\end{aligned}
$$

A theory of hydrostatics

Ist order corrections:

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}(\partial) d^{3} x d t
$$

Possible parity preserving contributions: (Choose $\mathrm{K}^{\mu} \partial_{\mu}=\beta \partial_{\mathrm{t}}$)

$$
\begin{aligned}
& \nabla_{\mu} u^{\mu} \sim \partial_{t} \sqrt{g} u^{t}=0 \\
& u^{\alpha} \nabla_{\alpha} T \sim \partial_{t} T=0 \\
& u^{\alpha} \nabla_{\alpha} \mu \sim \partial_{t} \mu=0
\end{aligned}
$$

A theory of hydrostatics

Ist order corrections:

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}\left(\partial^{2}\right) d^{3} x d t
$$

Possible parity preserving contributions: (Choose $\mathrm{K}^{\mu} \partial_{\mu}=\beta \partial_{\mathrm{t}}$)

$$
\begin{aligned}
& \nabla_{\mu} u^{\mu} \sim \partial_{t} \sqrt{g} u^{t}=0 \\
& u^{\alpha} \nabla_{\alpha} T \sim \partial_{t} T=0 \\
& u^{\alpha} \nabla_{\alpha} \mu \sim \partial_{t} \mu=0
\end{aligned}
$$

A theory of hydrostatics

I st order corrections: (parity preserving)

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}\left(\partial^{2}\right) d^{3} x d t
$$

A theory of hydrostatics

Ist order corrections: (parity preserving)

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}\left(\partial^{2}\right) d^{3} x d t
$$

We've seen that in general:

$$
J^{\mu}=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T
$$

A theory of hydrostatics

Ist order corrections: (parity preserving)

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}\left(\partial^{2}\right) d^{3} x d t
$$

We've seen that in general:

$$
J^{\mu}=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T
$$

In a hydrostatic configuration

A theory of hydrostatics

I st order corrections: (parity preserving)

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}\left(\partial^{2}\right) d^{3} x d t
$$

We've seen that in general:

$$
J^{\mu}=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T
$$

In a hydrostatic configuration

$$
P^{\nu \mu} \partial_{\mu} \frac{\mu}{T}=\beta P^{\nu \mu} \partial_{\mu} A_{0}
$$

A theory of hydrostatics

Ist order corrections: (parity preserving)

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}\left(\partial^{2}\right) d^{3} x d t
$$

We've seen that in general:

$$
J^{\mu}=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T
$$

In a hydrostatic configuration

$$
P^{\nu \mu} \partial_{\mu} \frac{\mu}{T}=\beta P^{\nu \mu} \partial_{\mu} A_{0}=g^{\nu i} \frac{E_{i}}{T}
$$

A theory of hydrostatics

Ist order corrections: (parity preserving)

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}\left(\partial^{2}\right) d^{3} x d t
$$

We've seen that in general:

$$
J^{\mu}=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T
$$

In a hydrostatic configuration

$$
P^{\nu \mu} \partial_{\mu} \frac{\mu}{T}=\beta P^{\nu \mu} \partial_{\mu} A_{0}=g^{\nu i} \frac{E_{i}}{T}
$$

A theory of hydrostatics

Ist order corrections: (parity preserving)

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}\left(\partial^{2}\right) d^{3} x d t
$$

We've seen that in general:

$$
J^{\mu}=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T
$$

In a hydrostatic configuration

$$
\begin{gathered}
P^{\nu \mu} \partial_{\mu} \frac{\mu}{T}=\beta P^{\nu \mu} \partial_{\mu} A_{0}=g^{\nu i} \frac{E_{i}}{T}=0 \\
E^{\mu}=F^{\mu \nu} u_{\nu}
\end{gathered}
$$

A theory of hydrostatics

Ist order corrections: (parity preserving)

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}\left(\partial^{2}\right) d^{3} x d t
$$

We've seen that in general:

$$
J^{\mu}=\rho(T, \mu) u^{\mu}-\kappa(T, \mu) P^{\mu \nu} \partial_{\nu} \frac{\mu}{T}+\chi P^{\mu \nu} \partial_{\nu} T
$$

In a hydrostatic configuration

$$
P^{\nu \mu} \partial_{\mu} \frac{\mu}{T}=\beta P^{\nu \mu} \partial_{\mu} A_{0}=g^{\nu i} \frac{E_{i}}{T}=0
$$

The hydrostatic current is then:

$$
J^{\mu}=\rho(T, \mu) u^{\mu}+\chi P^{\mu \nu} \partial_{\nu} T
$$

A theory of hydrostatics

Ist order corrections: (parity preserving)

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}\left(\partial^{2}\right) d^{3} x d t
$$

In a hydrostatic configuration:

$$
J^{\mu}=\rho(T, \mu) u^{\mu}+\chi P^{\mu \nu} \partial_{\nu} T
$$

A theory of hydrostatics

Ist order corrections: (parity preserving)

$$
W=\int \sqrt{g} P(T, \mu)+\mathcal{O}\left(\partial^{2}\right) d^{3} x d t
$$

In a hydrostatic configuration:

$$
J^{\mu}=\rho(T, \mu) u^{\mu}+\chi P^{\mu \nu} \partial_{\nu} T
$$

Hence:

$$
\chi=0
$$

Parity violation

$$
W=\ln Z
$$

Parity violation

$$
W=\ln Z=\int \ldots d^{3} x d t
$$

Parity violation

$$
W=\ln Z=\int \ldots d^{3} x d t=\beta \int \ldots d^{3} x
$$

Parity violation

Parity violation

$$
\begin{aligned}
& W=\ln Z=\int \ldots d^{3} x d t=\beta \int \ldots d^{3} x \\
& \\
& d s^{2}=-e^{2 \mathfrak{s}}(d t+\mathfrak{a})+\mathfrak{g}_{i j} d x^{i} d x^{j} \\
& \mathbf{A}=A_{0}(d t+\mathfrak{a})+\hat{A}_{i} d x^{i}
\end{aligned}
$$

Parity violation

$$
\begin{aligned}
d s^{2} & =-e^{2 \mathfrak{s}}(d t+\mathfrak{a})+\mathfrak{g}_{i j} d x^{i} d x^{j} \\
\mathbf{A} & =A_{0}(d t+\mathfrak{a})+\hat{A}_{i} d x^{i}
\end{aligned}
$$

A class of parity violating terms are Chern-Simons terms.

Parity violation

$$
\begin{aligned}
W=\ln Z & =\int \ldots d^{3} x d t=\beta \int \ldots d^{3} x \\
d s^{2} & =-e^{2 \mathfrak{s}}(d t+\mathfrak{a})+\mathfrak{g}_{i j} d x^{i} d x^{j} \\
\mathbf{A} & =A_{0}(d t+\mathfrak{a})+\hat{A}_{i} d x^{i}
\end{aligned}
$$

A class of parity violating terms are Chern-Simons terms. e.g.,

$$
W_{\text {trans }}=\beta^{2} \int \hat{\mathbf{A}} \wedge d \mathfrak{a}
$$

in $3+1$ dimensions.

Parity violation

$$
\begin{aligned}
W=\ln Z & =\int \ldots d^{3} x d t=\beta \int \ldots d^{3} x \\
d s^{2} & =-e^{2 \mathfrak{s}}(d t+\mathfrak{a})+\mathfrak{g}_{i j} d x^{i} d x^{j} \\
\mathbf{A} & =A_{0}(d t+\mathfrak{a})+\hat{A}_{i} d x^{i}
\end{aligned}
$$

A class of parity violating terms are Chern-Simons terms. e.g.,

$$
W_{\text {trans }}=\beta^{2} \int \hat{\mathbf{A}} \wedge d \mathfrak{a}
$$

in $3+1$ dimensions. There are others.

Parity violation

$$
\begin{aligned}
W=\ln Z & =\int \ldots d^{3} x d t=\beta \int \ldots d^{3} x \\
& =W_{0}+W_{t r a n s}
\end{aligned}
$$

A class of parity violating terms are Chern-Simons terms. e.g.,

$$
W_{\text {trans }}=\beta^{2} \int \hat{\mathbf{A}} \wedge d \mathfrak{a}
$$

in $3+1$ dimensions. There are others.

Parity violation

$$
W=\ln Z=W_{0}+W_{\text {trans }}
$$

A class of parity violating terms are Chern-Simons terms. e.g.,

$$
W_{\text {trans }}=\beta^{2} \int \hat{\mathbf{A}} \wedge d \mathfrak{a}
$$

in $3+1$ dimensions. There are others.

Parity violation

$$
W=\ln Z=W_{0}+W_{\text {trans }}
$$

e.g. (in 3+ld),

$W_{\text {trans }}=\beta^{2} \int \hat{\mathbf{A}} \wedge d \mathfrak{a}$

Parity violation

$$
W=\ln Z=W_{0}+W_{\text {trans }}
$$

e.g. (in 3+ld),

$W_{\text {trans }}=\beta^{2} \int \hat{\mathbf{A}} \wedge d \mathfrak{a}=\int T^{2} A_{\mu} \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma} d^{3} x d t$

Parity violation

$$
W=\ln Z=W_{0}+W_{\text {trans }}
$$

e.g. (in 3+ld),
$W_{\text {trans }}=\beta^{2} \int \hat{\mathbf{A}} \wedge d \mathfrak{a}=\int T^{2} A_{\mu} \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma} d^{3} x d t$
In 3+Id these are the only parity violating terms at order $O(\partial)$.

Parity violation

$$
W=\ln Z=W_{0}+W_{\text {trans }}
$$

e.g. (in 3+ld),
$W_{\text {trans }}=\beta^{2} \int \hat{\mathbf{A}} \wedge d \mathfrak{a}=\int T^{2} A_{\mu} \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma} d^{3} x d t$
In 3+1 d these are the only parity violating terms at order $O(\partial)$.

$$
W=\int \sqrt{g}\left(P(T, \mu)+k_{1} T^{2} \epsilon^{\mu \nu \rho \sigma} A_{\mu} u_{\nu} \partial_{\rho} u_{\sigma}\right) d^{3} x d t
$$

Parity violation

$$
W=\ln Z=W_{0}+W_{\text {trans }}
$$

e.g. (in 3+ld),

$$
W=\int \sqrt{g}\left(P(T, \mu)+k_{1} T^{2} \epsilon^{\mu \nu \rho \sigma} A_{\mu} u_{\nu} \partial_{\rho} u_{\sigma}\right) d^{3} x d t
$$

Parity violation

$$
W=\ln Z=W_{0}+W_{\text {trans }}
$$

e.g. (in 3+Id),

$$
W=\int \sqrt{g}\left(P(T, \mu)+k_{1} T^{2} \epsilon^{\mu \nu \rho \sigma} A_{\mu} u_{\nu} \partial_{\rho} u_{\sigma}\right) d^{3} x d t
$$

Thus,

$$
J^{\mu}=\rho u^{\mu}+k_{1} T^{2} \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}
$$

Anomalies

$$
W=\ln Z=W_{0}+W_{t r a n s}
$$

Anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}
$$

Wess-Zumino consistency condition:

$$
\delta_{1} \delta_{2} W-\delta_{2} \delta_{1} W=\delta_{[1,2]} W
$$

Anomalies

$$
W=\ln Z=W_{0}+W_{t r a n s}+W_{\text {anom }}
$$

Wess-Zumino consistency condition:

$$
\delta_{1} \delta_{2} W-\delta_{2} \delta_{1} W=\delta_{[1,2]} W
$$

Anomalies

$$
W=\ln Z=W_{0}+W_{t r a n s}+W_{\text {anom }}
$$

Wess-Zumino consistency condition:

$$
\delta_{1} \delta_{2} W-\delta_{2} \delta_{1} W=\delta_{[1,2]} W
$$

Solution:

Anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Wess-Zumino consistency condition:

$$
\delta_{1} \delta_{2} W-\delta_{2} \delta_{1} W=\delta_{[1,2]} W
$$

Solution:

$$
\mathbf{P}=d \mathbf{I}_{C S}
$$

Anomalies

$$
W=\ln Z=W_{0}+W_{t r a n s}+W_{\text {anom }}
$$

Wess-Zumino consistency condition:

$$
\delta_{1} \delta_{2} W-\delta_{2} \delta_{1} W=\delta_{[1,2]} W
$$

Solution:

$$
\mathbf{P}=d \mathbf{I}_{C S} \quad \delta \mathbf{I}_{C S}=d \mathbf{G}
$$

Anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Wess-Zumino consistency condition:

$$
\delta_{1} \delta_{2} W-\delta_{2} \delta_{1} W=\delta_{[1,2]} W
$$

Solution:

$$
\mathbf{P}=d \mathbf{I}_{C S} \quad \delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
$$

Anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Wess-Zumino consistency condition:

$$
\delta_{1} \delta_{2} W-\delta_{2} \delta_{1} W=\delta_{[1,2]} W
$$

Solution:

$$
\mathbf{P}=d \mathbf{I}_{C S} \quad \delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
$$

Claim:

Anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Wess-Zumino consistency condition:

$$
\delta_{1} \delta_{2} W-\delta_{2} \delta_{1} W=\delta_{[1,2]} W
$$

Solution:

$$
\mathbf{P}=d \mathbf{I}_{C S} \quad \delta \mathbf{I}_{C S}=d \mathbf{G}
$$

$$
\delta W_{\text {anom }}=-\int \mathbf{G}
$$

Claim:

$$
W_{\text {anom }}=-\int \mathbf{W}_{C S}
$$

Anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Wess-Zumino consistency condition:

$$
\delta_{1} \delta_{2} W-\delta_{2} \delta_{1} W=\delta_{[1,2]} W
$$

Solution:

$$
\mathbf{P}=d \mathbf{I}_{C S} \quad \delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
$$

Claim:

$$
W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Anomalies

$$
W=\ln Z=W_{0}+W_{t r a n s}+W_{\text {anom }}
$$

$$
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
$$

Claim:

$$
W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Where:

$$
\mathbf{u}=u_{\mu} d x^{\mu}
$$

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{a n o m}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Where:

$$
\mathbf{u}=u_{\mu} d x^{\mu} \quad \mathbf{w}=d \mathbf{u}+\mathbf{u} \wedge u^{\alpha} \nabla_{\alpha} u_{\mu} d x^{\mu}
$$

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Where:

$$
\begin{array}{ll}
\mathbf{u}=u_{\mu} d x^{\mu} & \mathbf{w}=d \mathbf{u}+\mathbf{u} \wedge u^{\alpha} \nabla_{\alpha} u_{\mu} d x^{\mu} \\
\hat{\mathbf{A}}=\mathbf{A}+\mu \mathbf{u}
\end{array}
$$

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Where:

$$
\begin{aligned}
& \mathbf{u}=u_{\mu} d x^{\mu} \quad \mathbf{w}=d \mathbf{u}+\mathbf{u} \wedge u^{\alpha} \nabla_{\alpha} u_{\mu} d x^{\mu} \\
& \hat{\mathbf{A}}=\mathbf{A}+\mu \mathbf{u} \\
& \hat{\mathbf{F}}=d \hat{\mathbf{A}}
\end{aligned}
$$

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Where:

$$
\begin{array}{lr}
\mathbf{u}=u_{\mu} d x^{\mu} & \mathbf{w}=d \mathbf{u}+\mathbf{u} \wedge u^{\alpha} \nabla_{\alpha} u_{\mu} d x^{\mu} \\
\hat{\mathbf{A}}=\mathbf{A}+\mu \mathbf{u} & \\
\hat{\mathbf{F}}=d \hat{\mathbf{A}} & (\mathbf{F}=\mathbf{B}+\mathbf{u} \wedge \mathbf{E})
\end{array}
$$

Anomalies

$$
\begin{array}{rc}
W=\ln Z \quad & =W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} & \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Where:

$$
\begin{aligned}
& \mathbf{u}=u_{\mu} d x^{\mu} \quad \mathbf{w}=d \mathbf{u}+\mathbf{u} \wedge u^{\alpha} \nabla_{\alpha} u_{\mu} d x^{\mu} \\
& \hat{\mathbf{A}}=\mathbf{A}+\mu \mathbf{u} \\
& \hat{\mathbf{F}}=d \hat{\mathbf{A}}=\mathbf{B}+2 \mu \mathbf{w} \quad(\mathbf{F}=\mathbf{B}+\mathbf{u} \wedge \mathbf{E})
\end{aligned}
$$

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Where:

$$
\mathbf{u}=u_{\mu} d x^{\mu} \quad \mathbf{w}=d \mathbf{u}+\mathbf{u} \wedge u^{\alpha} \nabla_{\alpha} u_{\mu} d x^{\mu}
$$

$$
\hat{\mathbf{A}}=\mathbf{A}+\mu \mathbf{u}
$$

Hatted connections are transverse and so are their
$\hat{\mathbf{F}}=d \hat{\mathbf{A}}=\mathbf{B}+2 \mu \mathbf{w} \quad(\mathbf{F}=\mathbf{B}+\mathbf{u} \wedge \mathbf{E}){ }^{\substack{\text { field strength: }}}$

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Where:

$$
\begin{aligned}
& \mathbf{u}=u_{\mu} d x^{\mu} \\
& \hat{\mathbf{A}}=\mathbf{A}+\mu \mathbf{u} \\
& \hat{\mathbf{F}}=\mathbf{B}+2 \mu \mathbf{w}
\end{aligned}
$$

$$
\mathbf{w}=d \mathbf{u}+\mathbf{u} \wedge u^{\alpha} \nabla_{\alpha} u_{\mu} d x^{\mu}
$$

Hatted connections are transverse and so are their field strengths:

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Where:

$$
\begin{array}{ll}
\mathbf{u}=u_{\mu} d x^{\mu} & \mathbf{w}=d \mathbf{u}+\mathbf{u} \wedge \\
\hat{\mathbf{A}}=\mathbf{A}+\mu \mathbf{u} & \hat{\boldsymbol{\Gamma}}=\boldsymbol{\Gamma}+\mu_{R} \mathbf{u} \\
\hat{\mathbf{F}}=\mathbf{B}+2 \mu \mathbf{w} &
\end{array}
$$

$$
\mathbf{w}=d \mathbf{u}+\mathbf{u} \wedge u^{\alpha} \nabla_{\alpha} u_{\mu} d x^{\mu}
$$

Hatted connections are transverse and so are their field strengths:

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Where:

$$
\begin{aligned}
& \mathbf{u}=u_{\mu} d x^{\mu} \\
& \hat{\mathbf{A}}=\mathbf{A}+\mu \mathbf{u} \\
& \hat{\mathbf{F}}=\mathbf{B}+2 \mu \mathbf{w}
\end{aligned}
$$

$$
\hat{\boldsymbol{\Gamma}}=\boldsymbol{\Gamma}+\mu_{R} \mathbf{u}
$$

$\left(\mu_{R}\right)^{\mu}{ }_{\nu}=\nabla_{\nu} \frac{u^{\mu}}{T}$
$\mu^{\alpha} \nabla_{\alpha} u_{\mu} d x^{\mu}$
Hatted connections are transverse and so are their field strengths:

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Where:

$$
\begin{array}{lll}
\mathbf{u}=u_{\mu} d x^{\mu} & \mathbf{w}=d \mathbf{u}+\mathbf{u} \wedge u^{\alpha} \nabla_{\alpha} u_{\mu} d x^{\mu} \\
\hat{\mathbf{A}}=\mathbf{A}+\mu \mathbf{u} & \hat{\boldsymbol{\Gamma}}=\boldsymbol{\Gamma}+\mu_{R} \mathbf{u} & \begin{array}{c}
\text { Hatted } \\
\text { transu } \\
\text { field s }
\end{array} \\
\hat{\mathbf{F}}=\mathbf{B}+2 \mu \mathbf{w} & \hat{\mathbf{R}}=\mathbf{B}_{R}+2 \mu_{R} \mathbf{w} &
\end{array}
$$

Hatted connections are transverse and so are their field strengths:

Anomalies

$$
\begin{aligned}
& W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
& \delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}_{\hat{\mathbf{I}}_{C S}}=\mathbf{I}_{C S}(\hat{\mathbf{A}}, \hat{\mathbf{F}}, \\
& \text { Claim: } \\
& W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
\end{aligned}
$$

Where:

$$
\begin{array}{ll}
\mathbf{u}=u_{\mu} d x^{\mu} & \mathbf{w}=d \mathbf{u}+\mathbf{u} \wedge u^{\alpha} \\
\hat{\mathbf{A}}=\mathbf{A}+\mu \mathbf{u} & \hat{\boldsymbol{\Gamma}}=\boldsymbol{\Gamma}+\mu_{R} \mathbf{u} \\
\hat{\mathbf{F}}=\mathbf{B}+2 \mu \mathbf{w} & \hat{\mathbf{R}}=\mathbf{B}_{R}+2 \mu_{R} \mathbf{w}
\end{array}
$$

Hatted connections are transverse and so are their field strengths:

Anomalies

$$
\begin{aligned}
& \quad \begin{array}{l}
W=\ln Z
\end{array}=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
& \delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G} \mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}=\sum_{i=1} \\
& \text { Claim: } \\
& W_{\text {anom }}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
\end{aligned}
$$

Where:

$$
\begin{array}{ll}
\mathbf{u}=u_{\mu} d x^{\mu} & \mathbf{w}=d \mathbf{u}+\mathbf{u} \wedge u^{\alpha} \\
\hat{\mathbf{A}}=\mathbf{A}+\mu \mathbf{u} & \hat{\boldsymbol{\Gamma}}=\boldsymbol{\Gamma}+\mu_{R} \mathbf{u} \\
\hat{\mathbf{F}}=\mathbf{B}+2 \mu \mathbf{w} & \hat{\mathbf{R}}=\mathbf{B}_{R}+2 \mu_{R} \mathbf{w}
\end{array}
$$

Hatted connections are transverse and so are their field strengths:

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{a n o m}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Example: $\mathrm{U}(\mathrm{I})^{3}$ anomaly

$$
\mathbf{I}_{C S}=\mathbf{A} \wedge \mathbf{F}^{2}
$$

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{a n o m}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Example: $\mathrm{U}(\mathrm{I})^{3}$ anomaly

$$
\begin{aligned}
& \mathbf{I}_{C S}=\mathbf{A} \wedge \mathbf{F}^{2} \\
& \delta_{\Lambda} \mathbf{I}_{C S}=d\left(\Lambda \mathbf{F}^{2}\right)
\end{aligned}
$$

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{a n o m}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Example: U(I) ${ }^{3}$ anomaly

$$
\begin{aligned}
& \mathbf{I}_{C S}=\mathbf{A} \wedge \mathbf{F}^{2} \\
& \delta_{\Lambda} \mathbf{I}_{C S}=d\left(\Lambda \mathbf{F}^{2}\right)
\end{aligned} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{A} \wedge \mathbf{B}^{2}-\mathbf{A} \wedge(\mathbf{B}+2 \mu \mathbf{w})^{2}\right)
$$

Anomalies

$$
\begin{array}{r}
W=\ln Z \quad=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\delta \mathbf{I}_{C S}=d \mathbf{G} \quad \delta W_{\text {anom }}=-\int \mathbf{G}
\end{array}
$$

Claim:

$$
W_{a n o m}=-\int \mathbf{W}_{C S} \quad \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)
$$

Example: U(I) ${ }^{3}$ anomaly

$$
\begin{array}{ll}
\mathbf{I}_{C S}=\mathbf{A} \wedge \mathbf{F}^{2} & \mathbf{W}_{C S}=\frac{\mathbf{u}}{2 \mathbf{w}}\left(\mathbf{A} \wedge \mathbf{B}^{2}-\mathbf{A} \wedge(\mathbf{B}+2 \mu \mathbf{w})^{2}\right) \\
\delta_{\Lambda} \mathbf{I}_{C S}=d\left(\Lambda \mathbf{F}^{2}\right) & \delta_{\Lambda} \mathbf{W}_{C S}=\Lambda \mathbf{F}^{2}
\end{array}
$$

Anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Anomalies

$$
W=\ln Z=W_{0}+W_{t r a n s}+W_{\text {anom }}
$$

Non gaugeinvariant
contribution

Anomalies

$$
W=\ln Z=W_{0}+W_{t r a n s}+W_{\text {anom }}
$$

Chern-Simons
terms on the base manifold

Anomalies

$$
W=\ln Z=W_{0}+W_{\text {romese }}+W_{\text {amem }}
$$

All the rest

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{t r a n s}+W_{\text {anom }}
$$

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

$$
J^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}}
$$

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

$$
J^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}}
$$

$$
T^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu}}
$$

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Consistent currents:

$$
\begin{aligned}
& J^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}} \\
& T^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu}}
\end{aligned}
$$

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Consistent currents:
Consistent currents
are not gauge invariant:

$$
\begin{aligned}
& J^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}} \\
& T^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu}}
\end{aligned}
$$

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Consistent currents:

$$
\begin{aligned}
& J^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}} \\
& T^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu}}
\end{aligned}
$$

Consistent currents are not gauge invariant:

$$
\delta_{\Lambda} \delta W=\delta \delta_{\Lambda} W
$$

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Consistent currents:

$$
\begin{aligned}
& J^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}} \\
& T^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu}}
\end{aligned}
$$

Consistent currents
are not gauge invariant:
$\delta_{\Lambda} \delta W=\delta \delta_{\Lambda} W$
$\delta_{\Lambda} \delta W=\delta_{\Lambda} \int \sqrt{g} \delta A_{\mu} J^{\mu} d^{4} x$

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Consistent currents:

$$
\begin{aligned}
& J^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}} \\
& T^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu}}
\end{aligned}
$$

Consistent currents are not gauge invariant:

$$
\begin{aligned}
\delta_{\Lambda} \delta W & =\delta \delta_{\Lambda} W \\
\delta_{\Lambda} \delta W & =\delta_{\Lambda} \int \sqrt{g} \delta A_{\mu} J^{\mu} d^{4} x \\
& =\int \sqrt{g} \delta A_{\mu} \delta_{\Lambda} J^{\mu} d^{4} x
\end{aligned}
$$

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Consistent currents:

$$
\begin{aligned}
J^{\mu} & =\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}} \\
T^{\mu \nu} & =\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu}}
\end{aligned}
$$

Consistent currents are not gauge invariant:

$$
\begin{aligned}
\delta_{\Lambda} \delta W & =\delta \delta_{\Lambda} W \\
\delta_{\Lambda} \delta W & =\delta_{\Lambda} \int \sqrt{g} \delta A_{\mu} J^{\mu} d^{4} x \\
& =\int \sqrt{g} \delta A_{\mu} \delta_{\Lambda} J^{\mu} d^{4} x \\
\delta \delta_{\Lambda} W & =\delta \int \Lambda \mathbf{F}^{2} d^{4} x
\end{aligned}
$$

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{t r a n s}+W_{\text {anom }}
$$

Consistent currents:

$$
\begin{aligned}
& J^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}} \\
& T^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu}}
\end{aligned}
$$

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{t r a n s}+W_{\text {anom }}
$$

Consistent currents:

$$
\begin{aligned}
& J^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}} \\
& T^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu}}
\end{aligned}
$$

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{t r a n s}+W_{\text {anom }}
$$

Consistent currents:

$$
J^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}}
$$

$$
T^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu}}
$$

Define Covariant currents
Bardeen \& Zumino (1984)

$$
J_{c o v}^{\mu}=J^{\mu}+J_{B Z}^{\mu}
$$

$$
T_{c o v}^{\mu \nu}=T^{\mu \nu}+T_{B Z}^{\mu \nu}
$$

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Consistent currents:

$$
J^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}}
$$

$$
T^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W}{\delta g_{\mu}}
$$

Bardeen \& Zumino (1984)

$$
J_{c o v}^{\mu}=J^{\mu}+J_{B Z}^{\mu}
$$

$$
T_{c o v}^{\mu \nu}=T^{\mu \nu}+T_{B Z}^{\mu \nu}
$$

For $\mathrm{U}(\mathrm{I})^{3}$ anomaly in $3+\mathrm{I} \mathrm{d}$

$$
J_{B Z}^{\mu}=c_{A} \epsilon^{\mu \nu \rho \sigma} F_{\nu \rho} A_{\sigma}
$$

Hydrodynamics with anomalies

$$
\begin{aligned}
& W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
& W_{\text {cov }}=W+\int \mathbf{I}_{C S}
\end{aligned}
$$

Define Covariant currents

$$
J_{c o v}^{\mu}=J^{\mu}+J_{B Z}^{\mu}
$$

$$
T_{c o v}^{\mu \nu}=T^{\mu \nu}+T_{B Z}^{\mu \nu}
$$

Hydrodynamics with anomalies

$$
\begin{aligned}
& W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
& W_{\text {cov }}=W+\int \mathbf{I}_{C S}
\end{aligned}
$$

Define Covariant currents

$$
J_{c o v}^{\mu}=J^{\mu}+J_{B Z}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta A_{\mu}}
$$

$$
T_{c o v}^{\mu \nu}=T^{\mu \nu}+T_{B Z}^{\mu \nu}
$$

Hydrodynamics with anomalies

$$
\begin{aligned}
& W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
& W_{\text {cov }}=W+\int \mathbf{I}_{C S}
\end{aligned}
$$

Define Covariant currents

$$
J_{c o v}^{\mu}=J^{\mu}+J_{B Z}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta A_{\mu}}
$$

$$
T_{c o v}^{\mu \nu}=T^{\mu \nu}+T_{B Z}^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta g_{\mu \nu}}
$$

Hydrodynamics with anomalies

Define Covariant currents

$$
\begin{aligned}
& J_{c o v}^{\mu}=J^{\mu}+J_{B Z}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta A_{\mu}} \\
& T_{c o v}^{\mu \nu}=T^{\mu \nu}+T_{B Z}^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta g_{\mu \nu}}
\end{aligned}
$$

Claim:

Hydrodynamics with anomalies

Define Covariant currents
$J_{c o v}^{\mu}=J^{\mu}+J_{B Z}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta A_{\mu}}$
$T_{c o v}^{\mu \nu}=T^{\mu \nu}+T_{B Z}^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta g_{\mu \nu}}$
Claim:
$\mathbf{V}_{\mathbf{P}}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge(\mathbf{P}-\hat{\mathbf{P}})$

Hydrodynamics with anomalies

Define Covariant currents

$$
\begin{aligned}
& J_{c o v}^{\mu}=J^{\mu}+J_{B Z}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta A_{\mu}} \\
& T_{c o v}^{\mu \nu}=T^{\mu \nu}+T_{B Z}^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta g_{\mu \nu}}
\end{aligned}
$$

Claim:
$\mathbf{V}_{\mathbf{P}}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge(\mathbf{P}-\hat{\mathbf{P}}) \quad \mathbf{V}_{\mathbf{P}}\left(\mathbf{u}, \mathbf{B}_{R}, \mathbf{B}, \mathbf{w}\right)$

Hydrodynamics with anomalies

Define Covariant currents

$$
\begin{aligned}
J_{c o v}^{\mu} & =J^{\mu}+J_{B Z}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta A_{\mu}} \\
T_{c o v}^{\mu \nu} & =T^{\mu \nu}+T_{B Z}^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta g_{\mu \nu}}
\end{aligned}
$$

Claim:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{P}}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge(\mathbf{P}-\hat{\mathbf{P}}) \quad \mathbf{V}_{\mathbf{P}}\left(\mathbf{u}, \mathbf{B}_{R}, \mathbf{B}, \mathbf{w}\right) \\
& \quad{ }^{*} \mathbf{J}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}}
\end{aligned}
$$

Hydrodynamics with anomalies

Define Covariant currents

$$
\begin{aligned}
& J_{c o v}^{\mu}=J^{\mu}+J_{B Z}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta A_{\mu}} \\
& T_{c o v}^{\mu \nu}=T^{\mu \nu}+T_{B Z}^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta g_{\mu \nu}}
\end{aligned}
$$

Claim:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{P}}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge(\mathbf{P}-\hat{\mathbf{P}}) \quad \mathbf{V}_{\mathbf{P}}\left(\mathbf{u}, \mathbf{B}_{R}, \mathbf{B}, \mathbf{w}\right) \\
& { }^{*} \mathbf{J}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}} \\
& \quad T_{\mathbf{P}}^{\mu \nu}=u^{\mu} q_{\mathbf{P}}^{\nu}+u^{\nu} q_{\mathbf{P}}^{\mu}+\nabla_{\rho}\left(L_{\mathbf{P}}^{\mu[\nu \rho]}+L_{\mathbf{P}}^{\nu[\mu \rho]}-L_{\mathbf{P}}^{\rho(\mu \nu)}\right)
\end{aligned}
$$

Hydrodynamics with anomalies

Define Covariant currents

$$
\begin{aligned}
& J_{c o v}^{\mu}=J^{\mu}+J_{B Z}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta A_{\mu}} \\
& T_{c o v}^{\mu \nu}=T^{\mu \nu}+T_{B Z}^{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta g_{\mu \nu}}
\end{aligned}
$$

Claim:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{P}}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge(\mathbf{P}-\hat{\mathbf{P}}) \quad \mathbf{V}_{\mathbf{P}}\left(\mathbf{u}, \mathbf{B}_{R}, \mathbf{B}, \mathbf{w}\right) \\
& { }^{*} \mathbf{J}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}} \quad{ }^{*} \mathbf{q}_{\mathbf{P}}=\frac{1}{2} \frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{w}} \quad{ }^{*} \mathbf{L}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}_{R}} \\
& T_{\mathbf{P}}^{\mu \nu}=u^{\mu} q_{\mathbf{P}}^{\nu}+u^{\nu} q_{\mathbf{P}}^{\mu}+\nabla_{\rho}\left(L_{\mathbf{P}}^{\mu[\nu \rho]}+L_{\mathbf{P}}^{\nu[\mu \rho]}-L_{\mathbf{P}}^{\rho(\mu \nu)}\right)
\end{aligned}
$$

Hydrodynamics with anomalies

Claim:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{P}}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge(\mathbf{P}-\hat{\mathbf{P}}) \quad \mathbf{V}_{\mathbf{P}}\left(\mathbf{u}, \mathbf{B}_{R}, \mathbf{B}, \mathbf{w}\right) \\
& { }^{*} \mathbf{J}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}} \quad{ }^{*} \mathbf{q}_{\mathbf{P}}=\frac{1}{2} \frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{w}} \quad{ }^{*} \mathbf{L}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}_{R}} \\
& T_{\mathbf{P}}^{\mu \nu}=u^{\mu} q_{\mathbf{P}}^{\nu}+u^{\nu} q_{\mathbf{P}}^{\mu}+\nabla_{\rho}\left(L_{\mathbf{P}}^{\mu[\nu \rho]}+L_{\mathbf{P}}^{\nu[\mu \rho]}-L_{\mathbf{P}}^{\rho(\mu \nu)}\right)
\end{aligned}
$$

Hydrodynamics with anomalies

Claim:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{P}}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge(\mathbf{P}-\hat{\mathbf{P}}) \quad \mathbf{V}_{\mathbf{P}}\left(\mathbf{u}, \mathbf{B}_{R}, \mathbf{B}, \mathbf{w}\right) \\
& { }^{*} \mathbf{J}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}} \quad{ }^{*} \mathbf{q}_{\mathbf{P}}=\frac{1}{2} \frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{w}} \quad{ }^{*} \mathbf{L}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}_{R}} \\
& \quad T_{\mathbf{P}}^{\mu \nu}=u^{\mu} q_{\mathbf{P}}^{\nu}+u^{\nu} q_{\mathbf{P}}^{\mu}+\nabla_{\rho}\left(L_{\mathbf{P}}^{\mu[\nu \rho]}+L_{\mathbf{P}}^{\nu[\mu \rho]}-L_{\mathbf{P}}^{\rho(\mu \nu)}\right)
\end{aligned}
$$

Sketch of proof:

Hydrodynamics with anomalies

Claim:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{P}}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge(\mathbf{P}-\hat{\mathbf{P}}) \quad \mathbf{V}_{\mathbf{P}}\left(\mathbf{u}, \mathbf{B}_{R}, \mathbf{B}, \mathbf{w}\right) \\
& { }^{*} \mathbf{J}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}} \quad{ }^{*} \mathbf{q}_{\mathbf{P}}=\frac{1}{2} \frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{w}} \quad{ }^{*} \mathbf{L}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}_{R}} \\
& T_{\mathbf{P}}^{\mu \nu}=u^{\mu} q_{\mathbf{P}}^{\nu}+u^{\nu} q_{\mathbf{P}}^{\mu}+\nabla_{\rho}\left(L_{\mathbf{P}}^{\mu[\nu \rho]}+L_{\mathbf{P}}^{\nu[\mu \rho]}-L_{\mathbf{P}}^{\rho(\mu \nu)}\right)
\end{aligned}
$$

Sketch of proof:
Formally:

$$
d\left(\frac{\mathbf{u}}{2 \mathbf{w}}\right)=1
$$

Hydrodynamics with anomalies

Claim:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{P}}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge(\mathbf{P}-\hat{\mathbf{P}}) \quad \mathbf{V}_{\mathbf{P}}\left(\mathbf{u}, \mathbf{B}_{R}, \mathbf{B}, \mathbf{w}\right) \\
& { }^{*} \mathbf{J}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}} \quad{ }^{*} \mathbf{q}_{\mathbf{P}}=\frac{1}{2} \frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{w}} \quad{ }^{*} \mathbf{L}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}_{R}} \\
& \quad T_{\mathbf{P}}^{\mu \nu}=u^{\mu} q_{\mathbf{P}}^{\nu}+u^{\nu} q_{\mathbf{P}}^{\mu}+\nabla_{\rho}\left(L_{\mathbf{P}}^{\mu[\nu \rho]}+L_{\mathbf{P}}^{\nu[\mu \rho]}-L_{\mathbf{P}}^{\rho(\mu \nu)}\right)
\end{aligned}
$$

Sketch of proof:
Formally:

$$
d\left(\frac{\mathbf{u}}{2 \mathbf{w}}\right)=1
$$

Thus,

$$
\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}=d\left(\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)\right)+\mathbf{V}_{\mathbf{P}}
$$

Hydrodynamics with anomalies

Claim:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{P}}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge(\mathbf{P}-\hat{\mathbf{P}}) \quad \mathbf{V}_{\mathbf{P}}\left(\mathbf{u}, \mathbf{B}_{R}, \mathbf{B}, \mathbf{w}\right) \\
& { }^{*} \mathbf{J}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}} \quad{ }^{*} \mathbf{q}_{\mathbf{P}}=\frac{1}{2} \frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{w}} \quad{ }^{*} \mathbf{L}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}_{R}} \\
& \quad T_{\mathbf{P}}^{\mu \nu}=u^{\mu} q_{\mathbf{P}}^{\nu}+u^{\nu} q_{\mathbf{P}}^{\mu}+\nabla_{\rho}\left(L_{\mathbf{P}}^{\mu[\nu \rho]}+L_{\mathbf{P}}^{\nu[\mu \rho]}-L_{\mathbf{P}}^{\rho(\mu \nu)}\right)
\end{aligned}
$$

Sketch of proof:
Formally:

$$
d\left(\frac{\mathbf{u}}{2 \mathbf{w}}\right)=1
$$

Thus,

$$
\begin{aligned}
& \mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}=d\left(\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{I}_{C S}-\hat{\mathbf{I}}_{C S}\right)\right)+\mathbf{V}_{\mathbf{P}} \\
& \int \mathbf{I}_{C S}=\int \mathbf{V}_{\mathbf{P}}+d \mathbf{W}_{C S}
\end{aligned}
$$

Hydrodynamics with anomalies

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Hydrodynamics with anomalies

Hydrodynamics with anomalies

Gauge invariant

Hydrodynamics with anomalies

Gauge invariant

Hydrodynamics with anomalies

Gauge invariant Anomalous

Hydrodynamics with anomalies

Gauge invariant Anomalous

$$
W_{\text {anom }} \leftrightarrow \mathbf{V}_{\mathbf{P}}
$$

Hydrodynamics with anomalies

$$
\begin{aligned}
W=\ln Z=W_{0}+W_{\text {trans }}+ & W_{\text {anom }} \\
\text { Gauge invariant } & \text { Anomalous } \\
& W_{\text {anom }} \leftrightarrow \mathbf{V}_{\mathbf{P}}
\end{aligned}
$$

Hydrodynamics with anomalies

Determined by
anomaly coefficients

Gauge invariant Anomalous

$$
W_{\text {anom }} \leftrightarrow \mathbf{V}_{\mathbf{P}}
$$

Hydrodynamics with anomalies

$$
\begin{aligned}
& W_{\text {anom }}+W_{\text {trans }} \leftrightarrow \mathbf{V}_{T} \\
& \text { Determined by } \\
& \text { anomaly coefficients }
\end{aligned}
$$

Gauge invariant Anomalous

$$
W_{\text {anom }} \leftrightarrow \mathbf{V}_{\mathbf{P}}
$$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Relating $W_{\text {trans }}$ and $W_{\text {anom }}$

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

In 3+1 dimensions:

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

In 3+| dimensions:

$$
J_{c o v}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}}+J_{B Z}^{\mu}
$$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

In 3+| dimensions:

$$
J_{c o v}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}}+J_{B Z}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W_{\text {cov }}}{\delta A_{\mu}}
$$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
W=\ln Z=W_{0}+W_{t r a n s}+W_{\text {anom }}
$$

In 3+| dimensions:

$$
J_{c o v}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}}+J_{B Z}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta A_{\mu}} \text { or }{ }^{*} \mathbf{J}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}}
$$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

In 3+| dimensions:

$$
\begin{aligned}
J_{c o v}^{\mu} & =\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}}+J_{B Z}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta A_{\mu}} \text { or }{ }^{*} \mathbf{J}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}} \\
J_{c o v}^{\mu} & =\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
\end{aligned}
$$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
\begin{aligned}
& W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
& \text { In } 3+\text { I dimens ons: } \\
& J_{\text {cov }}^{\mu}=\frac{1}{\sqrt{g}} \frac{W}{\delta A_{\mu}}+J_{B Z}^{\mu} \\
& \left.J_{c o v}^{\mu}=\rho u^{\mu}+\left(k_{1}\right)^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
\end{aligned}
$$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
\begin{gathered}
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\text { In } 3+\text { I dimens ons: } \\
J_{\text {cov }}^{\mu}=\frac{1}{\sqrt{G}} \frac{W}{A_{\mu}}+J_{B Z}^{\mu} \\
J_{c o v}^{\mu}=\rho u^{\prime}
\end{gathered}
$$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
\begin{gathered}
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\text { In } 3+\text { I dimens ons: } \\
J_{\text {cov }}^{\mu}=\frac{1}{\sqrt{G}} \frac{W}{\delta A_{\mu}}+J_{B Z}^{\mu} \\
J_{c o v}^{\mu}=0 u^{\mu}+\left(\left(k_{1}\right)^{2}-\left(2 c_{A} u^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+c\left(\partial^{3}\right)\right.
\end{gathered}
$$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
\begin{gathered}
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
\text { In } 3+\text { I dimengons: } \\
J_{\text {cov }}^{\mu}=\frac{1}{\sqrt{J}} \frac{W}{A_{\mu}}+J_{B Z}^{\mu} \\
J_{c o v}^{\mu}=\left(\left(k_{1}\right)^{2}-\left(2 c_{A} u^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+c\left(\partial^{3}\right)\right.
\end{gathered}
$$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
\begin{aligned}
& W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }} \\
& \text { In 3+1 dimens ons: } \\
& J_{\text {cov }}^{\mu}=\frac{1}{\sqrt{g}} \frac{W}{\delta A_{\mu}}+J_{B Z}^{\mu}
\end{aligned}
$$

Claim:

$$
k_{1}=8 \pi^{2} c_{m}
$$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

In 3+1 dimensions:

$$
\begin{aligned}
& J_{\text {cov }}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}}+J_{B Z}^{\mu} \\
& J_{\text {cov }}^{\mu}=\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
\end{aligned}
$$

Claim:
$k_{1}=8 \pi^{2} c_{m}$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
J_{c o v}^{\mu}=\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
$$

Claim:
$k_{1}=8 \pi^{2} c_{m}$

Proof:

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$J_{\text {cov }}^{\mu}=\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)$
Claim:
$k_{1}=8 \pi^{2} c_{m}$

Proof:

Find a background ρ_{δ} such that:
$\lim _{\delta \rightarrow 1} \operatorname{Tr}\left(\varrho_{\delta} T^{\mu \nu}\right)=\langle 0| T^{\mu \nu}|0\rangle$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
J_{c o v}^{\mu}=\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
$$

Claim:
$k_{1}=8 \pi^{2} c_{m}$

Proof:

Find a background ρ_{δ} such that:
$\lim _{\delta \rightarrow 1} \operatorname{Tr}\left(\varrho_{\delta} T^{\mu \nu}\right)=\langle 0| T^{\mu \nu}|0\rangle \sim g^{\mu \nu}$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
J_{c o v}^{\mu}=\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
$$

Claim:

$$
k_{1}=8 \pi^{2} c_{m}
$$

Proof:

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}+d x^{2}+d y^{2}
$$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {nom }}$

$$
J_{c o v}^{\mu}=\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
$$

Claim:

$$
k_{1}=8 \pi^{2} c_{m}
$$

Proof:

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}+d x^{2}+d y^{2}
$$

$\phi \sim \phi+2 \pi \delta$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {nom }}$

$$
J_{c o v}^{\mu}=\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
$$

Claim:

$$
k_{1}=8 \pi^{2} c_{m}
$$

Proof:

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}+d x^{2}+d y^{2}
$$

$$
F=B d x \wedge d y
$$

$\phi \sim \phi+2 \pi \delta$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {nom }}$

$$
J_{c o v}^{\mu}=\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
$$

Claim:

$$
k_{1}=8 \pi^{2} c_{m}
$$

Proof:

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}+d x^{2}+d y^{2}
$$

$$
F=B d x \wedge d y
$$

$\phi \sim \phi+2 \pi \delta$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {nom }}$

$$
J_{c o v}^{\mu}=\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
$$

Claim:
$k_{1}=8 \pi^{2} c_{m}$
Proof:

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}+d x^{2}+d y^{2}
$$

$\phi \sim \phi+2 \pi \delta$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$J_{\text {cov }}^{\mu}=\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)$
Claim:
$k_{1}=8 \pi^{2} c_{m}$
Proof:

$\delta \rightarrow 1$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {nom }}$

$$
J_{c o v}^{\mu}=\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
$$

Claim:
$k_{1}=8 \pi^{2} c_{m}$

Proof:

$$
\delta \rightarrow 1
$$

$\operatorname{Tr}\left(\varrho_{\text {cone }} T^{t r}\right)=B \frac{k_{1}-8 \pi^{2} \delta^{2} c_{m}}{4 \pi^{2} \delta^{2} r^{3}}$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anam }}$

$$
J_{c o v}^{\mu}=\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
$$

Claim:
$k_{1}=8 \pi^{2} c_{m}$

Proof:

$$
\operatorname{Tr}\left(\varrho_{\text {cone }} T^{t r}\right)=B \frac{k_{1}-8 \pi^{2} \delta^{2} c_{m}}{4 \pi^{2} \delta^{2} r^{3}} \quad \quad B\langle 0| T^{t r}|0\rangle_{B}=0
$$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anam }}$

$$
J_{c o v}^{\mu}=\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
$$

Claim:
$k_{1}=8 \pi^{2} c_{m}$

Proof:

$$
\delta \rightarrow 1
$$

$$
\operatorname{Tr}\left(\varrho_{\text {cone }} T^{t r}\right)=B \frac{k_{1}-8 \pi^{2} \delta^{2} c_{m}}{1 \pi^{2} \delta^{2} r^{3}} \quad{ }_{B}\langle 0| T^{t r}|0\rangle_{B}=0
$$

$$
k_{1}=8 \pi^{2} c_{m}
$$

The "cone" argument

The "cone" argument

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

The "cone" argument

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

$\delta \rightarrow 1$

The "cone" argument

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

$$
\delta=\underset{\epsilon \rightarrow 0}{=1+\epsilon}
$$

The "cone" argument

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

The "cone" argument

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

The "cone" argument

Modes localized at the tip

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

The "cone" argument

Modes localized at the tip

$$
W \rightarrow W+\int \delta(r) \ldots d^{2} x
$$

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

The "cone" argument

Modes localized at the tip

$$
W \rightarrow W+\int \delta(r) \ldots d^{2} x
$$

won't affect our argument

$$
T^{\mu \nu} \rightarrow T^{\mu \nu}+\mathcal{O}(\delta(r))
$$

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

The "cone" argument

Modes localized at the tip won't affect our argument

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

The "cone" argument

Modes localized at the tip won't affect our argument Modes which delocalize in the flat space limit will

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

The "cone" argument

Modes localized at the tip won't affect our argument
Modes which delocalize in the flat space limit will
Loganayagam (2012)

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

The "cone" argument

Modes localized at the tip won't affect our argument
Modes which delocalize in the flat space limit will
Loganayagam (2012)

$$
d s^{2}=d r^{2}+r^{2} d \phi^{2}
$$

(See also Eling, Oz, Theisen, Yankielowicz (2013))

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

In 3+| dimensions:

$$
\begin{aligned}
J_{c o v}^{\mu} & =\frac{1}{\sqrt{g}} \frac{\delta W}{\delta A_{\mu}}+J_{B Z}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta W_{c o v}}{\delta A_{\mu}} \text { or }{ }^{*} \mathbf{J}_{\mathbf{P}}=\frac{\partial \mathbf{V}_{\mathbf{P}}}{\partial \mathbf{B}} \\
J_{c o v}^{\mu} & =\rho u^{\mu}+\left(k_{1} T^{2}-2 c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}+\mathcal{O}\left(\partial^{3}\right)
\end{aligned}
$$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

In 3+I dimensjons:

Relating $\mathrm{W}_{\text {trans }}$ and $\mathrm{W}_{\text {anom }}$

Constructing V_{T}

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Constructing V_{T}

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Start with the anomaly polynomial:

$$
\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right), \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Constructing V_{T}

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Start with the anomaly polynomial:

$$
\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right), \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Introduce a spurious abelian gauge field:
\mathbf{A}_{T}

Constructing V_{T}

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Start with the anomaly polynomial:

$$
\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right), \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Introduce a spurious abelian gauge field:

$$
\mathbf{A}_{T} \quad \mathbf{F}_{T}=d \mathbf{A}_{T}
$$

Constructing V_{T}

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Start with the anomaly polynomial:

$$
\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right), \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Introduce a spurious abelian gauge field:

$$
\mathbf{A}_{T} \quad \mathbf{F}_{T}=d \mathbf{A}_{T} \quad \mu_{T}
$$

Constructing V_{T}

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

Start with the anomaly polynomial:

$$
\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right), \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Introduce a spurious abelian gauge field:

$$
\mathbf{A}_{T} \quad \mathbf{F}_{T}=d \mathbf{A}_{T} \quad \mu_{T}
$$

Construct a thermal anomaly polynomial:

$$
\mathbf{P}_{T}=\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right)+2 \mathbf{F}_{T}^{2 n}, \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Constructing V_{T}

Start with the anomaly polynomial:

$$
\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right), \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Introduce a spurious abelian gauge field:

$$
\mathbf{A}_{T} \quad \mathbf{F}_{T}=d \mathbf{A}_{T} \quad \mu_{T}
$$

Construct a thermal anomaly polynomial:

$$
\mathbf{P}_{T}=\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right)+2 \mathbf{F}_{T}^{2 n}, \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Construct a potential:

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right)
$$

Constructing V_{T}

Start with the anomaly polynomial:

$$
\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right), \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Introduce a spurious abelian gauge field:

$$
\mathbf{A}_{T} \quad \mathbf{F}_{T}=d \mathbf{A}_{T} \quad \mu_{T}
$$

Construct a thermal anomaly polynomial:

$$
\mathbf{P}_{T}=\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right)+2 \mathbf{F}_{T}^{2 n}, \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Construct a potential:

$$
\left.\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right) \quad \text { (Compare with: } \mathbf{V}_{\mathbf{P}}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge(\mathbf{P}-\hat{\mathbf{P}})\right)
$$

Constructing V_{T}

Start with the anomaly polynomial:

$$
\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right), \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Introduce a spurious abelian gauge field:

$$
\mathbf{A}_{T} \quad \mathbf{F}_{T}=d \mathbf{A}_{T} \quad \mu_{T}
$$

Construct a thermal anomaly polynomial:

$$
\mathbf{P}_{T}=\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right)+2 \mathbf{F}_{T}^{2 n}, \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Construct a potential:

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right)
$$

Constructing V_{T}

Start with the anomaly polynomial:

$$
\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right), \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Introduce a spurious abelian gauge field:

$$
\mathbf{A}_{T} \quad \mathbf{F}_{T}=d \mathbf{A}_{T} \quad \mu_{T}
$$

Construct a thermal anomaly polynomial:

$$
\mathbf{P}_{T}=\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right)+2 \mathbf{F}_{T}^{2 n}, \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Construct a potential:

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right) \quad \mathbf{V}_{T}\left(\mathbf{B}_{R}, \mathbf{B}_{T}, \mathbf{B}, \mathbf{w}\right)
$$

Start with the anomaly polynomial:

$$
\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right), \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Introduce a spurious abelian gauge field:

$$
\mathbf{A}_{T} \quad \mathbf{F}_{T}=d \mathbf{A}_{T} \quad \mu_{T}
$$

Construct a thermal anomaly polynomial:

$$
\mathbf{P}_{T}=\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right)+2 \mathbf{F}_{T}^{2 n}, \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Construct a potential:

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right) \quad \mathbf{V}_{T}\left(\mathbf{B}_{R}, \mathbf{B}_{T}, \mathbf{B}, \mathbf{w}\right)
$$

The covariant current is given via:
${ }^{*} \mathbf{J}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}$

Start with the anomaly polynomial:

$$
\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right), \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Introduce a spurious abelian gauge field:

$$
\mathbf{A}_{T} \quad \mathbf{F}_{T}=d \mathbf{A}_{T} \quad \mu_{T}
$$

Construct a thermal anomaly polynomial:

$$
\mathbf{P}_{T}=\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right)+2 \mathbf{F}_{T}^{2 n}, \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Construct a potential:

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right) \quad \mathbf{V}_{T}\left(\mathbf{B}_{R}, \mathbf{B}_{T}, \mathbf{B}, \mathbf{w}\right)
$$

The covariant current is given via:
${ }^{*} \mathbf{J}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}$

Start with the anomaly polynomial:

$$
\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right), \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Introduce a spurious abelian gauge field:

$$
\mathbf{A}_{T} \quad \mathbf{F}_{T}=d \mathbf{A}_{T} \quad \mu_{T}
$$

Construct a thermal anomaly polynomial:

$$
\mathbf{P}_{T}=\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right)+2 \mathbf{F}_{T}^{2 n}, \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Construct a potential:

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right) \quad \mathbf{V}_{T}\left(\mathbf{B}_{R}, \mathbf{B}_{T}, \mathbf{B}, \mathbf{w}\right)
$$

The covariant current and stress tensor:

$$
{ }^{*} \mathbf{J}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}{ }^{*} \mathbf{q}_{T}=\left.\frac{1}{2} \frac{\partial \mathbf{V}_{T}}{\partial \mathbf{w}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}{ }^{*} \mathbf{L}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}_{R}}\right|_{\mu_{T}=2 \pi T} ^{\mathbf{F}_{T}=0}
$$

Start with the anomaly polynomial:

$$
\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right), \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Introduce a spurious abelian gauge field:

$$
\mathbf{A}_{T} \quad \mathbf{F}_{T}=d \mathbf{A}_{T} \quad \mu_{T}
$$

Construct a thermal anomaly polynomial:

$$
\mathbf{P}_{T}=\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right)+2 \mathbf{F}_{T}^{2 n}, \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Construct a potential:

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right) \quad \mathbf{V}_{T}\left(\mathbf{B}_{R}, \mathbf{B}_{T}, \mathbf{B}, \mathbf{w}\right)
$$

The covariant current and stress tensor:

$$
{ }^{*} \mathbf{J}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}{ }^{*} \mathbf{q}_{T}=\left.\frac{1}{2} \frac{\partial \mathbf{V}_{T}}{\partial \mathbf{w}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}{ }^{*} \mathbf{L}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}_{R}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=u^{\mu} q_{T}^{\nu}+u^{\nu} q_{T}^{\mu}+\nabla_{\rho}\left(L_{T}^{\mu[\nu \rho]}+L_{T}^{\nu[\mu \rho]}-L_{T}^{\rho(\mu \nu)}\right)}}
$$

Constructing V_{T}

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right) \quad \mathbf{V}_{T}\left(\mathbf{B}_{R}, \mathbf{B}_{T}, \mathbf{B}, \mathbf{w}\right)
$$

The covariant current and stress tensor:

$$
{ }^{*} \mathbf{J}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}{ }^{*} \mathbf{q}_{T}=\left.\frac{1}{2} \frac{\partial \mathbf{V}_{T}}{\partial \mathbf{w}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}{ }^{*} \mathbf{L}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}_{R}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T \\ q_{T}^{\nu}+u^{\nu} q_{T}^{\mu}+\nabla_{\rho}\left(L_{T}^{\mu[\nu]}+L_{T}^{\nu[\mu]}-L_{T}^{\rho(\mu \nu)}\right)}}
$$

Constructing V_{T}

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right) \quad \mathbf{V}_{T}\left(\mathbf{B}_{R}, \mathbf{B}_{T}, \mathbf{B}, \mathbf{w}\right)
$$

The covariant current and stress tensor:

$$
{ }^{*} \mathbf{J}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}{ }^{*} \mathbf{q}_{T}=\left.\frac{1}{2} \frac{\partial \mathbf{V}_{T}}{\partial \mathbf{w}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}{ }^{*} \mathbf{L}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}_{R}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}} u^{\mu} q_{T}^{\nu}+u^{\nu} q_{T}^{\mu}+\nabla_{\rho}\left(L_{T}^{\mu[\nu \rho]}+L_{T}^{\nu[\mu]}-L_{T}^{\rho(\mu \nu)}\right)
$$

Constructing V_{T}

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right) \quad \mathbf{V}_{T}\left(\mathbf{B}_{R}, \mathbf{B}_{T}, \mathbf{B}, \mathbf{w}\right)
$$

The covariant current and stress tensor:

$$
{ }^{*} \mathbf{J}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}{ }^{*} \mathbf{q}_{T}=\left.\frac{1}{2} \frac{\partial \mathbf{V}_{T}}{\partial \mathbf{w}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}{ }^{*} \mathbf{L}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}_{R}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T \\ \mu_{T}^{\mu}+u^{\nu} q_{T}^{\mu}+\nabla_{\rho}\left(L_{T}^{\mu[\nu \rho]}+L_{T}^{\nu[\mu]}-L_{T}^{\rho(\mu \nu)}\right)}}
$$

Constructing V_{T}

$$
W=\ln Z=W_{0}+W_{\text {trans }}+W_{\text {anom }}
$$

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right) \quad \mathbf{V}_{T}\left(\mathbf{B}_{R}, \mathbf{B}_{T}, \mathbf{B}, \mathbf{w}\right)
$$

The covariant current and stress tensor:

$$
\begin{aligned}
& { }^{*} \mathbf{J}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}}\right|_{\substack{\mathbf{F}_{T}=0 \\
\mu_{T}=2 \pi T}}{ }^{*} \mathbf{q}_{T}=\left.\frac{1}{2} \frac{\partial \mathbf{V}_{T}}{\partial \mathbf{w}}\right|_{\substack{\mathbf{F}_{T}=0 \\
\mu_{T}=2 \pi T}}{ }^{*} \mathbf{L}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}_{R}}\right|_{\substack{\mathbf{F}_{T}=0 \\
\mu_{T}=2 \pi T}} \\
& T_{T}^{\mu \nu}=u^{\mu} q_{T}^{\nu}+u^{\nu} q_{T}^{\mu}+\nabla_{\rho}\left(L_{T}^{\mu[\nu \rho]}+L_{T}^{\nu[\mu \rho]}-L_{T}^{\rho(\mu \nu)}\right)
\end{aligned}
$$

Summary

Summary

Constructed a thermal anomaly polynomial using a "replacement rule"

$$
\mathbf{P}_{T}=\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right)+2 \mathbf{F}_{T}^{2 n}, \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Summary

Constructed a thermal anomaly polynomial using a "replacement rule"

$$
\mathbf{P}_{T}=\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right)+2 \mathbf{F}_{T}^{2 n}, \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Constructed a potential

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right)
$$

Summary

Constructed a thermal anomaly polynomial using a "replacement rule"

$$
\mathbf{P}_{T}=\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right)+2 \mathbf{F}_{T}^{2 n}, \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Constructed a potential

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right)
$$

From which the anomalous contribution to the current can be computed

$$
{ }^{*} \mathbf{J}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}
$$

Summary

Constructed a thermal anomaly polynomial using a "replacement rule"

$$
\mathbf{P}_{T}=\mathbf{P}\left(\operatorname{Tr}\left(\mathbf{R}^{2 n}\right)+2 \mathbf{F}_{T}^{2 n}, \operatorname{Tr}\left(\mathbf{F}^{2 m}\right)\right)
$$

Constructed a potential

$$
\mathbf{V}_{T}=\frac{\mathbf{u}}{2 \mathbf{w}} \wedge\left(\mathbf{P}_{T}-\hat{\mathbf{P}}_{T}\right)
$$

From which the anomalous contribution to the current can be computed
e.g.,

$$
{ }^{*} \mathbf{J}_{T}=\left.\frac{\partial \mathbf{V}_{T}}{\partial \mathbf{B}}\right|_{\substack{\mathbf{F}_{T}=0 \\ \mu_{T}=2 \pi T}}
$$

$$
J^{\mu}=\rho u^{\mu}+\left(8 \pi^{2} c_{m} T^{2}-c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}
$$

Summary

$$
J^{\mu}=\rho u^{\mu}+\left(8 \pi^{2} c_{m} T^{2}-c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}
$$

Summary

$$
J^{\mu}=\rho u^{\mu}+\left(8 \pi^{2} c_{m} T^{2}-c_{A} \mu^{2}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}
$$

Thank you

