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Plan
1. Hydrodynamics vs. hydrostatics.
2. A generating function for hydrostatics.
3. Components of the generating function.
4. Constructing the potential VT.
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Jensen, Kaminski, Kovtun, Myer, Ritz,  AY (2012)

Banerjee, Bhattacharya, Bhatacharyya, Jain, Minwalla, Sharma (2012)

(A time independent fluid configuration which is a local 
function of time independent slowly varying sources) 

Hydrostatic equilibrium
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⌘

Tuesday, June 18, 13



w = du+ u ^ u

↵r↵uµdx
µ

Anomalies
W = lnZ = W0 +Wtrans +W

anom

�ICS = dG �W
anom

= �
Z

G

Claim:

W
anom

= �
Z

W
CS

Where:

u = uµdx
µ
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Â = A+ µu �̂ = �+ µRu Hatted connections are 
transverse and so are their 
field strengths:= B+ 2µwF̂

WCS =
u

2w

⇣
ICS � ÎCS
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For U(1)3 anomaly in 3+1 d
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^
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⌘Constructed a potential

⇤JT =
@VT

@B

����� FT=0
µT=2⇡T

From which the anomalous contribution to the 
current can be computed

Jµ = ⇢uµ + (8⇡2cmT 2 � cAµ
2)✏µ⌫⇢�u⌫@⇢u�

e.g.,
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