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Strange Metals

• Heavy fermion compounds and other materials including
high Tc superconductors have a metallic phase (dubbed as
‘strange metal’) whose properties cannot be explained
within the ordinary Landau-Fermi liquid theory.

• In this phase some quantities exhibit universal behaviour
such as the resistivity, which is linear in the temperature
ρ ∼ T .

• Such universal properties are believed to be the
consequence of quantum criticality
(Coleman:2005,Sachdev:2011).
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Quantum Critical Points
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Quantum Critical Points

• At the quantum critical point there is a Lifshitz scaling
(Hornreich:1975,Grinstein:1981) symmetry

t → Ωz t , x i → Ωx i , i = 1, ...d . (1)

• For z = 1 the spacetime symmetry can be enhanced to
include the Lorentz group, and for z = 2 the Galilean
group. For all other values of z, boost invariance will be
explicitly broken.

• In the ‘Galilean’ case there is a conserved mass density
and in the ‘Lorentzian’ case a maximal velocity.
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Quantum Critical Points

• Systems with ordinary critical points have a hydrodynamic
description with transport coefficients whose temperature
dependence is determined by the scaling at the critical
point (Hohenberg:1977).

• Quantum critical systems also have a hydrodynamic
description, e.g. conformal field theories at finite
temperature, fermions at unitarity and graphene.

• At quantum critical regime the hydrodynamic description
will be appropriate if the characteristic length of thermal
fluctuations `T ∼ 1/T is much smaller than the size of the
system L� `T and both are smaller than the correlation
length of quantum fluctuations ξ � L� `T .



Introduction and Summary Lifshitz Hydrodynamics Strange Metals Open Problems

QCP Hydrodynamics

• Despite its obvious interest for the description of strange
metals, the corresponding hydrodynamic description for
quantum critical points with Lifshitz scaling has not been
formulated yet.

• In contrast to the previous examples such a description
should take into account the effects due to the lack of
boost invariance.

• Our results are universal up to the value of the coefficients
in the hydrodynamic expansion, which depend on the
details of the critical point.

• The hydrodynamic expansion depends on whether the
boost symmetry that is broken belongs to the Lorentz or
the Galilean group. We study both cases.
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QCP Hydrodynamics



Introduction and Summary Lifshitz Hydrodynamics Strange Metals Open Problems

New Transport Coefficient

• Our main new result is the discovery of a single new
transport coefficient allowed by the absence of boost
invariance. The effect of the new coefficient is a production
of dissipation when the fluid is moving non-inertially.

• The result applies to any system with Lifshitz scaling, but
also more generally to any system where boost invariance
is explicitly broken. For instance, fluids moving through a
porous medium or electrons in a dirty metal.



Introduction and Summary Lifshitz Hydrodynamics Strange Metals Open Problems

Conductivity

• We study the effects of the new coefficient on the
conductivity of a strange metal using the Drude model and
find a non-linear dependence on the electric field.

• Interestingly, we also find that scaling arguments fix the
resistivity to be linear in the temperature, under the
reasonable assumption that the dependence on the mass
density is linear. This behaviour is universal: it is
independent of the number of dimensions and the value of
the dynamical exponent.
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Lifshitz Symmetry

• We start considering the ‘Lorentzian’ case and will take the
non-relativistic limit c →∞ later to obtain the ‘Galilean’
fluid.

• The generators of Lifshitz symmetry are time translation
P0 = ∂t , spatial translations Pi = ∂i , the scaling
transformation D = −zt∂t − x i∂i and rotations.

• The subalgebra involving D, Pi and P0 has commutation
relations

[D,Pi ] = Pi , [D,P0] = zP0 . (2)
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Equation of State

• In a field theory the scaling symmetry is manifested as a
Ward identity involving the components of the
energy-momentum tensor

zT 0
0 + δj

iT
i
j = 0 . (3)

• At finite temperature T 0
0 = −ε, T i

j = pδi
j , leading to the

equation of state
zε = dp . (4)

• This fixes the temperature dependence of energy and
pressure. Taking the dimension of spatial momentum to be
one, the scaling dimensions are

[T ] = z , [ε] = [p] = z + d . (5)
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Equation of State
• The Lifshitz algebra can be generalized for constant

velocities uµ, uµuµ = ηµνuµuν = −1 (µ, ν = 0,1, · · · ,d),
with scaling dimension [uµ] = 0.

• We define the generators

P‖ = uµ∂µ, P⊥
µ = P ν

µ ∂ν , D = zxµuµP‖ − xµP⊥
µ . (6)

Where P ν
µ = δ νµ + uµuν . Then, the momentum operators

commute among themselves and

[D,P‖] = zP‖ , [D,P⊥
µ ] = P⊥

µ . (7)

• The Ward identity associated to D becomes

zTµ
νuµuν − Tµ

νP ν
µ = 0 . (8)

It coincides with (3) only when z = 1, but leads to the
equation of state (4) for any velocity.
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Energy-Momentum Tensor

• The conservation of the energy-momentum tensor
determines the hydrodynamic equations ∂µTµν = 0.

• Lorentz symmetry forces the energy-momentum tensor to
be symmetric. If boost or rotational symmetries are broken
this condition can be relaxed.

• This allows many new terms in the hydrodynamic
energy-momentum tensor, but as usual there are
ambiguities in the definition of the hydrodynamic variables
in the constitutive relations. In order to fix them, we impose
the Landau frame condition

Tµνuν = −εuµ . (9)
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Energy-Momentum Tensor

• Then, the generalized form of the energy-momentum
tensor is

Tµν =(ε+ p)uµuν + pηµν

+ π
(µν)
S + π

[µν]
A + (uµπ[νσ]A + uνπ[µσ]A )uσ . (10)

• The first line is the ideal part of the energy-momentum
tensor, πS contains symmetric dissipative contributions and
must satisfy the constraint π(µν)S uν = 0. πA contains all
possible antisymmetric terms.

• In a theory with rotational invariance π[ij]A = 0.
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Entropy Current

• The new terms should be compatible with the laws of
thermodynamics, in particular with the second law. Its local
form in terms of the divergence of the entropy current is
∂µjµs ≥ 0.

• The divergence of the entropy current can be derived from
the conservation equation

0 = ∂µTµνuν = −T∂µ(suµ)

− π[µσ]A (∂[µuσ] − u[µuα∂αuσ]) + · · · . (11)

• In the Landau frame we can define the entropy current as
jµs = suµ to first dissipative order.
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The Second Law

• The dots denote contributions originating in symmetric
terms in the energy-momentum tensor. To first order in
derivative corrections they will simply be the shear and
bulk viscosity contributions, which are manifestly positive
for positive values of the transport coefficients.

• The new terms are possible only if

π
[µν]
A = −αµνσρ(∂[σuρ] − u[σuα∂αuρ]) , (12)

where αµνσρ contains all possible transport coefficients to
first dissipative order and must satisfy the condition that,
for an arbitrary real tensor τµν ,

τµνα
µνσρτσρ ≥ 0 . (13)
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Transport Coefficients

• If only boost invariance is broken, there is a single possible
transport coefficient α ≥ 0

πA [0i] = α(∂[0ui] − u[0uα∂αui]) . (14)

For a theory with Lifshitz symmetry the scaling dimension
is [α] = d , which determines the temperature dependence
of the new transport coefficient to be

α ∼ T
d
z . (15)

• There may be other new transport coefficients in a theory
with more conserved charges, however for the example of
a single conserved global current we did not find any to
first order in derivatives.
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Kubo Formula

• The first order transport coefficient is given by the Kubo
formula

α = − lim
ω→0

1
ω

δij

d
Im
〈

T [0i]T 0j
〉

(ω,~q = 0) . (16)

• We have used that π[0i]
A =

〈
T [0i]〉 and

〈
T [0i]T jk〉 = 0 by

rotational invariance to derive this formula.
• It would be interesting to test this formula in a concrete

model.
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Non-relativistic Limit

• We now study fluids with broken Galilean boost invariance.
In the relativistic fluid the maximal velocity c appears in
uµ = (1, β i)/

√
1− β2, where β i = v i/c.

• In the non-relativistic limit c →∞, the pressure is not
affected while the relativistic energy is expanded in terms
of the mass density ρ and the internal energy U as

ε = c2ρ− ρv2

2
+ U . (17)
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Non-relativistic Limit

• The relativistic hydrodynamic equations reduce to the
non-relativistic form

∂tρ+ ∂i(ρv i) = 0 , (18)

∂tU + ∂i

(
Uv i

)
+ p∂iv i

=
η

2
σijσij +

ζ

d
(∂iv i)2 +

α

2
(V i

A)2 , (19)

∂t (ρv i) + ∂j(ρv jv i) + ∂ ip

= ∂j

(
ησij +

ζ

d
δij∂kvk

)
+ ∂t (αV i

A) + ∂j

(α
2

(
v jV i

A + v iV j
A

))
. (20)

• The shear tensor is σij = ∂ivj + ∂jvi − (2/d)δij∂kvk .
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Non-relativistic Limit

• While taking the limit, we have absorbed factors of 1/c in
the shear and bulk viscosities η and ζ and a factor 1/c2 in
α.

• The vector V i
A is defined as

V i
A = 2Dtv i + ωijvj , (21)

where Dt ≡ ∂t + v i∂i , and ωij = 2∂[ivj] is the tensor dual to
the vorticity.

• The first term in V i
A is proportional to the relative

acceleration of the fluid, while the second term is
proportional to an acceleration due to the Coriolis effect.

• Similarly to the viscosities, the coefficient α determines the
dissipation that is produced in the fluid when the motion is
not inertial.
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Ward Identity
• In the non-relativistic limit with a non-zero mass density
ρ 6= 0 the scaling symmetry needs to be modified.

• Consider a space-time diffeomorphism

t → t + ξt , x i → x i + ξi , (22)

The Lifshitz equation of state is recovered if the theory has
a symmetry

ξt = zt , ξi = x i +
z − 2

2
v i t . (23)

• This is a combination of a scaling transformation (1) and a
change of frame. When z = 2 the transformation is
independent of the velocity and the symmetry group can
be extended to include Galilean boosts and non-relativistic
conformal transformations.

• The Ward identity becomes

−zU + dp = 0 . (24)
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Non-relativistic Lifshitz Scaling

• In a fluid with Lifshitz symmetry the scaling dimensions of
the hydrodynamic variables are

[v i ] = z − 1, [p] = [U] = z + d , [ρ] = d + 2− z, (25)

while the temperature has scaling dimension [T ] = z.
• We can determine the scaling dimensions of the transport

coefficients by imposing that all the terms in the
hydrodynamic equations have the same scaling. We find

[η] = [ζ] = d , [α] = d − 2(z − 1) . (26)
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Drude Model of a Strange Metal

• We model the collective motion of electrons in the strange
metal as a charged fluid moving through a static medium,
that produces a drag on the fluid.

• We are interested in describing a steady state where the
fluid has been accelerated by the electric field, increasing
the current until the drag force is large enough to
compensate for it.

• In order to simplify the calculation we will consider an
incompressible fluid ∂iv i = 0.
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Drude Model of a Strange Metal
• The fluid motion is described by the Navier-Stokes

equations

ρvk∂kv i + ∂ ip (27)

= ρE i − λρv i + η∇2v i +
α

2
∂j

((
v jσik + v iσjk

)
vk

)
.

• We have added two new terms: the force produced by the
electric field E i , and a drag term, whose coefficient λ has
scaling dimension [λ] = z.

• We can solve this equation order by order in derivatives,
keeping the pressure constant ∂ ip = 0. To leading order
the current satisfies Ohm’s law

J i = ρv i ' ρ

λ
E i , (28)

and the conductivity is simply σij = ρ/λδij .
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Conductivity
• At higher orders in derivatives we find the following

corrections for a divergenceless electric field Ex (y)

σxx (Ex ) =
ρ

λ

[
1 +

1
ρλEx

(
η∂2

y Ex +
α

6λ2∂
2
y E3

x

)]
. (29)

• The conductivity depends on the electric field and its
gradients. In the case where the electric field is linear
Ex = E0y/L, the conductivity is simplified to

σxx =
ρ

λ

[
1 +

αE2
0

ρL2λ3

]
. (30)

• The contribution from the shear viscosity drops. This gives
a way to identify the new transport coefficient α. It can be
measured experimentally as an enhancement of the
conductivity with the electric field.
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Conductivity

• Another simple case is when the electric field takes the
form Ex = E0 cos(y/L). The contribution of α to the
conductivity is y dependent

σxx (y) =
ρ

λ

[
1− η

λρL2 +
αE2

0
λ3ρL2 −

3αE2
x

2λ3ρL2

]
. (31)

• If we average on the y direction, we find again an
enhancement of the conductivity with the electric field

σ̄xx =
ρ

λ

[
1− η

λρL2 +
αE2

0
4λ3ρL2

]
. (32)
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Lifshitz Scaling

• In contrast with a relativistic fluid, the density is
approximately independent of the temperature. This
introduces an additional scale, and in general the transport
coefficients can be non-trivial functions of the ratio
τ = T

d+2−z
z /ρ.

• The conductivity will have the following temperature
dependence

σxx = T
d−2(z−1)

z σ̂(τ) ' ρ

T
, (33)

where we assumed a linear dependence on the density as
obtained from the calculation with the drag term.

• This predicts a resistivity linear in the temperature and
independent of the dynamical exponent and the number of
dimensions.



Introduction and Summary Lifshitz Hydrodynamics Strange Metals Open Problems

Dissipative Effects

• Consider the effect of constant homogeneous forces on
the heat production. Electric fields or temperature
gradients will induce an acceleration

ai = −∂ ip/ρ+ E i = (s/ρ)∂ iT + E i . (34)

• We impose ∂tai = 0, ∂jai = 0. The Navier-Stokes
equations for homogeneous configurations takes the form

∂tv i − 2(α/ρ)∂2
t v i + λv i = ai . (35)
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Dissipative Effects

• If the forces are suddenly switched on at t = 0, the
evolution of the velocity is determined by this equation with
the initial conditions v i(t = 0) = 0,

∂tv i(t = 0) =
ρai

4αλ

(√
8αλ
ρ

+ 1− 1

)
. (36)

• This choice is based on the physical requirement that at
large times the velocity stays constant. When α→ 0 it
simply becomes ∂tv i(t = 0) = ai .
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Heat Production

• The heat production rate induced by the force is

∂tU = λρv2 + 2α(∂tv)2 . (37)

• At late times the system evolves to a steady state
configuration with constant velocity, so the heat production
rate becomes constant v i = ai/λ. Subtracting this
contribution for all times, the total heat produced is

∆Q = −ρa2

2λ2

(√
8αλ
ρ

+ 1 + 2

)
. (38)
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Open Problems

• Experimental verification.
• Curvature effects and higher derivative effects.
• Holographic realization.
• Field theory calculation of the new transport coefficient.
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