Entanglement Entropy for Excited States

Based on

A.E.M (arXiv:1208.3204)
Amin Faraji, A.E.M. (JHEP03(2013)135, arXiv:1301.1495)

Amir Esmaeil Mosaffa (IPM)

Crete-June2013

■ Some references ■

- C. Holzhey, F. Larsen and F. Wilczek, Nucl. Phys. B 424, 443 (1994), P. Calabrese and J. L. Cardy, J. Stat. Mech. 0406, P06002 (2004)- J. Phys. A A 42, 504005 (2009)
- S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006)- JHEP 0608, 045 (2006) M. Headrick, Phys. Rev. D 82, 126010 (2010), L. -Y. Hung, R. C. Myers, M. Smolkin and A. Yale, JHEP 1112, 047 (2011), L. -Y. Hung, R. C. Myers and M. Smolkin, JHEP 1108, 039 (2011), H. Casini, M. Huerta and R. C. Myers, JHEP 1105, 036 (2011)
- A. Bhattacharyya and A. Sinha, arXiv:1303.1884, arXiv:1305.3448, D. Allahbakhshi, M. Alishahiha and A. Naseh, arXiv:1305.2728
- K. Skenderis and S. N. Solodukhin, Phys. Lett. B 472, 316 (2000), S. de Haro, S. N. Solodukhin and K. Skenderis, Commun. Math. Phys. 217, 595 (2001) - A. Schwimmer and S. Theisen, JHEP 0008, 032 (2000), JHEP 0310, 001 (2003), Nucl. Phys. B 801, 1 (2008), PoS BHGRS, 020 (2008)

Basic Definitions

■ EE in QM

- Consider a QM'al system, divided into two complementary subsystems A and B

- The Hilbert space is divided into

$$
\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

- A general state can be written as

$$
|\psi\rangle=\sum_{i, a} C_{i a}\left|\phi_{i}\right\rangle \otimes\left|\chi_{a}\right\rangle
$$

ϕ_{i} and χ_{a} are complete bases for \mathcal{H}_{A} and \mathcal{H}_{B} respectively.

- If the system prepared in a state $|\psi\rangle$, the density matrix will be

$$
\rho=|\psi\rangle\langle\psi|
$$

- The Reduced Density Operator for the subsystem A is defined as

$$
\rho_{A}=\operatorname{tr}_{B} \rho=\sum_{i, j, a} C_{i a} C_{j a}^{\dagger}\left|\phi_{i}\right\rangle\left\langle\phi_{j}\right|
$$

- ρ_{A} is the density operator for an observer who has access only to the A degrees of freedom.
- Eventhough ρ may describe a Pure state, ρ_{A} will generically correspond to a Mixed state.
- The Entanglement Entropy of sybsystem A in the state $|\psi\rangle$ is defined as the Von Neumann Entropy of the reduced density operator ρ_{A}

$$
S_{A}=-\operatorname{tr}_{A}\left\{\rho_{A} \log \rho_{A}\right\}
$$

- A useful quantity, Renyi Entropy is defined as

$$
S_{A}^{(n)}=\frac{1}{1-n} \log t r_{A}\left(\rho_{A}\right)^{n}
$$

and

$$
S_{A}=\lim _{n \rightarrow 1} S_{A}^{(n)}
$$

- EE in QFT

Suppose that $|\psi\rangle$ is the Ground State of the theory. The Path Integral representation of ρ_{A} will be found as

$$
\left[\rho_{A}=\operatorname{tr}_{B}|2 p\rangle<2 \psi \mid\right]_{\alpha \beta} \equiv
$$

- \mathcal{R}_{n} is a singular Riemann surface
- One can transfer the geometric complexities of \mathcal{R}_{n} into the geometry of Target Space fields, $\varphi_{i}, i=1,2, \ldots, n$

$$
Z_{\text {res }}=\int_{\text {res }}\left[d^{n} \varphi(x)\right] e^{-S\left[\varphi_{1}, \ldots, \varphi_{n}\right]}, \quad x \in \mathcal{M}
$$

where res stands for restrictions on the replicated fields and which replaces the nontrivial geometry of \mathcal{R}_{n}.

- One way of imposing the restrictions is to insert Twist Operators at the singular points

$$
Z_{\text {Twist }}=\int\left[d^{n} \varphi(x)\right] e^{-S\left[\varphi_{1}, \ldots, \varphi_{n}\right]} \Pi \sigma_{k} \cdots . ., \quad x \in \mathcal{M}
$$

- An alternative way is to move over to the Covering Space of the fields, \mathcal{M}_{C} and calculate

$$
Z_{\mathcal{M}_{C}}=\int[d \varphi(x)] e^{-S[\varphi]}, \quad x \in \mathcal{M}_{C}
$$

The complexities of \mathcal{R}_{n} are now encoded in the transformation

$$
\mathcal{R}_{n} \rightarrow \mathcal{N} n
$$

Entanglement Entropy for subsystems provide useful information specially when calculated for Pure States.
(For mixed states statistical entropy is also nonzero and may be subtracted by definition of other quantities such as mutual informayion...)

The Pure States can be the Ground State of the theory or an Excited State.

- We are interested in the Entanglement Entropy for Excited States, a much less studied case.
- Of particular interest is to find whether there exist any universal features in this case.

In the following we will be interested in the

> | Entanglement Entropy for Excited States in a |
| :--- |
| Two Dimensional CFT on a circle (Line) with a |
| $\underline{\text { Single Interval as the Entangling Surface }}$ |

This problem was first studied Analytically in Alcaraz, Berganza, Sierra 2011, using the approach of Holzhey-Larsen-Wilczek ('94) and later by same authors using Calabrese-Cardy ('04) methods.

In the following we first derive the same results by using Symmetric Orbifolds (Lunin-Mathur (2000)), and then by Holography.

■ Outline of Symmetric Orbifolding

- We start with a theory on sphere, parametrized by (z, \bar{z}), with a flat metric and with two branch points of order n.
- By a coordinate transformation to $(w(z), \bar{w}(\bar{z}))$, which behaves as $w \approx z^{1 / n}$ at branch points, one moves over to the covering sphere.
- By a Weyl transformation with a conformal factor $\left|\frac{d w}{d z}\right|^{2}$, one ends up with a third sphere with a fiducial metric $d \hat{s}^{2}$ which we have chosen to be flat.
- The partition functions on the first and third spheres are related by

$$
Z=e^{S_{L}} \hat{Z}
$$

where

$$
S_{L}=\frac{c}{24 \pi} \int d t^{2} \sqrt{g}\left[\partial_{\mu} \phi \partial_{\nu} \phi g^{\mu \nu}+R \phi\right]
$$

is the Liouville action and

$$
e^{2 \phi}=\left|\frac{d z}{d w}\right|^{2}
$$

■ EE for Primary Excitations

- On z-sphere we put the branch points at

$$
u=a e^{\frac{i}{2}(\pi+\theta)} \quad, \quad v=a e^{\frac{i}{2}(\pi-\theta)}
$$

- To excite the theory to a highest weight state we create asymptotic in and out states by inserting the primary operator \mathcal{O} at $z=\bar{z}=0$ and

$$
\tilde{\mathcal{O}}(\tilde{z}, \overline{\tilde{z}})=\mathcal{O}(z, \bar{z}) z^{2 h} \bar{z}^{2 \bar{h}} \delta^{2(h+\bar{h})}
$$

at $\tilde{z}=\overline{\tilde{z}}=0$.

- The quantity of interest is the restricted path integral of the replicated theory on the z-sphere in presence of the insertions

$$
\operatorname{tr} \rho_{\mathcal{O}}^{n}(\theta) \equiv \frac{\int_{r e s}\left[d^{n} \varphi\right] e^{-S\left[\varphi_{1}, \ldots, \varphi_{n}\right]} \prod_{i=1}^{n} \mathcal{O}_{i}(0) \widetilde{\mathcal{O}}_{i}(\infty)}{\left[\int[d \varphi] e^{-S[\varphi]} \mathcal{O}(0) \widetilde{\mathcal{O}}(\infty)\right]^{n}}
$$

- We now write everything in terms of quantities of the unreplicated theory on the z-sphere and the theory on the smooth, flat, w-sphere.
- w-sphere is found by the map

$$
\frac{z-u}{z-v}=\frac{1}{1-\left(\frac{w-1}{w+1}\right)^{n}}
$$

- Putting everything together we find

$$
\operatorname{tr} \rho_{\mathcal{O}}^{n}(\theta)=e^{S_{L} \frac{\hat{Z}_{w}}{Z_{z}^{n}} \mathcal{T} \frac{\left\langle\prod_{k=0}^{n-1} \mathcal{O}\left(w_{k}\right) \tilde{\mathcal{O}}\left(w_{k}^{\prime}\right)\right\rangle_{w}}{\langle\mathcal{O}(0) \tilde{\mathcal{O}}(\infty)\rangle_{z}^{n}}, ~}
$$

- The factor \mathcal{T} comes from the transformation properties of the operators under the sequence

$$
z \rightarrow w \text { and } d s^{2} \rightarrow d \widehat{s}^{2}=\left|\frac{d w}{d z}\right|^{2} d s^{2} \equiv e^{-2 \phi} d s^{2}
$$

- The sequence of transformations corresponds to a conformal transformation under which

$$
\mathcal{O}(z, \bar{z})=\left(\frac{d w}{d z}\right)^{h}\left(\frac{d \bar{w}}{d \bar{z}}\right)^{\bar{h}} \mathcal{O}(w, \bar{w})
$$

- It turns out that excitations do not alter S_{L}. This is understood by a careful study of the Liouville field near the insertion points.
- The non-trivial effects come from the factor \mathcal{T}

$$
\mathcal{T}=\left(\left.\frac{d \tilde{z}}{d \tilde{w}}\right|_{w_{0}^{\prime}} \times\left.\prod_{k=1}^{n-1} \frac{d \tilde{z}}{d w}\right|_{w_{k}^{\prime}} \times\left.\prod_{k=0}^{n-1} \frac{d z}{d w}\right|_{w_{k}}\right)^{-h}
$$

- One finds

$$
\frac{\operatorname{tr} \rho_{\mathcal{O}}^{n}(\theta)}{\operatorname{tr} \rho^{n}(\theta)} \equiv \mathcal{F}_{\mathcal{O}}^{(n)}(\theta)=\frac{n^{-2 n(h+\bar{h})}\left\langle\prod_{k=0}^{n-1} \mathcal{O}\left(\frac{\theta+2 \pi k}{n}\right) \widetilde{\mathcal{O}}\left(\frac{2 \pi k}{n}\right)\right\rangle_{c y}}{\langle\mathcal{O}(\theta) \widetilde{\mathcal{O}}(0)\rangle_{c y}^{n}}
$$

- Recalling that

$$
\mathcal{O}(w, \bar{w}) \widetilde{\mathcal{O}}(0,0)=\frac{1}{w^{2 h} \bar{w}^{2 \bar{h}}}\left[1+{ }^{Q} \Delta, \bar{\Delta}^{w^{\Delta}} \bar{w}^{\bar{\Delta}}+\ldots\right]
$$

we find in the limit of $\theta \ll 2 \pi$

$$
\mathcal{F}_{\mathcal{O}}^{(n)}(\theta)=1+\frac{h+\bar{h}}{3}\left(\frac{1}{n}-n\right)\left(\frac{\theta}{2}\right)^{2}+O(\theta(\Delta+\bar{\Delta}))
$$

- The excess of Entanglement Entropy will be

$$
S_{\mathcal{O}}(\theta)-S_{G S}(\theta)=\left.\frac{\partial}{\partial_{n}} \mathcal{F}_{\mathcal{O}}^{(n)}(\theta)\right|_{n=1}
$$

■ EE for Excitations by Holography

- The objective is to find a gravitational $\left(A d S_{3}\right)$ background that has the singular Riemann surface at the boundary.
- The gravitational on-shell action will give the partition function of the replicated theory by AdS/CFT.
- This can be done explicitly (Hung-Myers-SmolkinYale, '12).
- Alternatively, since in two dimensions all metrics are conformally flat, any non-trivial effect can be encoded in the conformal factor and hence in the shape of the regulator surface in the bulk.
- We take the latter route, i.e., assume a flat smooth boundary, but a non-trivial regulator surface.
- The regulator surface, when stated in the Fefferman-Graham coordinates, corresponds to the z-sphere.
- The regulator surface, when stated in the Poincare coordinates, corresponds to the w-sphere with $d s^{2}$.
- The regulator surface at a constant Poincare radius corresponds to the w-sphere after Weyl scaling and thus with $d \hat{s}^{2}=e^{-2 \phi} d s^{2}$.
- To account for the excitations, we turn on fields in the bulk with appropriate masses and boundary conditions.
- We use the Holographic Renormalization method to calculate the gravitational on-shell action and subsequently the field theory correlation functions.
- FG coordinates

$$
d s^{2}=\frac{d \rho^{2}}{4 \rho^{2}}+\frac{g_{i j}(\rho, z, \bar{z})}{\rho} d x^{i} d x^{j}, \quad i, j=1,2
$$

where
$g_{i j}(\rho, z, \bar{z})=g_{(0)_{i j}}+\rho g_{(2)_{i j}}+\cdots, \quad g_{(0)_{i j}} d x^{i} d x^{j}=d z d \bar{z}$

- Make the following transformation (Krasnov, '03)

$$
r=\frac{\rho^{e-\phi}}{1+\rho e^{-2 \phi}\left|\partial_{y} \phi\right|^{2}} \quad, \quad w=y+\partial_{\bar{y}} \phi \frac{\rho e^{-2 \phi}}{1+\rho e^{-2 \phi}\left|\partial_{y} \phi\right|^{2}}
$$

with
$y \equiv\left(\frac{z-u}{z-v}\right)^{\frac{1}{n}}, \quad e^{\phi}=\frac{n}{l}|z-u|^{(1-1 / n)}|z-v|^{(1+1 / n)}=\left|\frac{d z}{d y}\right|^{2}$

- This takes us to the Poinare coordinates

$$
d s^{2}=\frac{1}{r^{2}}\left(d r^{2}+d w d \bar{w}\right)
$$

- The key point is that this transformation takes the surface $\rho=\epsilon^{2} \ll 1$ in the FG coordinates to $r=\epsilon e^{-2 \phi}$ in the Poincare coordinates with $e^{2 \phi}=|d z / d w|^{2}$.
- The punch line is that the induced metric on the latter surface will be that on the w-sphere.
- The surface $r=\epsilon$, on the other hand, will have a flat induced metric and corresponds to the w-sphere with the Weyl rescaled metric, $d \widehat{s}^{2}$.

■ Outline of Calculations

- Action

$$
S=S_{g}+S_{m}, \quad S_{m}=\int d^{3} x \sqrt{G}\left(G^{\mu \nu} \partial_{\mu} \Phi \partial_{\nu} \Phi+m^{2} \Phi^{2}\right)
$$

- We take $P h i$ to be a scalar field

$$
\Phi(r, w, \bar{w})=\Phi^{\prime}(\rho, z, \bar{z})
$$

with the asymptotic expansion

$$
\begin{gathered}
\Phi(r, w, \bar{w})=r^{2-\Delta} \phi(r, w, \bar{w}) \\
\phi(r, w, \bar{w})=\phi_{0}(w, \bar{w})+r^{2} \phi_{2}(w, \bar{w})+\cdots
\end{gathered}
$$

with

$$
m^{2}=\Delta(2-\Delta)
$$

- One needs to first regularize the action and then add counter terms to it to find the subtracted action

$$
S_{s u b}=\int_{\mathcal{M}} \sqrt{\gamma} d w d \bar{w} \Phi\left[-\frac{r}{2} \partial_{r} \Phi+\frac{2-\Delta}{2} \Phi+\frac{1}{2(\Delta-2)} \square_{\gamma} \Phi\right]
$$

- The exact one point function is found as

$$
\langle\mathcal{O}(w, \bar{w})\rangle=\lim _{\epsilon \rightarrow 0}\left[\frac{1}{r \Delta \sqrt{\gamma}} \frac{\delta S_{s u b}}{\delta \Phi}\right]_{\mathcal{M}}=(2-2 \Delta) \phi_{(2 \Delta-2)}
$$

- Results
- We find the final result as

$$
\left\langle\mathcal{O}^{\prime}(z, \bar{z})\right\rangle=e^{-\phi \Delta}\langle\mathcal{O}(w, \bar{w})\rangle_{d \hat{s}^{2}}
$$

which is equivalent to a scaling of the external source by

$$
\phi_{0} \rightarrow e^{\phi \Delta} \phi_{0}
$$

- The n-point functions are thus obtained by

$$
\prod_{i=1}^{n} \frac{\delta}{\delta \phi_{0}\left(w_{i}, \bar{w}_{i}\right)} \rightarrow \prod_{i=1}^{n} e^{-\phi\left(w_{i}, \bar{w}_{i}\right) \Delta} \frac{\delta}{\delta \phi_{0}\left(w_{i}, \bar{w}_{i}\right)}
$$

- Plugging in the values of w_{i} for the insertion points and after several simplifications, we finally arrive at

$$
\frac{\operatorname{tr} \rho_{\mathcal{O}}^{n}(\theta)}{\operatorname{tr\rho } \rho^{n}(\theta)} \equiv \mathcal{F}_{\mathcal{O}}^{(n)}(\theta)=\frac{n^{-2 n(h+\bar{h})}\left\langle\prod_{k=0}^{n-1} \mathcal{O}\left(\frac{\theta+2 \pi k}{n}\right) \tilde{\mathcal{O}}\left(\frac{2 \pi k}{n}\right)\right\rangle_{c y}}{\langle\mathcal{O}(\theta) \widetilde{\mathcal{O}}(0)\rangle_{c y}^{n}}
$$

- Conclusions, Outlook
- EE for primary excitations are studied, by
symmetric orbifolding as well as by holography.
- Extensions for finite temperature and higher dimensions.
- Applications to thermodynamic properties of EE.

