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Basic Definitions

� EE in QM

• Consider a QM’al system, divided into two comple-

mentary subsystems A and B
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• The Hilbert space is divided into

H = HA ⊗HB

• A general state can be written as

|ψ⟩ =
∑
i,a Cia |ϕi⟩ ⊗ |χa⟩

ϕi and χa are complete bases for HA and HB respec-

tively.

• If the system prepared in a state |ψ⟩, the density

matrix will be

ρ = |ψ⟩⟨ψ|
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• The Reduced Density Operator for the subsystem

A is defined as

ρA = trB ρ=
∑
i,j,aCiaC

†
ja|ϕi⟩⟨ϕj|

• ρA is the density operator for an observer who has

access only to the A degrees of freedom.

• Eventhough ρ may describe a Pure state, ρA will

generically correspond to a Mixed state.
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• The Entanglement Entropy of sybsystem A in the

state |ψ⟩ is defined as the Von Neumann Entropy of the

reduced density operator ρA

SA = −trA{ρA log ρA}

• A useful quantity, Renyi Entropy is defined as

S
(n)
A = 1

1−n log trA(ρA)
n

and

SA = limn→1 S
(n)
A
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� EE in QFT

Suppose that |ψ⟩ is the Ground State of the theory.

The Path Integral representation of ρA will be found as

follows
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.

.

Sn = 1
1−n log Zn

Zn1

Zn ≡ ZRn =
∫
[dφ(x)] e−S[φ] , x ∈ Rn
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• Rn is a singular Riemann surface

• One can transfer the geometric complexities of Rn

into the geometry of Target Space fields,

φi , i = 1,2, ..., n

Zres =
∫
res[d

nφ(x)] e−S[φ1,...,φn] , x ∈ M

where res stands for restrictions on the replicated fields

and which replaces the nontrivial geometry of Rn.
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• One way of imposing the restrictions is to insert

Twist Operators at the singular points

ZTwist =
∫
[dnφ(x)] e−S[φ1,...,φn]

∏
σk..... , x ∈ M

• An alternative way is to move over to the Covering Space

of the fields, MC and calculate

ZMC
=
∫
[dφ(x)] e−S[φ] , x ∈ MC

The complexities of Rn are now encoded in the trans-

formation

Rn → Mn
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Entanglement Entropy for subsystems provide useful

information specially when calculated for Pure States.

(For mixed states statistical entropy is also nonzero and

may be subtracted by definition of other quantities such

as mutual informayion...)

The Pure States can be the Ground State of the theory

or an Excited State.
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• We are interested in the Entanglement Entropy for

Excited States, a much less studied case.

• Of particular interest is to find whether there exist

any universal features in this case.

In the following we will be interested in the

Entanglement Entropy for Excited States in a

Two Dimensional CFT on a circle (Line) with a

Single Interval as the Entangling Surface
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This problem was first studied Analytically in Alcaraz,

Berganza, Sierra 2011, using the approach of Holzhey-

Larsen-Wilczek (’94) and later by same authors using

Calabrese-Cardy (’04) methods.

In the following we first derive the same results by using

Symmetric Orbifolds (Lunin-Mathur (2000)), and then

by Holography.
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� Outline of Symmetric Orbifolding

• We start with a theory on sphere, parametrized by

(z, z̄), with a flat metric and with two branch points of

order n.

• By a coordinate transformation to (w(z), w̄(z̄)), which

behaves as w ≈ z1/n at branch points, one moves over

to the covering sphere.

• By a Weyl transformation with a conformal factor

|dwdz |
2, one ends up with a third sphere with a fiducial

metric dŝ2 which we have chosen to be flat.
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• The partition functions on the first and third spheres

are related by

Z = eSL Ẑ

where

SL = c
24π

∫
dt2

√
g[∂µϕ∂νϕgµν +Rϕ]

is the Liouville action and

e2ϕ = | dzdw|
2
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� EE for Primary Excitations �

• On z-sphere we put the branch points at

u = ae
i
2(π+θ) , v = ae

i
2(π−θ)

• To excite the theory to a highest weight state we

create asymptotic in and out states by inserting the

primary operator O at z = z̄ = 0 and

Õ(z̃, ¯̃z) = O(z, z̄)z2hz̄2h̄ δ2(h+h̄)

at z̃ = ¯̃z = 0.
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• The quantity of interest is the restricted path inte-

gral of the replicated theory on the z-sphere in presence

of the insertions

trρnO(θ) ≡
∫
res [d

nφ]e−S[φ1,...,φn]
∏n
i=1Oi(0)Õi(∞)[ ∫

[dφ]e−S[φ]O(0)Õ(∞)
]n

• We now write everything in terms of quantities of

the unreplicated theory on the z-sphere and the theory

on the smooth, flat, w-sphere.

• w-sphere is found by the map

z−u
z−v = 1

1−(w−1
w+1)

n
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• Putting everything together we find

trρnO(θ) = eSL ẐwZnz
T

⟨
∏n−1
k=0O(wk)Õ(w

′
k)⟩w

⟨O(0)Õ(∞)⟩nz

• The factor T comes from the transformation prop-

erties of the operators under the sequence

z → w and ds2 → dŝ2 = |dwdz |
2ds2 ≡ e−2ϕds2

• The sequence of transformations corresponds to a

conformal transformation under which

O(z, z̄) =

(
dw
dz

)h(
dw̄
dz̄

)h̄
O(w, w̄)
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• It turns out that excitations do not alter SL. This

is understood by a careful study of the Liouville field

near the insertion points.

• The non-trivial effects come from the factor T

T =

(
dz̃
dw̃

∣∣∣∣∣
w′
0

×
∏n−1
k=1

dz̃
dw

∣∣∣∣∣
w′
k

×
∏n−1
k=0

dz
dw

∣∣∣∣∣
wk

)−h

• One finds

trρn
O
(θ)

trρn(θ) ≡ F
(n)
O (θ) =

n−2n(h+h̄)⟨
∏n−1
k=0O(

θ+2πk
n )Õ(2πkn )⟩cy

⟨O(θ)Õ(0)⟩ncy
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• Recalling that

O(w, w̄)Õ(0,0) = 1
w2hw̄2h̄

[1 + Q∆,∆̄w
∆w̄∆̄ + . . . ]

we find in the limit of θ ≪ 2π

F
(n)
O (θ) = 1+ h+h̄

3

(
1
n − n

)
(θ2)

2 +O(θ(∆+∆̄))

• The excess of Entanglement Entropy will be

SO(θ)− SGS(θ) = ∂
∂n
F
(n)
O (θ)|n=1
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� EE for Excitations by Holography �

• The objective is to find a gravitational (AdS3) back-
ground that has the singular Riemann surface at the
boundary.

• The gravitational on-shell action will give the par-
tition function of the replicated theory by AdS/CFT.

• This can be done explicitly (Hung-Myers-Smolkin-
Yale, ’12).

• Alternatively, since in two dimensions all metrics are
conformally flat, any non-trivial effect can be encoded
in the conformal factor and hence in the shape of the
regulator surface in the bulk.
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• We take the latter route, i.e., assume a flat smooth boundary,

but a non-trivial regulator surface.

• The regulator surface, when stated in the Fefferman-Graham

coordinates, corresponds to the z-sphere.

• The regulator surface, when stated in the Poincare

coordinates, corresponds to the w-sphere with ds2.

• The regulator surface at a constant Poincare radius

corresponds to the w-sphere after Weyl scaling and thus

with dŝ2 = e−2ϕds2.
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• To account for the excitations, we turn on fields in

the bulk with appropriate masses and boundary condi-

tions.

• We use the Holographic Renormalization method

to calculate the gravitational on-shell action and sub-

sequently the field theory correlation functions.
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• FG coordinates

ds2 = dρ2

4ρ2
+

gij(ρ,z,z̄)
ρ dxidxj , i, j = 1,2

where

gij(ρ, z, z̄) = g(0)ij
+ ρg(2)ij

+ · · · , g(0)ij
dxidxj = dzdz̄

• Make the following transformation (Krasnov, ’03)

r = ρe−ϕ

1+ρe−2ϕ|∂yϕ|2
, w = y+ ∂ȳϕ

ρe−2ϕ

1+ρe−2ϕ|∂yϕ|2

with

y ≡
(
z−u
z−v

)1
n , eϕ = n

l |z−u|(1−1/n) |z−v|(1+1/n) = |dzdy |
2
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• This takes us to the Poinare coordinates

ds2 = 1
r2
(dr2 + dwdw̄)

• The key point is that this transformation takes the

surface ρ = ϵ2 ≪ 1 in the FG coordinates to

r = ϵe−2ϕ in the Poincare coordinates with e2ϕ = |dz/dw|2.

• The punch line is that the induced metric on the

latter surface will be that on the w-sphere.

• The surface r = ϵ, on the other hand, will have

a flat induced metric and corresponds to the w-sphere

with the Weyl rescaled metric, dŝ2.
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� Outline of Calculations

• Action

S = Sg + Sm , Sm =
∫
d3x

√
G(Gµν∂µΦ∂νΦ+m2Φ2)

• We take Phi to be a scalar field

Φ(r, w, w̄) = Φ′(ρ, z, z̄)

with the asymptotic expansion

Φ(r, w, w̄) = r2−∆ ϕ(r, w, w̄) ,
ϕ(r, w, w̄) = ϕ0(w, w̄) + r2ϕ2(w, w̄) + · · ·

with

m2 = ∆(2−∆)
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• One needs to first regularize the action and then

add counter terms to it to find the subtracted action

Ssub =
∫
M

√
γdwdw̄ Φ[−r

2∂rΦ+ 2−∆
2 Φ+ 1

2(∆−2)�γΦ]

• The exact one point function is found as

⟨O(w, w̄)⟩ = limϵ→0

[
1

r∆
√
γ
δSsub
δΦ

]
M

= (2− 2∆)ϕ(2∆−2)
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� Results

• We find the final result as

⟨O′(z, z̄)⟩ = e−ϕ∆⟨O(w, w̄)⟩dŝ2

which is equivalent to a scaling of the external source

by

ϕ0 → eϕ∆ϕ0
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• The n-point functions are thus obtained by

∏n
i=1

δ
δϕ0(wi,w̄i)

→
∏n
i=1 e

−ϕ(wi,w̄i)∆ δ
δϕ0(wi,w̄i)

• Plugging in the values of wi for the insertion points

and after several simplifications, we finally arrive at

trρn
O
(θ)

trρn(θ) ≡ F
(n)
O (θ) =

n−2n(h+h̄)⟨
∏n−1
k=0O(

θ+2πk
n )Õ(2πkn )⟩cy

⟨O(θ)Õ(0)⟩ncy
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� Conclusions, Outlook

• EE for primary excitations are studied, by

symmetric orbifolding as well as by holography.

• Extensions for finite temperature and higher dimen-

sions.

• Applications to thermodynamic properties of EE.

• .........
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