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Integer quantum Hall state
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Fractional quantum Hall state
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Huge ground state degeneracy without interactions

FQHE: interactions lift degeneracy

exp: the system is gapped at some values of filling fraction
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Laughlin’s filling factors



Massless limit
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Laughlin’s wave function

• In the symmetric gauge LLL states are

 (z) = f(z)e�|z2|/4`2
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Laughlin’s guess for the ground state wave fn ⌫ = 1/3

Not exact, although seems to be very good approximation
implies equal-time correlators, not at unequal times



Effective field theory

• Effective field theory: captures low-energy dynamics

• What are the low-energy degrees of freedom of a 
quantum Hall state?

• there are none (in the bulk): energy gap

• Thus the effective Lagrangian is polynomial over 
external fields and derivatives (generating functional)



Chern-Simons action

• To lowest order in derivatives:
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encodes Hall conductivity 
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Another formulation of CS 
theory

is the current

at the same time is the Lagrange multiplier enforcing

aµ = Aµ + @µ'

L =
⌫

4⇡
✏µ⌫�aµ@⌫a� � jµ(@µ'�Aµ + aµ)

jµ =
�S

�Aµ

Note:      is the phase of the condensate of composite bosons (ZHK)'



Universality beyond CS

Higher-derivatives corrections: of dynamical, not topological 
nature, hence non universal?

But there is universality beyond the CS action



Hall viscosity
Following the evolution of the QH state with changing metric

hij = hij(t), deth = 1

2-dim space

nonzero Berry curvature

hT11 � T22i ⇠ ⌘Aḣ12

h11 � h22

h12

However in CS theory Tµ⌫ = 0

universal (not renormalized
by interactions)



Symmetries of NR theory

Microscopic theory

Dµ� � (�µ � iAµ)�

Invariance under time-independent diff ξ=ξ(x):

DTS, M.Wingate 2006 
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NR diffeomorphism

• These transformations can be generalized to be 
time-dependent: ξ=ξ(t,x)

Galilean transformations: special case  ξi=vit
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g = 0          version can be understood as NR reduction of 
relativistic diffeomorphism invariance



NR reduction
Start with complex scalar field

Take nonrelativistic limit:
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Relativistic diffeomorphism

: gauge transform

: general coordinate transformations
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Interactions

• Interactions can be introduced that preserve 
nonrelativistic diffeomorphism

• interactions mediated by fields

• For example, Yukawa interactions
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Is CS action invariant?

• CS action is gauge invariant, Galilei invariant

• but not diffeomorphism invariant

does not transform like a one-form Aµ
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Is CS action invariant?

• CS action is gauge invariant, Galilei invariant

• but not diffeomorphism invariant

does not transform like a one-form Aµ
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Requirements for EFT

• Respect general coordinate invariance

• Reproduce all topological properties of the 
quantum Hall state

• Have regular limit of 

LLL degenerate with zero energy 
for any metric and B
(Aharonov-Casher)

m ! 0, g = 2

Sg[A0, Ai, hij ]



What kind of geometry

• System does not live in a 3D Riemann space

• 2D Riemann manifold at any time slice

• can parallel transport along equal-time slices, but 
not between different times



Velocity vector v

Use v to transform objects from one time slice to 
another

t+�t

v�t



Cartan 1923-1924
Reformulation of Newton’s theory of gravity
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Cartan 1923-1924
Reformulation of Newton’s theory of gravity



Newton-Cartan geometry

dn = 0 ) n = dt
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choose t to be time coordinate
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Connection in Newton-Cartan 
geometry
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Higher-dimensional interpretation
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Improved gauge potentials

• With v one can construct a gauge potential that 
transforms as a one-form

Ãi = Ai +mvi

�Ãµ = �⇠k@kÃµ � Ãk@µ⇠
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Effective field theory

related to “shift”

Dµ' = @µ'� Ãµ + aµ�s!µ

Integrating out ⇢, vi, aµ

effective action for ) Aµ, h
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Spin connection
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Wen-Zee shift
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Shift for IQH states

N� + 1

N� + 3

N� + 5

Q = nN� + n2 = n(N� + n)



Physical consequences

• Kohn’s theorem

• Hall viscosity

• Hall conductivity: universal to order q^2

• Structure factor



Kohn’s theorem

Constant B, 
Response to homogeneous, time dependent E(t) independent 
of interactions: motion of center of mass

mv̇i = Ei + ✏ijvjB



Hall viscosity from WZ term
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Structure factor and shift

• Non-universal part of the action: leading 
contributions are

�z̄z̄F (i@t)�zz

positivity of spectral densities of stress-stress correlators:
equal time density-density corr

Inequality saturated by Laughlin’s wave function
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Conclusion and outlook

• Quantum Hall states naturally live in Newton-
Cartan geometry

• Symmetry determines the q^2 correction to Hall 
conductivity, other physical quantities

• Further questions:

• edge states?

• Relationship with conformal field theories?

• Meaning of Laughlin’s wave function?

• Implications for holographic realizations? 





What is Hall viscosity?
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In 2 spatial dimensions, it is possible to write
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Hall viscosity (Avron Seiler Zograf) 

breaks parity

Standard fluid dynamics: �t� + �ij
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continuity eq.

Navier-Stokes eq.

dissipationless



Hall viscosity in picture

Hall shear stress



Physical interpretation

• First term: Hall viscosity

y
v

E

E

v
x

�xvy + �yvx �= 0

Txx = Txx(x) �= 0

additional force Fx~∂x Txx

Hall effect: additional contribution to vy



Physical interpretation (II)

• 2nd term: more complicated interpretation

Fluid has nonzero angular velocity

�(x) =
1
2
�xvy = �cE�

x(x)
2B

�B = 2mc�/e

Coriolis=Lorentz

Hall fluid is diamagnetic: d� = �MdB

M is spatially dependent M=M(x)

Extra contribution to current j = c ẑ��M



Current ~ gradient of magnetization

j = c ẑ��M


