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Summary of results
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Integer quantum Hall state
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Fractional quantum Hall state
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n=|

Huge ground state degeneracy without interactions

FQHE: interactions lift degeneracy

exp: the system is gapped at some values of filling fraction
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Massless limit

the only energy scale
when m—0




Laughlin’s wave function

® |n the symmetric gauge LLL states are
V(2) = f(2)e” 110

Laughlin’s guess for the ground state wave fn v = 1/3

(2) = [[Gi—2)° [ ] e~ |zl 7/48°
(27) i

Not exact, although seems to be very good approximation
implies equal-time correlators, not at unequal times




Effective field theory

e Effective field theory: captures low-energy dynamics

® What are the low-energy degrees of freedom of a
quantum Hall state?

® there are none (in the bulk): energy gap

® Thus the effective Lagrangian is polynomial over
external fields and derivatives (generating functional)




Chern-Simons action

® Jo lowest order in derivatives:

S=— [dz e A,0,A,
47T

encodes Hall conductivity




Another formulation of CS
theory

Y, .
L = Ee“w‘au&,ak —H(0up— A, +ay)
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is the current

=
5A,

at the same time is the Lagrange multiplier enforcing

ay = Ay + Ouyp

Note: ¥ is the phase of the condensate of composite bosons (ZHK)



Universality beyond CS

Higher-derivatives corrections: of dynamical, not topological
nature, hence non universal?

But there is universality beyond the CS action




Rall viscosity

Following the evolution of the QH state with changing metric
hij (t), deth =1

2-dim space
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/ \ nonzero Berry curvature
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(T11 — Tho) ~ nahis

\ universal (not renormalized
by interactions)

However in CS theory 1, =0



Symmetries of NR theory

DTS, M.Wingate 2006

Microscopic theory
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Invariance under time-independent diff £=¢&(X):

6 = —EX O

6 Ay = —EF0L Ay

0A; = =" 0pA; — A0O;E"
ohij = —Vi§; — V&




NR diffeomorphism

® These transformations can be generalized to be
time-dependent: E=&(t,X)

0p = —EOp)

5 Ay = —EFOp Ag —ArE" + 45”8( hik€")

5A; = —€F0, Ay — Ap0;8% —mh, "

ohij = —Vi§; — V&

Galilean transformations: special case &=vit

g = 0 version can be understood as NR reduction of
relativistic diffeomorphism invariance




NR reduction

Start with complex scalar field

§—_ / 0z /=g(g" Duts* Do + m26*¢)
Du¢ — (@L o iAu)¢
Take nonrelativistic limit;
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Relativistic diffeomorphism
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under diff A, =A,+«q,

0 __ _—imcx
§" :gauge transform ¢=e

2mc

: general coordinate transformations
6Ag = —€ O Ay —Arg"

0A; = —ER0LA; — ARdiER —mhic"




Interactions

® |nteractions can be introduced that preserve
nonrelativistic diffeomorphism

® interactions mediated by fields

® For example,Yukawa interactions

S =5, +/d3x Vh T + /d% Vh(h0;60;¢ + M?¢)

06 = —€ ¢




|Is CS action invariant!?

® (S action is gauge invariant, Galilei invariant

® but not diffeomorphism invariant

5SCS — VQ—m/dglv GijEihjkék g = 0
T

A,, does not transform like a one-form
0A, = —E50p A, — A0, E"
640 = =€ A0  —ALE" + S0, ()

5A; = —€F0, Ay — Ap0;6% —mh,e"

Ay = A +ay



|Is CS action invariant!?

® (S action is gauge invariant, Galilei invariant

® but not diffeomorphism invariant

5SCS — VQ—m/dglv GijEihjkék g = 0
T

A,, does not transform like a one-form

— _fk@kAo —Akék§+ %gija&'(h]’kék)

A = — Ay — Apd,€Rmh R

Ay = A +ay



Requirements for EFT

Sg [A()v Ai7 hz]]

® Respect general coordinate invariance

® Reproduce all topological properties of the
quantum Hall state

® Have regular limitof m — 0, g =2

/

LLL degenerate with zero energy

for any metric and B
(Aharonov-Casher)




What kind of geometry

® System does not live in a 3D Riemann space
® 2D Riemann manifold at any time slice

® can parallel transport along equal-time slices, but
not between different times




Velocity vector v

Use v to transform objects from one time slice to
another




Cartan 1923-1924

Reformulation of Newton’s theory of gravity




's theory of gravity
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Reformulation of Newton
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Reformulation of Newton’s theory of gravity
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Reformulation of Newton’s theory of gravity




Cartan 1923-1924

Reformulation of Newton’s theory of gravity




Cartan 1923-1924

Reformulation of Newton’s theory of gravity




Newton-Cartan geometry

(h*", n,,, v*) dn =0 h*Yn, =0

wo_
n,v" =1
hHY Ry = 05 — vtny h v’ =0

dn =0=n=dt choose t to be time coordinate

0 O
p g
= (0 )




Connection in Newton-Cartan
geometry

1
Fi\w = vkﬁ(ﬂny) T §h>\p(auhpv + Ovhpp — Ophyu)

V)\h'uy — O VMTLV — O h/a[,qu]va — O




Righer-dimensional interpretation

(0 n,
gMN T n'u hlu’/

1
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1
qu = UAa(u”u) T §h)\p(auhpv + Ovhpp — Ophyu)




Improved gauge potentials

® With v one can construct a gauge potential that
transforms as a one-form

~

TTLU2
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Ay = A,

igij(?ivj

~

0A, = —EF0L A, — ApD,L"

What is v? Should be dynamically determined




Effective field theory

S = i d>z " a,0,a, —/d3a: Vh pv' D,

_9 . |
‘|‘/d333 J EMVATLMFI/)\ +S50 [/07 v, hl]]

8m

D,po=0,0p—A,+a,—sw,
related to “shift”
Integrating out p, v’, a,

= effective action for Ay, hY




Spin connection
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nonzero
in flat space




Wen-Zee shift

K
mixed CS 2—6“”&4 Oywy = —\fAOR 4.,

T

Total particle number on a manifold:

Q = /d2x\fj —/dzxf(QﬁB+ER):VN¢+RX

On a sphere: Q=v(Ny+S8),

N\

IQH states: S =v

Laughlin’s states: S =1/v



Shift for IQH states

Q =nNgy +n* =n(Ny +n)




Physical consequences

Kohn’s theorem
Hall viscosity
Hall conductivity: universal to order g2

Structure factor




Kohn’s theorem

Constant B,
Response to homogeneous, time dependent E(t) independent
of interactions: motion of center of mass

mv; = B, + Ez'j?]jB




Hall viscosity from WZ term

Avron, Seiler, Zograf

kB .
Swz = 167T€]hikathjk‘|‘"‘

(T (T — Tyy)) ~ i
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derived by N.Read
previously




correct for v=1 state




Structure factor and shift

® Non-universal part of the action: leading
contributions are

O-ggF(iat)O-ZZ Opy — £vhuu

positivity of spectral densities of stress-stress correlators:

equal time density-density corr

s(k S — 1]
>
k—0 (kO)* — 8

lim (Haldane 2009)

Inequality saturated by Laughlin’s wave function




Conclusion and outlook

Quantum Hall states naturally live in Newton-
Cartan geometry

Symmetry determines the g2 correction to Hall
conductivity, other physical quantities

Further questions:
® edge states!
® Relationship with conformal field theories?

® Meaning of Laughlin’s wave function?

® |mplications for holographic realizations?






What is Hall viscosity!

Standard fluid dynamics: 9;p + 0;5° = 0 continuity eq.
05" + (%-Tij — (0 Navier-Stokes eq.

jt = pv

T = pv'v? + P& —nV;

In 2 spatial dimensions, it is possible to write

T = ... — g (eFVF 4 Ry breaks parity
dissipationless

Hall viscosity  (Avron Seiler Zograf)




Hall viscosity in picture

y dimension

boundary plate
(2D, moving) | velocity, u

shear stress, T

T

boundary plate (2D, stationary) Hall shear stress




Physical interpretation

® First term: Hall viscosity

additional force Fx~0x Txx
Hall effect: additional contribution to vy




Physical interpretation (ll)

® 2nd term: more complicated interpretation

Fluid has nonzero angular velocity

1 cE’ ()

Q(x) = 5 0xvy = 53 0B = 2mcfl/e

Coriolis=Lorentz

Hall fluid is diamagnetic: de = —MdB

M is spatially dependent M=M(x)

Extra contribution to current j=czx VM



Current ~ gradient of magnetization




