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We investigate the global structure of rotating black holes im-
mersed in an external magnetic field; i.e. a “Magnetised Kerr-
Newman Spacetime.” In general, there is an ergoregion extending
to infinity, but this is avoided in a special case. We discuss the
thermodynamics, and also extensions to black holes in supergrav-
ity.

Based on work with Gary Gibbons, Abid Mujtaba, and more re-
cent work with Yi Pang, Mirjam Cvetič and Zain Saleem.



Astrophysical Black Hole in an External Magnetic Field

• Black holes are known to occur at the centre of most galaxies.
These will in general have large angular momentum, owing
to the accretion processes involving infalling matter.

• Blandford and Znajek proposed a mechanism in which the
magnetic field generated by the circulation of charged parti-
cles in an equatorial accretion disc leads to electrostatic fields
that accelerate charged particles near the horizon, generating
radiation that itself gives rise to electron-positron pair pro-
duction. This in turn can lead to a net extraction of energy
from the black hole via a Penrose-type process, thus possibly
providing a powerful energy source at the galactic nucleus.

• Wald considered a neutral rotating black hole (Kerr solution)
in the background of an external magnetic field. As with
Blandford and Znajek, the magnetic field was treated as a
“test field”; i.e. the back-reaction of the magnetic field on
the geometry was neglected.

• Wald argued that if the black hole has mass m and angular
momentum j = am, then in the presence of an external mag-
netic field B it becomes energetically favourable for the black
hole to acquire an electric charge Q, given by

Q = 2jB .

This could occur via a vacuum breakdown through pair pro-
duction.



Exact Solution with Back Reaction?

• The notion of a black hole immersed in an “originally uniform
magnetic field” is a little problematic in general relativity,
since the total electromagnetic energy will be infinite, and
spacetime will necessarily become highly non-Minkowskian at
infinity.

• An exact solution that is perhaps the closest to this is pro-
vided, in the absence of rotation, by the Schwarzschild-Melvin
metric, with

ds2 = H [−fdt2 + f−1dr2 + r2dθ2] +
r2 sin2 θ

H
dφ2 ,

f = 1−
2m

r
, H = (1 + 1

4B
2r2 sin2 θ)2 ,

A =
Br2 sin2 θ√

H
dφ .

• This is asymptotic to the Melvin universe at large r. (i.e.
when r >> m). It approaches the Minkowski metric near
the axis (θ = 0 or θ = π), but is highly non-Minkowskian
away from the axis. This is most clearly seen in cylindrical
coordinates

ρ = r sin θ , z = r cos θ .



The Melvin Universe

• In cylindrical coordinates, Melvin solution (m = 0) is

ds2 = H (−dt2 + dz2 + dρ2) +H−1 ρ2 dφ2 ,

F = dA = BH−1 ρdρ ∧ dφ , H = (1 + 1
4B

2 ρ2)2 .

• If B2ρ2 << 1 (i.e. much closer to the z axis than the Melvin
radius ρMelvin = 2/B), the metric and field strength become

ds2 = −dt2 + dz2 + dρ2 + ρ2dφ2 = −dt2 + dz2 + dx2 + dy2 ,

F = B ρdρ ∧ dφ = B dx ∧ dy ,
where x = ρ cosφ, y = ρ sinφ. This is just Minkowski space-

time with a uniform magnetic field B along the z axis.

• Melvin solution has |Riem|2 = 1
4B

4(80−24B2ρ2+3B4ρ4)H−4.
It is everywhere non-singular, and it describes a parallel bun-
dle of magnetic flux held together by its own gravitational
attraction.

• Schwarzschild-Melvin is a non-rotating black hole immersed
in this asymptotic background.



Rotating Generalisations?

• Rotating generalisations have been obtained before. The so-
lutions are too complicated to work with reliably by hand,
so it is useful first to reconstruct from scratch, using alge-
braic computing. We used a solution-generating technique
to “magnetise” Kerr-Newman, via a Kaluza-Klein reduction
to three dimensions. The starting point is Einstein-Maxwell
theory in four dimensions:

L4 = R− F2 .

We then assume a metric with a spacelike Killing vector ∂/∂φ
and reduce to three dimensions:

ds2
4 = e2ϕ ds̄2

3 + e−2ϕ (dφ+ 2Ā)2 ,

A = Ā+ χ (dφ+ 2Ā) .

This gives the three-dimensional Lagrangian

L̄3 = R̄− 2(∂ϕ)2 − 2eϕ (∂χ)2 − e−4ϕF̄2 − e−2ϕF̄2 ,

where F̄ = dĀ and F̄ = dĀ+ 2χdĀ.

• Dualising Ā and Ā; e−2ϕ ∗̄F̄ = dψ and e−4ϕ ∗̄F̄ = dσ − 2χdψ
gives 3D gravity coupled to a nonlinear sigma model:

L3 = R̄− 2(∂ϕ)2 − 2eϕ [(∂χ)2 + (∂ψ)2]− 2e2ϕ (∂σ − 2χ∂ψ)2 .



SU(2,1) Transformations, and Magnetisation

• The scalar sigma model metric

dΣ2 = dϕ2 + e2ϕ [dχ2 + dψ2] + e4ϕ (dσ − 2χdψ)2

is C̃P2 = SU(2,1)/U(2), the non-compact (negative curva-
ture) version of CP2. Defining matrices Eab with just a 1 at
row a, column b, and H = E0

0 − E2
2, we can parameterise a

coset representative, and SU(2,1) element, as

V = eϕHe−2iσE0
2
e
√

2χ(E0
1+E1

2)e−i
√

2ψ(E0
1−E1

2) .

We have

V†ηV = η , η =

 0 0 −1
0 1 0
−1 0 0

 ,

with η being the invariant metric of SU(2,1). The Lagrangian
can be written as L3 = R − tr(M−1 ∂M)2 where M = V†V.
L3 is manifestly invariant under M−→M′ = U†MU where U
is any constant SU(2,1) matrix, obeying U†ηU = η.



Magnetisation of Kerr-Newman Black Hole

• We start from the rotating, charged Kerr-Newman black hole:

ds2
4 = −fdt2 +R2

(
dr2

∆
+ dθ2

)
+

Σ sin2 θ

R2
(dφ− ωdt)2 ,

A = Φ0 dt+ Φ3 (dφ− ωdt) ,
where

R2 = r2 + a2 cos2 θ , ∆ = (r2 + a2)− 2mr + q2 ,

ω =
a(2mr − q2)

Σ
, Σ = (r2 + a2)2 − a2∆ sin2 θ ,

f =
R2∆

Σ
, Φ0 =

qr(r2 + a2)

Σ
, Φ3 = −

aqr sin2 θ

R2
.

• We now reduce to three dimensions on ∂/∂φ, apply the mag-
netising transformation, which turns out to be

U =


1 0 0
B√
2

1 0

B2

4
B√
2

1

 ,

and then retrace the steps back to four dimensions.



Further SU(2,1) Transformations

• Amongst the other possible transformations within the SU(2,1)
symmetry group are electrifications (adding an external elec-
tric field):

U =


1 0 0

(B+iE)√
2

1 0

(B2+E2)
4

(B−iE)√
2

1

 .

• Electric/magnetic duality transformations, which in four di-
mensions take the form

F −→ F ′ = F cosα+ ∗F sinα ,

This is implemented in 3 dimensions by the SU(2,1) matrix

U =


e−

i
3α 0 0

0 e
2i
3 α 0

0 0 e−
i
3α

 .



Magnetisation of Kerr-Newman Black Hole

• Applied to Schwarzschild, it indeed gives Schwarzschild-Melvin.

• Applied to the Kerr-Newman metric (with electric and mag-
netic charges q and p, it gives a rather indigestible result:

ds2
4 = H

[
− fdt2 +R2

(
dr2

∆
+ dθ2

)]
+

Σ sin2 θ

H R2
(dφ− ωdt)2 ,

A = Φ0 dt+ Φ3 (dφ− ωdt) ,

where

H = 1 +
H(1)B +H(2)B2 +H(3)B3 +H(4)B4

R2

with
H(1) = 2aqr sin2 θ − 2p(r2 + a2) cos θ ,

H(2) = 1
2
[(r2 + a2)2 − a2∆ sin2 θ] sin2 θ + 3

2
q̃2(a2 + r2 cos2 θ) ,

H(3) = −pa2∆ sin2 θ cos θ −
qa∆

r
[r2(3− cos2 θ) cos2 θ + a2(1 + cos2 θ)] +

aq(r2 + a2)2(1 + cos2 θ)

2r

−1
2
p(r4 − a4) sin2 θ cos θ +

qq̃2a[(2r2 + a2) cos2 θ + a2]

2r
− 1

2
pq̃2(r2 + a2) cos3 θ ,

H(4) = 1
16

(r2 + a2)2R2 sin4 θ + 1
4
ma2r(r2 + a2) sin6 θ + 1

4
ma2q̃2r(cos2 θ − 5) sin2 θ cos2 θ

+1
4
m2a2[r2(cos2 θ − 3)2 cos2 θ + a2(1 + cos2 θ)2]

+1
8
q̃2(r2 + a2)(r2 + a2 + a2 cos2 θ) sin2 θ cos2 θ + 1

16
q̃4[r2 cos2 θ + a2(1 + sin2 θ)2] cos2 θ

and we have defined q̃2 ≡ q2 + p2.

The function ω is given by



ω =
(2mr − q̃2)a+ ω(1)B + ω(2)B2 + ω(3)B3 + ω(4)B4

Σ
,

where
ω(1) = −2qr(r2 + a2) + 2ap∆ cos θ ,

ω(2) = −3
2
aq̃2(r2 + a2 + ∆ cos2 θ) ,

ω(3) = 4qm2a2r + 1
2
apq̃4 cos3 θ − 1

2
qr(r2 + a2)[r2 − a2 + (r2 + 3a2) cos2 θ]

+1
2
ap(r2 + a2)[3r2 + a2 − (r2 − a2) cos2 θ] cos θ + 1

2
qq̃2r[(r2 + 3a2) cos2 θ − 2a2]

+1
2
apq̃2[3r2 + a2 + 2a2 cos2 θ] cos θ − amq̃2(2aq + pr cos3 θ)

+qm[r4 − a4 + r2(r2 + 3a2) sin2 θ]− apmr[2R2 + (r2 + a2) sin2 θ] ,

ω(4) = 1
2
a3m3r(3 + cos4 θ)− 1

16
aq̃6 cos4 θ − 1

8
aq̃4[r2(2 + sin2 θ) cos2 θ + a2(1 + cos2 θ)]

+ 1
16
aq̃2(r2 + a2)[r2(1− 6 cos2 θ + 3 cos4 θ)− a2(1 + cos4 θ)]− 1

4
a3m2q̃2(3 + cos4 θ)

+1
4
am2[r4(3− 6 cos2 θ + cos4 θ) + 2a2r2(3 sin2 θ − 2 cos4 θ)− a4(1 + cos4 θ)]

+1
8
amq̃4r cos4 θ + 1

4
amq̃2r[2r2(3− cos2 θ) cos2 θ − a2(1− 3 cos2 θ − 2 cos4 θ)]

+1
8
amr(r2 + a2)[r2(3 + 6 cos2 θ − cos4 θ)− a2(1− 6 cos2 θ − 3 cos4 θ)] .

• This solution is often assumed to be asymptotic to the Melvin
universe. In general, it isn’t. Look at gtt :

• At large r, for generic θ, the metric component gtt does be-
have just like in Melvin, with

gtt −→ − 1
16B

4r4 sin4 θ .

But, near to the z axis at large distance, gtt goes (arbitrarily)
positive, signaling an ergoregion extending out to infinity.



• This is evident in the cylindrical coordinates ρ = r sin θ and
z = r cos θ where, for fixed ρ, a large z expansion gives

gtt −→
16B6(q + amB)2ρ2

W (ρ)2
z2

−
4B6(q + amB)[8qm+ aB(q2 + 4m2)]ρ2

W (ρ)2
z +O(z0) ,

So not asymptotically Melvin near the axis, and an infinite
ergoregion.

• The energy of a particle with 4-momentum pµ, measured with
respect to a future-directed timelike Killing vector K, is

E = −Kµ pµ

Here, we are thinking of K = ∂/∂t. If K becomes spacelike,
i.e. if there is an ergoregion, then the energy can become
negative. Can then extract energy by the Penrose Process,
in which a particle decays into two, one with negative energy
that falls into the black hole, and the other, with more energy
than the original particle, that escapes.

• In the original Kerr-Newman black hole there is a unique
choice of asymptotically-timelike Killing vector (i.e. K =
∂/∂t). In the magnetised solution we find that provided
we take q = −amB, there is a family of possible choices
K = ∂/∂t+ Ω ∂/∂φ, if the angular velocity Ω lies in an appro-
priate range.



q = −amB Magnetised Kerr-Newman

• With q = −amB, the problem of an ergoregion at infinity can
be avoided. Using the coordinate φ̃ = φ − Ω t, first look at
the off-diagonal metric component gtφ̃ at large z:

gtφ̃ =
2(8Ω + 12am2B4 + a3m2B6)ρ2

(4 + a2m2B4 +B2ρ2)2
+O(

1

z
) .

Choosing Ω = Ωs, where

Ωs = −1
8am

2B4(12 + a2B2) ,

we find at large z that

gtφ̃ = −
8amB2(4 + a2m2B4)ρ2

(4 + a2m2B4 +B2ρ2)2

1

z
+O(

1

z2
) ,

gtt = − 1
16(4 + a2m2B4 +B2ρ2)2 +O(

1

z
) ,

and so the metric near the axis is then genuinely asymptotic
to the static Melvin universe.



Asymptotically-Melvin Magnetised Kerr-Newman

• In the asymptotically static Melvin frame with timelike Killing
vector K = ∂/∂t+ Ωs ∂/∂φ, the q = −amB magnetised Kerr-
Newman-Melvin solution will still have an ergoregion in the
form of an oblate spheroid outside the outer horizon (very
like in the Kerr solution):

• In the Kerr solution, ∂/∂t is the unique Killing vector that
is timelike at infinity, and hence it is the unique choice as
generator of time translations:

• In the magnetised Kerr-Newman solution there is in fact a
range of angular velocities Ω around Ω = Ωs for which the
ergoregion is of only finite extent, and confined to the vicinity
of the black hole.



Conserved Charge and Angular Momentum

• These can be calculated most simply in the KK reduced 3D
language. The physical charge is given by the Gaussian inte-
gral

Q =
1

4π

∫
S2
∗F =

∆φ

4π

∫
S2
e−4ϕ ∗̄F̄ ,

=
∆φ

4π

∫
dψ =

∆φ

4π

[
ψ

]θ=π

θ=0
= q(1− 1

4q
2B2) + 2amB .

∆φ is the period of the azimuthal coordinate φ, determined
by requiring no conical singularities at N and S poles of S2:

∆φ = 2π
[
1 + 3

2q
2B2 + 2aqmB3 + (a2m2 + 1

16q
4)B4

]
.

• For angular momentum, following Wald, for every Killing vec-
tor ξ the Noether method gives a conserved charge

Q[ξ] =
1

16π

∫
S2
∗P , P = dξ + 4(ξµAµ)F .

Taking the azimuthal Killing vector with ξ = ∂/∂φ̃, where
φ̃ = (2π/∆φ)φ has canonical 2π period, then as a 1-form,
and in the 3D language, we have



ξ =
∆φ

2π
e−2ϕ (dφ+ 2Ā) and hence

P =
∆φ

π

[
e−2ϕ F̄ + 2χ F̄ − (e−2ϕ dϕ− 2χdχ) ∧ (dφ+ 2Ā)

]
.

This gives

∗P =
∆φ

π

[
dσ ∧ (dφ+ 2Ā)− ∗̄(dϕ− 2e2ϕ χdχ)

]
,

and so the angular momentum is

J =
1

16π

∫
S2
∗P =

(
∆φ

4π

)2 ∫
dσ =

(
∆φ

4π

)2 [
σ

]θ=π

θ=0

= am+ 1
2q

3B + 9
2amq

2B2 + 1
2qB

3(12a2m2 − q4)

+ 1
16amB

4(48a2m2 − 11q4) .

(Note: This includes the electromagnetic field contribution
as well as the purely gravitational “Komar” contribution from
∗dξ. Each by itself is singular in the Melvin background, but
the sum is non-singular.)



Thermodynamics

• We can expect that the first law should take the form

dE = TdS + ΩdJ + ΦdQ− µdB ,
We have calculated the conserved charges Q and J, and the
calculation of the entropy S and temperature T is straightfor-
ward. Unusual asymptotics of the Melvin background mean
that calculating the mass E, the angular velocity Ω the elec-
trostatic potential Φ, and the magnetic moment µ is trickier.

• The mass is given by (??) E = (∆φ/2π)m. We can seek
solution of the first law for Ω, Φ and µ. This works, and is
non-trivial since we have 4 equations for 3 unknowns.

• Solution is complicated. At leading order, we have

µ = aq(1 + a2m2B4) +O(q2) ,

Ω =
a

r2
+ + a2

−
2qBr+

r2
+ + a2

+O(B2) ,

Φ =
qr+

r2
+ + a2

−
3aq2B

2(r2
+ + a2)

+O(B2) .

Magnetic moment µ ∼ aq ∼ JQ/M , so at leading order we
recover the well-known black hole gyromagnetic ratio g ∼ 2.

• Satisfies Smarr-type relation E = 2TS + 2ΩJ + ΦQ+ µB.



Magnetised Black Holes in STU Supergravity

• We can magnetise black holes in supergravities too. Currently
we (Cvetič, Gibbons, Saleem, CNP) are looking in the four-
dimensional STU model (N = 2 supergravity coupled to 3
vector multiplets). Now have four independent U(1) gauge
fields, so four charges and four magnetic fields. We no use the
O(4,4) symmetry of the associated KK reduced 3-dimensional
sigma model to generate the magnetised solutions.

• As well as magnetising electric black holes, it is also now
of interest to magnetise magnetically-charged black holes.
Consider static black holes for simplicity. The metric is

ds2 = H ds2
3 +H−1 sin2 θ (dφ− ωdt)2 ,

ds2
3 = −r(2− 2m)dt2 +R1r2r3r4

(
dθ2 +

R1r2r3r4

r(r − 2m)
dr2

)
,

ω =
4∑
i=1

[
−
piBi
2ri

+
piB1B2B3B4[ri + (r − 2m) cos2 θ]r

8Bi ri

]
,

H2 =
1

r1r2r3r4

4∏
i=1

(
(1 + 1

2Bipi cos θ)2 +
B2
i r1r2r3r4

r2
i

sin2 θ

]
,

ri = r + 2m sinh2 δi , pi = 2m sinh δi cosh δi .



Conical Singularities and Force Balancing

• To avoid conical singularity at the North (South) pole, φ
should be identified with different periods at each:

N pole : ∆φ = 2π
∏
i

(1 + 1
2Bipi) ,

S pole : ∆φ = 2π
∏
i

(1− 1
2Bipi) .

In general, there is no single choice of period ∆φ that elim-
inates both conical singularities. This reflects the fact that
there is a net force on the black hole, and it must therefore
be supported by a “strut,” which is described by an energy-
momentum tensor with a delta-function singularity on the
axis. This happens, for example, for a magnetic Reissner-
Nordström black hole in an external magnetic field. (Or the
S-dual, an electric black hole in an external electric field.)

• With four separate gauge fields in the STU model we can
tune the fields and the charges to achieve a force balance:∏

i

(1 + 1
2Bipi) =

∏
i

(1− 1
2Bipi) .

This provides families of non-singular magnetic black holes
in external magnetic fields. These provide interesting mod-
els for investigating thermodynamics of systems in external
backgrounds.



Conclusions and Open Problems

• A rotating generalisation of the asymptotically-Melvin mag-
netised Schwarzschild solution does exist, but it must carry a
very specific electric charge, related to its mass and angular
momentum and the external B field. Otherwise, it has an
ergoregion extending to infinity close to the axis.

• The thermodynamics is quite subtle, owing to the unusual
asymptotic behaviour of the Melvin type background. Charge
and angular momentum can be calculated from conserved
currents, but ab initio computation of angular velocity, elec-
tric potential and magnetic moment is more difficult. Frame-
dragging of the magnetic field is rather complex.

• More extensive analysis of the global structure is needed.
Also, a detailed investigation of “asymptotically Melvin” bound-
ary conditions for fields.

• Melvin/CFT type dualities?

• Magnetisation of black holes in supergravities opens up new
possibilities; non-singular magnetised magnetic black holes,
etc.

• Recent work (Cvetič, Guica, Saleem) has shown how related
solution-generating transformations can be used to interpo-
late between black hole backgrounds and “subtracted geome-
tries” that can be used for studying the microscopic entropy.
We are investigating these further.


