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INTRODUCTION AND MOTIVATION



• Consider a system in 3 + 1 dimensions described by
relativistic hydrodynamics.

• The variables of fluid dynamics:
local velocities: uµ(x),
temperature: T (x),
conserved charges / chemical potentials: µa(x)

• The stress tensor Tµν(x) and conserved currents Jµ(x)a are
related to the fluid variables by the constitutive relations.

These relations can be organized in terms of a derivative
expansion.

• The equations of motion of fluid dynamics are the
conservation laws for the stress tensor and the currents.



For a charged relativistic fluid to first order in the derivative
expansion:

Tµν = (E + P)uµuν + Pgµν + πµν

πµν = −2ησµν − ζΘPµν

σµν = PµαPνβ

(
∇αuβ +∇βuα

2
− ∇ · u

3
gαβ

)
Θ = ∇ · u

Pµν = uµuν + gµν

E ,P energy density and pressure
η shear viscosity.
Θ bulk viscosity.
Pµν is the projector onto the spatial directions.
u · u = −1



• The charge current

Jµ = quµ + ∆Vµ + ξl lµ + ξBBµ

Vµ = (Eµ − TPµρ∂ρν)

Eµ = Fµνuν ,

Bµ =
1
2
εµναβuνFαβ,

lµ = εµναβuν∂αuβ,

ν =
µ

T

The background electric and magnetic field are given by
Eµ,Bµ.
∆ is the charge diffusivity.

•We work in the Landau frame

uµTµν = −Euν , uµJµ = −q



• Focus on the parity odd terms.
These terms are all related to the anomaly in the conservation
of the current Son and Surowka (2009), Neiman and Oz (2010)

∇µJµ = −C
8
εαβγδFαβFγδ +

C2

32π2 ε
αβγδRµ

ναβRν
µγδ

= CEµBµ +
C2

32π2 ε
αβγδRµ

ναβRν
µγδ.

Then

ξl = Cν2T 2
(

1− 2q
3(E + P)

νT
)

+ T 2C2

(
−2 +

4νqT
E + P

)
,

ξB = CνT
(

1− q
2(E + P)

νT
)

+ C2
qT 2

E + P



• Question:
Can parity odd transport coefficients at the next order (2
derivatives) in the derivative expansion of the constitutive
relations be related to the anomaly.

•What motivated this question?
Observation of chiral shear modes.



• Examine the hydrodynamic modes in the shear sector.
Keep stress tensor to the first order in the derivative expansion.
Examine the fluctuations about the equilibrium.

• Consider the equilibrium fluid configuration.

uµ = (1,0,0,0), gµν = (−1,1,1,1)

E (0),P(0) are constant in space time.
Turn on perturbations in the spatial components of the
velocities.

uµ = (1, vx (t , y),0, vz(t , y))

Velocities depend on only in the t and the y directions.



• To the linear order in perturbations,

T tx = (E (0) + P(0))vx , T tz = (E (0) + P(0))vz ,

T xy = −η∂yvx , T zy = −η∂yvz

• The equations of motion for the x , z components of the stress
tensor

∂tT tx + ∂yT yx = 0, ∂tT tz + ∂yT yz = 0

result in closed equations for the velocities

∂tvx − η

E (0) + P(0)∂
2
y vz = 0,

∂tvz − η

E (0 + P(0)∂
2
y vz = 0

• These are the 2 degenerate shear hydrodynamic modes with
dispersion relation

ω = −i
η

E (0) + P(0) k2



• The dispersion relation of these modes is determined by the
shear viscosity.

• AdS/CFT implies that the shear modes can be obtained by
examining the lowest shear channel quasi-normal modes of the
graviton fluctuations in the background of the Schwarzschild
black hole in AdS5 .

Thus the low lying shear modes in the bulk correspond to the
shear hydrodynamic modes.



• Let us now examine the holographic dual of N = 4 Yang-Mills
at finite chemical potential and temperature:
the charged AdS5 Reissner-Nördstrom black hole.



• Sahoo and Yee (2010) observed that the
degeneracy of the quasi-normal modes corresponding to the
shear modes for the case of a charged AdS5
Reissner-Nördstrom black holes splits.

• The dispersion relations splits into two chiral shear modes
given by

ω = −i
1

4πTH
k2 ± iκµ3

24πT 2
Hs

k3

where κ is the coefficient of the Chern-Simons term in the
gravitational action

κ

∫
d5xA ∧ F ∧ F

µ is the chemical potential, s is the entropy density.



• Recall the charged black hole corresponds to the dual theory
at finite temperature and finite chemical potential.

• How can the degeneracy of the 2 chiral modes be split ?

It certainly cannot be explained by single derivative terms in the
stress tensor or charge current.



• Erdmenger et. al (2008) and Banerjee et. al. (2008)
evaluated contributions to the stress tensor of the dual field
theory in this system directly using holography.

• Found the existence of the following 2 derivative term

π(2)µν = Φ1∇〈µlν〉
lµ = εµναβuν∂αuβ

A〈µν〉 = PµαPνβ(
Aαβ + Aβα

2
−

gαβ
3

Aρρ)

• Φ1 is proportional to the coefficient of the Chern-Simons term
and the ( chemical potentials )3 .



• The presence of the 2 derivative term explains the splitting of
the chiral shear modes.

•With this additional term in the stress tensor let us again
examine the fluctuations about the equilibrium fluid
configuration.
Consider again the equilibrium fluid configuration.

uµ = (1,0,0,0), gµν = (−1,1,1,1)

E (0),P(0) are constant in space time.
Turn on perturbations in the spatial components of the
velocities.

uµ = (1, vx (t , y),0, vz(t , y))

The dependence of the velocities is only in the t and the y
directions.



• To the linear order in perturbations,

T tx = (E + P)vx , T tz = (E + P)vz ,

T xy = −η∂yvx +
Φ1

2
∂2

y vz , T zy = −η∂yvz − Φ1

2
∂2

y vx

• The equations of motion for the stress tensor now yield the
following closed equations for the velocities.

−iω(E (0) + P(0))vx + k2ηvx − i
Φ1

2
k3vz = 0

−iω(E (0) + P(0))vz + k2ηvz + i
Φ1

2
k3vx = 0



• The dispersion relation from these equations are

ω = −i
η

E (0) + P(0) k2 ± i
Φ1

2(E (0) + P(0))
k3

• Substituting the value of Φ1 found by Erdmenger et. al and
Banerjee et. al we can recover the quasi-normal modes of
Sahoo and Yee.



• Thus in fluid dynamics with this parity odd 2 derivative term
the 2 shear modes split and become chiral.

• Another observation from holography is that the current dual
to the gauge field in the bulk obeys the following conservation
law

∂µJµ = κεµνρσFµνFρσ

The current obeys the anomalous conservation law.

• All this had to do with the strong coupling hydrodynamics of
N = 4.



• Lets ask the question:
Is it true that in any fluid dynamics if the charge current obeys
the anomalous conservation law the second order transport Φ1
and other parity odd transport coefficients can be related to the
anomaly.



KUBO FORMULAE



• The transport coefficient Φ1 affects dispersion relation
obtained by linearized fluctuations.

There must be a Kubo formula involving a 2 point function for it.

• Let us assume the only parity odd coefficient is Φ1.
(Can be generalized with all the parity odd coefficients).

• The following equilibrium configuration

gµν = diag(−1,1,1,1), uµ = (1,0,0,0)

The temperature T , chemical potential ν are constant in space
time.
Energy E (0) and pressure P(0) are constant is space time.



• Now consider the following perturbations from this
background.

δgtx = htx , δgtz = htz , δgyx = hyx , δgyz = hyz .

The velocity perturbation is given by

δuµ = (0, vx ,0, vz)

All perturbations are assumed to have dependence only in the
time t and y direction.



• To second order in derivatives and to linear order in the
perturbations we have

T tx = (E (0) + P(0))vx + P(0)htx ,

T tz = (E (0) + P(0))vz + P(0)htx ,

T ty = 0,

T yx = −P(0)hyx − η(∂yvx + ∂thyx ) +
1
2

Φ2∂
2
y (vz + hzt )

• The equations of motion in the x direction

∂tT tx + ∂thtxE (0) + ∂yT yx = 0.

Fourier transforming and in the zero frequency limit obtain the
Ward identity

lim
ω→0

T yx (k) = 0.



• Eliminate vx , vz

T yx = −P(0)hyx − η

(
∂yT tx − P(0)∂yhtx

E (0) + P(0

)

+
Φ1

2

(
∂2

y T tz + E (0)∂2
y htz

E (0) + P(0)

)

• Fourier transform, take zero frequency limit, differentiate the
Ward identity with respect to hzt :

k2

E (0) + P(0)

[
Φ1(〈T tz(k)T tz(−k)〉+ E (0))

]
= −ik

2η
E (0) + P(0) 〈T

tx (k)T tz(−k)〉,

•We have

lim
k→0,ω→0

〈T tz(k)T tz(−k)〉 = P(0),



lim
k→0,ω→0

〈T tx (k)T tz(−k)〉 = ik
(

C
3

(ν(0)T (0))3 − 2C2(T (0))3ν(0)
)
,

C is the coefficient of the chiral anomaly for the charge current,
C2 is the coefficient of the mixed anomaly. Landsteiner et. al

• This result is obtained by: Considering a theory of free chiral
fermions with a chiral chemical potential

The retarded correlator receives contributions at one-loop
which is proportional to the anomalies.

Note that the chiral chemical potential is necessary for the
retarded correlator to be non-vanishing.



• These correlators can also be evaluated by AdS/CFT in the
background of the Reissner-Nördstrom black hole.

• The one-loop answer, when applied to the case of the
fermions in N = 4. agrees with that obtained at strong
coupling.

• Substituting these expressions one obtains

Φ1 =
2η

E (0) + P(0)

(
C
3

(ν(0)T (0))3 − 2C2(T (0))3ν(0)
)



• A similar Kubo formula can be derived for the transport
coefficient

π(2)µν = Φ2∇〈µBν〉

Bµ is the magnetic field.



• Both these transport coefficients are obtained by examining
time independent equilibrium, ω → 0 limit.

These are called ‘non-dissipative’ coefficients as opposed to
coefficients which are obtained as

T = lim
ω→0

Green′s function

ω

like the shear viscosity, the ‘dissipative coefficients’. These
transport coefficients vanish at time independent equilibrium.

• An ideal method of obtaining ‘non-dissipative’ type of
coefficients is the equilibrium partition function method
developed by Jensen et. al , Banerjee et. al .

•We will apply this method to obtain some of the parity odd
coefficients at the second order.



PARITY ODD COEFFICIENTS AT 2ND ORDER



•We first write down the number of independent parity odd
transport coefficients for a charged non-conformal fluid at the
2nd order in derivative expansion.

Type number non-vanishing
pseudo scalars 6 4
pseudo vectors 9 2
pseudo tensors 12 6

• The explicit forms of each terms are listed in the paper.

• The pseudo scalars occur in the 2nd derivative constitutive
terms of the trace of the stress tensor.

The pseudo vectors occur in the current.

The pseudo tensors occur in the traceless part of the stress
tensor.



• Basis of vectors to construct the second order terms:
Vorticity

lµ = εµναβuν∂αuβ

Magnetic field

Bµ =
1
2
εµναβuνFαβ

Parity odd vectors first order in derivatives.

Parity even vectors.

uµ, ∂µT , ∂µν

The electric field in the combination

Vµ = Eµ − TPµρ∂ρν

vanishes on time independent equilibrium.



• Tensors: The shear tensor

σµν = ∇〈µuν〉

which vanishes on time independent equilibrium and

A〈µν〉 = Pα
µPβ

ν

(
Aαβ + Aβα

2
−

PγθAγθ
3

Gαβ

)
,

• Scalar
Θ = ∇µuµ

vanishes on time independent equilibrium.



• Using these basic quantities:
one can put together the various independent terms that will
occur at 2nd order in the constitutive relations.



•We will list out the terms which do not vanish in time
independent equilibrium.

Pseudo-scalars:

S1 = lµ∂µν : χ1

S2 = Bµ∂µν : χ2

S3 = lµ∂µT : χ3

S4 = Bµ∂µT : χ4

where lµ = εµναβuν∂αuβ, Bµ = 1
2ε
µναβuνFαβ

Pseudo-vectors:

Vµ(1) = εµναβuνBαlβ : ∆1

Vµ(2) = εµναβuν(∂αν)(∂αT ) : ∆2



Pseudo-tensors:

τ (1)µν = ∇〈µlν〉 : Φ1

τ (2)µν = ∇〈µBν〉 : Φ2

τ (3)µν = l〈µ∂ν〉ν : Φ3

τ (4)µν = B〈µ∂ν〉ν : Φ4

τ (5)µν = l〈µ∂ν〉T : Φ5

τ (6)µν = B〈µ∂ν〉T : Φ6



• The rest of the transport coefficients involve structures which
vanish in time independent equilibrium.

•We will determine the coefficients Φ1, · · ·Φ6,∆2 in terms of
the anomalies. We will also obtain 3 constraints among the 5
coefficients χ1, · · ·χ4 and ∆1 which also involves the
anomalies.

• Note that using the Kubo formula we have already found
Φ1,Φ2.
Thus it can be used as a check.



EQUILIBRIUM PARTITION METHOD



• The equilibrium partition method relies on the existence of an
time independent fluid configuration for the background

ds2 = −e2σ(dt + aidx i)2 + gijdx idx j

A = Aµdxµ

σ, ai ,gij ,Aµ are functions of only the spatial co-ordinates.

•We will see: the relation of the local temperature and the
chemical potential to the background is

T = T0e−σ, ν =
A0

T0



The strategy to obtain transport coefficients:

•Write down the most general partition function to a given
order in derivative expansion.

It will be a function of the background: σ, ai ,gij ,Aµ and their
derivatives.

• Vary the partition function Z to obtain the general form of
Tµν |equilibrium and Jµ|equilibrium.



•Write down the most general form for the constitutive relations
for the stress tensor and the charge current up to a given order
in the derivative expansion.

This will define the transport coefficients in a given basis.
We choose a basis which satisfies the Landau frame condition.

• Evaluate this stress tensor and the charge current on the
equilibrium configuration.

This results in Tµν |equilibrium and Jµ|equilibrium.



• Equate

Tµν |equilibrium = Tµν |equilibrium

Jµ|equilibrium = Jµ|equilibrium.

• The last step constrains the transport coefficients or
determines them.

• This procedure constrains only those transport coefficients
which do not vanish on time independent equilibrium
configurations.



• Let us see how the the procedure works at the zeroth
derivative order.
• The partition function is given by

ln Z =

∫
d3x
√

g3
eσ

T0
P(T0e−σ,A0e−σ)

The pre-factor appears due to dimensional reduction: the
radius of the thermal circle.

The dependence of the function as e−σT0 and A0e−σ is taken
for convenience.

Note that it is local temperature T and the local chemical
potential µ.



• Varying the partition function with respect to the backgrounds

T ij = Pg ij ,

T00 = e2σ(P − T∂T P − µ∂µP)

J0 = e−σ∂µP

The rest of the components vanish.



• The zeroth derivative, perfect fluid form for the stress tensor
and the charge current

Tµν = (E + P)uµuν + Pgµν ,
Jµ = quµ

• Equating them yields

e−σ(1,0,0,0) = uµ

P = P
−P + T∂T P + µ∂µP = E

∂µP = q



• Note that we found the equilibrium fluid configuration also.

Comparision with thermodynamics also yields the expression
for the local temperature in terms of background.

T (x) = e−σT0, µ(x) =
A0

T0



• This procedure can be carried to the first order in derivatives.

• The CPT invariant partition function at first order is
determined entirely by the anomaly coefficients C,C2



• The first order correction to the equilibrium fluid configuration

[δu(1)]0 = 0, δT(1) = 0, δν(1) = 0,

[δu(1)]
0 = −ai [δu(1)]

i ,

[δu(1)]
i =

(
b1

2

)
l̄ i + b2B̄i ,

where

Fjk ≡ ∂jAk − ∂kAj ,

l̄ i = −eσ

2
εijk fjk ,

b1 =
T 3

E + P

(
2Cν3

3
− 4C2ν

)
,

b2 =
T 2

E + P

(
Cν2

2
− C2

)
,

Ai = Ai −A0ai



• Let us now proceed to the 2nd order.

The most general second order parity odd partition function

Z(2) =

∫ √
g3

[
M1(T , ν) εijk∂iνFjk + T0M2(T , ν) εijk∂iνfjk

]
.

fij = ∂iaj − ∂jak .

• From this one sees the second order parity odd correction

[T (2)]ij |equilibrium = 0

• The other components of the stress tensor and current at
second order can also be obtained.



• The second order correction to the stress tensor from fluid
dynamic considerations

[T(2)]µν =
6∑

i=1

Φi τ
(i)
µν + Pµν

[
4∑

i=1

χi Si

]
,

Jµ(2) =
2∑

i=1

∆i Vµ(i).

We have kept only the parity odd terms which do not vanish
on time independent equilibrium configurations.



• Examine the corrections at the 2nd order to the traceless part
of the stress tensor at equilibrium.

T ij |equilibrium = [T(0)]
ij − 2ησij

(1) + [T(2)]
ij

• Corrections arise from two sources.

(1) Substituting the 1st order correction of the fluid velocity in
the shear tensor.
(2) Substituting the 0th order fluid velocity configuration in the
second order terms [T(2)]

ij .

There are no corrections to the traceless part from the 2nd
order corrections to the fluid velocity, thermodynamic functions
substituted in the zeroth order stress tensor.



• From the equilibrium partition function we know that

[T(2)]
ij |equlibrium = 0

Thus the two terms (1) +(2) should vanish.



• Corrections from (2)

We examine the 2nd order term obtained by substituting the
zeroth order equilibrium velocity configuration into [T(2)]

ij .

They can be organized as

[T(2)]
ij
odd |equilibrium =

6∑
a=1

Φa[τ (a)]ij

where



[τ (1)]ij = g ilg jm
[
∇l l̄m +∇m l̄l

2
− glm

3
(∇k l̄k )− glm

3
(∂kσ)̄lk

]
,

[τ (2)]ij = g ilg jm
[
∇l B̄m +∇mB̄l

2
− glm

3
(∇k B̄k )− glm

3
(∂kσ)B̄k

]
,

[τ (3)]ij = g ilg jm
[

(∇l ν̄ )̄lm + (∇mν̄ )̄ll
2

− glm

3
(∇k ν̄ l̄k )

]
,

[τ (4)]ij = g ilg jm
[

(∇l ν̄)B̄m + (∇mν̄)B̄l

2
− glm

3
(Bk∇k ν̄ )̄

]
,

[τ (5)]ij = g ilg jm
[

(∇l T̄ )̄lm + (∇mT̄ )̄ll
2

− glm

3
(̄lk∇k T̄ )

]
[τ (6)]ij = g ilg jm

[
(∇l T̄ )B̄m + (∇mT̄ )B̄l

2
− glm

3
(B̄k∇k T̄ )

]
,

where l̄ i ≡ −eσ

2 ε
ijk fjk and B̄i ≡ 1

2ε
ijk (Fjk + A0fjk ).



• Corrections from (1)

Substituting the 1st order velocity correction into the shear
tensor, it organizes as

−2ηδσij = −2η
[

b1

2
[τ (1)]ij + b2[τ (2)]ij +

1
2

(
∂b1

∂ν

)
[τ (3)]ij

+

(
∂b2

∂ν

)
[τ (4)]ij

+
1
2

(
−b1

T
+
∂b1

∂T

)
[τ (5)]ij +

(
−b2

T
+
∂b2

∂T

)
[τ (6)]ij

]
.

where

b1 =
T 3

E + P

(
2Cν3

3
− 4C2ν

)
, b2 =

T 2

E + P

(
Cν2

2
− C2

)
,



• Demanding that the total contribution to the spatial part of the
stress tensor vanishes gives the following unique solution to the
transport coefficients.

Φ1 = η b1, Φ2 = 2η b2, Φ3 = η

(
∂b1

∂ν

)
, Φ4 = 2η

(
∂b2

∂ν

)
,

Φ5 = η

[
−b1

T
+
∂b1

∂T

]
, Φ6 = 2η

[
−b2

T
+
∂b2

∂T

]
,



• The values for Φ1,Φ2 agrees with that obtained from the Kubo
formula.

• On examining the trace part of the stress tensor and the other
components of the stress tensor and the charge current from
the partition function.

One more transport coefficient ∆2 can be determined.

3 relations among the 5 transport coefficients ∆2, χ1, χ2, χ3, χ4
can be obtained.



RESULTS



• The final result of the analysis.

Φ1 = η b1, Φ2 = 2η b2, Φ3 = η

(
∂b1

∂ν

)
, Φ4 = 2η

(
∂b2

∂ν

)
,

Φ5 = η

[
−b1

T
+
∂b1

∂T

]
, Φ6 = 2η

[
−b2

T
+
∂b2

∂T

]
,



∆2 = −∆b1

2
,

T 2R1

[
χ3 −

ζ

2

(
∂b1

∂T
− 2b1

T

)]
− R2

[
χ1 −

ζ

2

(
∂b1

∂ν
− 2b2T

)]
= 0,

T 2R1

[
χ4 − ζ

(
∂b2

∂T
− b2

T

)]
+ R2

[
χ2 − ζ

(
∂b1

∂ν

)]
= 0,

R1T ∆1 +

[
χ2 − ζ

(
∂b2

∂ν

)]
− q

(E + P)

[
χ1 −

ζ

2

(
∂b1

∂ν
− 2b2T

)]
= 0,

∆ is the charge diffusivity : occurs at the 1st order in the charge
current.
ζ the bulk viscosity.



b1 =
T 3

E + P

(
2Cν3

3
− 4C2ν

)
, b2 =

T 2

E + P

(
Cν2

2
− C2

)
,

R1 =

(
∂P
∂E

)
q
, R2 =

(
∂P
∂q

)
E
.

Note that C is the gauge anomaly coefficient and C2 is the
coefficient of the mixed gauge-gravitational anomaly.



CONCLUSIONS



•We have related 7 parity odd transport coefficients directly to
the anomaly.

• 5 others are constrained by 3 relations. The constrains
involve the anomaly coefficient.

• These results were obtained by the equilibrium partition
function method.

• 2 transport coefficients were also obtained by Kubo formulae.



• Our results are in agreement with the recent holographic
evaluation of the transport coefficients of conformal fluids by
Amando et. al (2013)

• They are also in agreement with the calculations of Kharzeev
and Yee ( 2011) who used constrains from the positivity of
entropy production in conformal fluids.

• It will be interesting to obtain Kubo formulae for the remaining
2nd order transport coefficients.

The rest will involve 3 point functions.



• One consequence of these relations is that if in any fluid
dynamics there is an anomalous conservation law, eg.
Conditions at RHIC due to a chiral chemical potential. Such
transport coefficients will be non-zero and their effects like
chiral shear modes though sub-leading will be present.

• This insight into the behaviour of general fluids was possible
by first examining the fluid dynamics for system which admits a
holographic dual and studying its consequences.


