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Conformal Defects have been studied extensively by 
Condensed-Matter physicists for about 20 years

Impressive advances in nano-electronics makes it 

They describe critical behavior of impurities in low-d
quantum systems (quantum dots in quantum wires)

possible nowadays to engineer these in the lab

nanotubes grown by an ethylene-hydrogen 
process on Si/Si-oxide

Nanotubes over Slits on 
Si-nitride membranes

Photos from U. of Basel “ Nano-electronics” group



 A (small) group coming from string theory, or more formal
QFT,  has been interested in them for just over 10 years

Why ? 

        Natural extension of CFT2  to non-local observables
 (like Wilson loop in gauge theories, but much richer);

        Hope that these may play a role in string theory, 
 similar to D-branes (?) 

    Interesting new mathematical structure(s)

 Some (modest) observations, more to come ??



 Outline of this talk

 
Conformal defects & interfaces:  a short review

CFT maps (“functors”) and fusion

Rational extension of  O(d,d, Z)

Calabi’s diastasis as interface entropy

 with I. Brunner, D. Roggenkamp   (arXiv: 1205.4647;   1303.3616)

 with I. Brunner, M. Douglas, L. Rastelli     (arXiv: 1307.xxxx)



1.   Conformal defects & interfaces:  a short review

They are close relatives of  boundary critical phenomena:

 
Quantum impurities in 1D systems

 Kane, Fisher  ’92 ;   ....

Line defects in classical 2D systems

 Affleck, Oshikawa  ’95 ;   ....

 Ising model with couplings:

J

bJ

−∞ < b <∞



Tomonaga-Luttinger liquid

pF−pF

εF

p

ε(p)

 linear dispersion near two Fermi points

=⇒  two relativistic fermions ψ , ψ̃

 Bosonization: 
ψ̃ =: exp(iφ +

i

vF

∫ x

∂tφ) :ψ =: exp(−iφ +
i

vF

∫ x

∂tφ) :

φ ≡ φ + π

 charge ; current densities

 periodic identification

example :   Transport in 

ρ =
i

π
∂xφ ; j =

i

π
∂tφ



 the T-L Hamiltonian is: 

H =
∫

dx

2π

[
1
vF

(∂tφ)2 + vF (∂xφ)2 + G(∂xφ)2
]

 free fermions 
 charge-charge

interaction 

 Rescaling to bring to standard form changes periodicity of field: 

 where 

 depends on material of q-wire 

2R = (1 + G/vF )1/4φ ≡ φ + 2πR

NB:  Simplest example of non-Fermi liquid for  G != 0



incident transmitted

reflected

At low T and energies two simplest fixed points: 

Dirichlet:  φ1,2   vanish, so current is zero 

 Consider simple impurity:  what are the possible (low-E) fixed points?

 Folding trick               conformal boundary of c=2  theory=⇒

 two possibilities:

t

x



=⇒ ∂tφ
1 = ∂tφ

2 Charge conservation 

 two possibilities:=⇒

 two possibilities:

 (full reflection)    D0-brane

 (full transmission)    D1-brane∂x(φ1 + φ2) = 0

∂t(φ1 + φ2) = 0

 Pictorially:

2πR 2πR

2πR 2πR

O O



 Stability depends on R : 

 back-scattering:   open-string KK mode

 tunneling:   open-string winding mode

 most relevant operators: 

 KK mode becomes relevant for R>1/2 , i.e. repulsive interactions

 Ballistic transport of charge in this case impossible.

∆ =
1

2R

∆ = 2R

 Conversely, tunneling relevant for attractive interactions
 Impurity renormalizes away in this case.



 Many bands (“channels”)                many fields,  but Fermi velocities
   need not be the same;  CFT methods must then be modified. 

=⇒

 Simple generalizations : 

Spin current :                   rather than             current algebraSU(2)k U(1)

Interfaces between different CFTs

CFT1 CFT2

Boundary of  

P(CFT1)⊗ CFT2

Junction of N quantum wires                   boundary in c=N theory=⇒

 CB, de Boer, Dijkgraaf, Ooguri ‘02



 Generic defect :

A n-dimensional space of quantum states

 ( n = 2j+1 for magnetic impurity;  or the # of 
states of an electron in a quantum dot )

An interaction Hamiltonian              which is 
is an  n x n  matrix, with entries depending on

the local bulk fields. 

Himp

Pe−i
H

Himp(φ,∂φ)

No higher derivatives in geometric (sigma-model) limit

RG flow: HUV
imp −→ HIR

imp



An interesting example  in the            WZW model:Gk

Himp =
1
k

dimG∑

a=1

MaJa

Ja =
∑

r∈Z

Ja
r e−irt−|r|ε/2

n× n
Coupling constants:

matrices

βa(M) = − dMa

d log ε
= − 1

2k

[
M b, ifabcM c − [Ma, M b]

]
+ O

(
1
k2

)

 CB, Gaberdiel ‘04
 CB, Monnier ‘10

(A subset of !) fixed points :

Ma =      - dim generators of  n G



Choosing                          and                          G = SU(2)

λ∗0

ferromagnetic antiferromagnetic

UV fixed point IR fixed point

Ma = λ σa

impurity spin

gives the famous Kondo flow (screening of a magnetic impurity by 
the conduction electrons in a metal):

  Wilson ‘75

  Andrei ’80;  Wiegmann ‘80

  Affleck, Ludwig ‘91



Several other examples have been worked out : 

  Quella, Schomerus ‘02 WZW interfaces with k  jump

  Mikhailov, Schafer-Nameki ‘07 sigma modelAdS5 × S5

  Benichou ‘11

  Runkel ‘07
Integrable flows of minimal-model defects  Bazhanov, Lukyanov, Zamolodchikov ‘94-98

  Sarkissian ‘09

  Drukker, Gaiotto, Gomis ‘10
Liouville, Toda defects (&AGT)

  ...........



 2. Fusion and general properties

Boundaries are special cases of interfaces
mass gap CFT

Interfaces are boundaries of folded (tensor-product) theories

But non-trivial interfaces can be both added and fused (composed):

they form an “algebra”

CFT1 CFT3CFT2



defect

boundary

time

To make this precise, exchange the roles of space and 
time & go to the cylinder:

Associate a state of the
 CFT on the circle, such that

Associate an operator acting 
on the states of the CFT

(T++ − T−−)|B〉 = 0 .

[T++ − T−−,O] = 0

O = tr(Pe−i
H

Himp)



Special cases of interfaces :

[Otop, T++] = [Otop, T−−] = 0

NB:  Can be deformed freely without crossing other defects or operator 
insertions.

 Fully  reflecting  (factorized boundaries) 

 Fully  transmitting  (“topological”) 

(T++ − T−−)Orefl = Orefl (T++ − T−−) = 0

  Petkova, Zuber ‘00

 Chiral 

[T−− ,Ochir] = 0

(like previously-met  WZW defects)



 Topological  interfaces  map  

primary fields of CFT1  to those of CFT2

D-branes of CFT1  to D-branes of CFT2

  Graham, Watts  ’03
.........

 Brunner, Roggenkamp ‘07 
Gaiotto ‘12

 Conformal  interfaces also map  

 Their fusion is non-singular 

D-branes of CFT1  to D-branes of CFT2 ;

 But in general, they mix fields of equal spin.  In some cases, they implement the mixing

 of operators under bulk RG flow.

CFT IRCFTUV

 Their fusion is in general singular 



 

 
 NB:   clearly, automorphisms commute with the Virasoro algebras; 

An interesting observation is that all automorphisms of a CFT  (including

T-dualities and mirror symmetry)  are implemented by topological defects

  Froehlich, Fuchs, Runkel, Schweigert  ’04 

  ......

  Elitzur, Karni, Rabinovici, Sarkissian  ’13 

                 What is not obvious is that they are implemented by a local quench

                 Is there some general structure, analogous to 

                 OPE, Verlinde algebra etc  for line operators ?



Two important quantities :

R :=
〈T1T̄1 + T2T̄2〉

〈(T1 + T̄2)(T̄1 + T2)〉

     Interface entropy

 Reflection (& transmission) coefficient

log g : O = g |0〉〈0| + · · ·

  Affleck, Ludwig ‘91

T = 1−R

  Quella, Runkel, Watts ‘06R ≥ |c1 − c2|
c1 + c2

1 2

fixed by locality, 
viz Cardy condition



Free-field examples  

2d Ising Model
Folded theory is         - orbifold  CFT  atZ2 r = 1
Two (families) of non-trivial defects:

Dirichlet |D,φ0 〉〉

Neumann |N, φ̃0 〉〉

g = 1 , R = cos2(2φ0)

tan(φ0 −
π

4
) =

sinh(J(1− b))
sinh(J(1 + b))defective spin-spin couplings :

Topological at   

φ0 ∈ (0, π)with

φ0 =
π

4
,
3π

4 ⇐⇒ b = ±1

with φ̃0 ∈ (0,
π

2
)

g =
√

2 , R = cos2(2φ̃0)

order-disorder defects  (respect                      symmetry)Z2 × Z2



The fusion computed  in the free-fermion representation

CB, Brunner, Roggenkamp




ψ−r

−i ψ̄r



 O = OΛ




ψ−r

−i ψ̄r



 gluing:

 O(1,1) matrix

detΛ = +1

detΛ = −1

 spin-spin couplings :

 order-disorder :

±eγ = cotφ0

eγ = cotφ̃0

boost angle

Algebra:
(a,Λ) ! (a′,Λ′) = (a× a′,ΛΛ′)

Verlinde algebraa ∈ {1, ε,σ}

ε× ε = 1 , ε× σ = σ , σ × σ = 1 + ε



c=1 circle theory

The folded theory is the c=2  CFT with orthogonal-torus target

Two families of                preserving  interfaces:

2πR1

2πR2

0
ϑ

U(1)2

D1-branes 

|n1, n2;R1, R2〉〉

tanϑ =
n2R2

n1R1
= ±1Topological  if   

g =

√
n2

1R
2
1 + n2

2R
2
2

2R1R2
=

√
n1n2

sin(2ϑ)



D0-D2 bound states

Obtained by  T-dualizing one of the two dimensions, e.g.

R1 →
1

2R1

NB1:           topological interfaces relating any                      or
R1

R2
∈ Q 2R1R2 ∈ Q∃

They minimize          for given                    . g (n1, n2)

NB2:    The (group-like) automorphism defects have      

 and   

(n1, n2) = (±1,±1)
g = 1 . Entropies are additive under topological fusion.

NB3:    The (“deformed identity”)                                  interfaces     n1 = n2 = 1 transport the CFT

over its moduli space, while acting trivially on the intger-charge lattice.



The fusion of these interfaces requires in general the subtraction of
a  divergent Casimir energy;   it was computed in

CB, Brunner ‘07

Fuchs, Gaberdiel, Runkel, Schweigert ‘07

We have now computed  it for arbitrary toroidal CFTs, for which

the above geometric language is less useful.  The technical tool

NB4:   There exist  non-symmetric interfaces, obtained by fusing deformed identities

with                  automorphisms of the                     CFT.R =
1√
2

SU(2)

The algebra of these interfaces has not been computed.

are the unfolded boundary states -- they are unambiguous, but

their expressions are too tedious for this talk.



10-d

9

8

7

6

5

4

U group T group

SL(2)×O(1, 1)

SL(3)× SL(2)

SL(5)

O(5, 5)

E6(6)

E7(7)

O(2, 2)

O(3, 3)

O(4, 4)

O(5, 5)

O(6, 6)

O(1, 1)

A famous table :  M theory on  R10−d × T d+1

 3.  Rational extension of  O(d,d, Z)



2-derivative supergravity has continuous symmetry

M theory is only invariant under  “integer”  subgroups 

Is there anything in between ?

G(Z) ⊂ G(R)



 gluing conditions  (for physical charges):

Consider the                  - preserving interfaces between toroidal CFTsu(1)2d

(
jr

−j̃−r

)
O = OΛ

(
jr

−j̃−r

)
with Λ ∈ O(d, d, R)

For  topological  interfaces:   Λ ∈ O(d)×O(d)

Γj = Uj Zd,dCharge lattices :   for j = 1, 2

Moduli  dependence 



So integer charges must transform by the matrix 

Λ̂ = U−1
1 ΛU2 ∈ O(d, d, Q)

Discrete data 

To respect quantization of charge, the action must be preceded by a

projector onto the appropriate sublattice of  charges:

ΠΛ̂|γ̂〉 :=

{
|γ̂〉 if Λ̂γ̂ ∈ Zd,d ,

0 otherwise

For                                 :  interfaces that generate T-duality group.Λ̂ ∈ O(d, d, Z)
Otherwise, the transformation is non-invertible.



Useful to define the index of the interface:

ind(Λ̂) = Volume of sublattice unit cell

Then topological interfaces have g =
√

ind(Λ̂)

 the effective string coupling constant gets rescaled as follows:
From the normalization of vertex operators, one computes that

λc√
Vold

=: λeff → λeff

√
ind(Λ̂)

 Non-invertible interfaces change the effective Newton constant !∴



 Simplest case:  d=1 

Λ̂ =
(

n2/n1 0
0 n1/n2

)
or Λ̂ =

(
0 1
1 0

) (
n2/n1 0

0 n1/n2

)
O(1, 1, Q) :

includes T duality includes identity 

Topological  condition:    Λ =
(
±1 0
0 ±1

)
∈ O(1)×O(1) =⇒

R1

R2
=

∣∣∣
n2

n1

∣∣∣

Γj =
{(

N/2Rj + MRj

−N/2Rj + MRj

) ∣∣∣N, M ∈ Z
}

=
{

Uj

(
N
M

) ∣∣∣N, M ∈ Z
}

Fundamental-string charge lattice :    

for the                     branch (and likewise for                      ).detΛ = 1 detΛ = −1



  transform:   

  invariant:   

  moduli ,                integer charges,                           coupling

 masses,                physical charges,        field eqs  all orders in 

· · ·

λeff →
√

|n1n2| λeff(N, M)→ (
n2

n1
N,

n1

n2
M)R→ n2

n1
R

∣∣∣
N

R
± MR

α′

∣∣∣
2

+ level (
N

R
,
MR

α′ )

α′

Sublattice:    index =   (n1Ñ , n2M̃) |n1n2|



From the effective supergravity point of view :

S = M2
Planck

∫
d10−dx

√
−g

[
1
8
Tr(∂µM−1∂µM)− 1

4
(Fµν)T (M−1)Fµν

]
,

M =
(

G−1 −G−1B
BG−1 G−BG−1B

)

M η̂M = η̂ η̂ = ( 0 1
1 0 )

where is a                     matrix2d× 2d

obeying with .

Fµν !→ Λ̂Fµν M !→ Λ̂M Λ̂T

Λ̂T η̂Λ̂ = η̂with .

This is invariant under the                             transformations:

...,  Maharana-Schwarz, ....

O(d, d, R)



     parametrizes the  homogeneous coset O(d, d, R)/O(d, R)×O(d, R)

O(d, R)×O(d, R)

M

  It can be expressed in terms of a frame matrix:  

M = 2V T V ↔M−1 = 2 (V η̂)T (V η̂) .

 which introduces a gauge invariance under                      transformations  

  The physical  (canonically-normalized) gauge fields F ′
µν = V η̂Fµν

     do not transform.  
U

MPlanck   The only unexpected feature is the rescaling of  



 This is required for the consistent action  on D-branes: 

 Let |B〉〉 =
2d∑

α=1

nα|α〉〉

 elementary D-branes

 integer RR charges

 then

(n1, · · · n2d) := γ̂D

 spinor matrix

 puncture      disk boundary∼

γ̂D →
√

ind(Λ̂) S(Λ̂) γ̂D



The transformation respects quantization of all RR charges

 i.e.  
√

ind(Λ̂) S(Λ̂) ∈ GL(2d, Z)

projective representation of  the
 semi-group extension {Λ̂πΛ̂|Λ̂ ∈ O(d, d|Q)}

In the d=1 case: 
(

ND0

ND1

)
→

√
|n1n2|





√
n2
n1

0

0
√

n1
n2




(

ND0

ND1

)

Mass  =                     is left invariant.
gbrane

λeff



    The above transformations are special cases of orbifold equivalences
Bershadsky, Kakushadze, Vafa  ‘98

    They provide an exact in         extension of the continuous

    supergravity symmetry                       .

α′

O(d, d, R)

They describe critical behavior in quantum-wire systems.
Could be fun to see whether they can be realized in experiment.



In,bos
12 = exp

(
1
n

(j1
−nO11j̃

1
−n − j1

−nO12j
2
n − j̃1

−nOt
21j̃

2
n + a2

nOt
22j̃

2
n)

)

O(Λ) =
(

Λ12Λ−1
22 Λ11 − Λ12Λ−1

22 Λ21

Λ−1
22 −Λ−1

22 Λ21

)
.

I0,bos
12 =

√
ind(Λ̂) |Λ22|

∑

γ̂∈Zd,d

e2πiϕ(γ̂)|Λ̂γ̂〉〈γ̂| ΠΛ̂

I12 =
∏

n≥0

In,bos
12

where:    

Λ :=
(

Λ11 Λ12

Λ21 Λ22

)

g-factor   

NB: there are analogous expressions for the type-II superstring.    

  NB:  I have skipped explicit calculations, but here is the full interface 
operator in the bosonic theory:



Summary

2.  Their algebra gives a natural non-trivial extension of the worldsheet  
symmetries of string theory, but broken by string-loop corrections.

1.   Conformal defects and conformal interfaces form a rich

set of non-local observables of CFT, with applications 
in condensed-matter and stat. mechanics systems.

Whether they will play a (substantial) role in string theory 
remains to be seen.  



CFT1 CFT2 CFT3

CFT1 CFT3

δ

I1,2 I2,3

I1,3 = I1,2 ! I2,3

Interfaces can be added and fused :

I12 ! I23 := limδ→0Rδ[I12 e−δHI23]



x
x

x
x

x

x

CFT1
CFT2

∈ Γ̂Λ̂ /∈ Γ̂Λ̂


