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Motivation: A more tractable AdS/CFT?

Usual AdS/CFT involves CFT in 4d and String Theory in
10d. Both hard to understand

Would be nice to find a holographic setting where both
sides are more tractable

Proposal: Higher Spin gravity on AdSs is equivalent to a
2d Minimal Model CFT with W-algebra symmetry

[Gopakumar-Gaberdiel ‘11, see also Rajesh’s talk]
The boundary CFT can be described by a WZW coset:
su(N)x x su(N)3
SU(N) k1

The HS theory is described by Vasiliev theory (more later)
in the 't Hooft limit 0 < limp x e 5% < 1 fixed

Supersymmetry not necessary



The NV = 2 Higher-Spin Duality

The duality can be extended to include supersymmetry.
We will focus on the N/ = 2 case [Creutzig, Hikida,Renne '11]

Boundary theory: The N = (2,2) CPN Kazama-Suzuki

Model R
su(N + 1)k x 50(2N);

SU(N)kp1 < u(d IN(N-+1)(k+N-+1)

Bulk: The N = 2 Prokushkin-Vasiliev theory [PV '98]

't Hooft coupling A = sz

't Hooft limit: 0 < limy k00 A < 5 fixed

More symmetry— some calculations easier. SUSY allows
for finer checks of the duality. Connections to string theory?



Symmetries

e The massless sector of the HS theory can be formulated
as a Chern-Simons theory with shs[\]x,, x Shs[A] .
gauge group

e The HS fields are coupled to two massive 3d

hypermultiplets, (¢+, <) and (¢4, ), with two complex
scalars and two fermions in each. Their masses are:

(M2 =4(N2=2),  (ME}?=4N—1,  (ME)?=(2x-3)?

o Asymptotically, the Lie algebra shs[\], induces a
non-linear SW..[\] algebra. [Hanaki, Peng '12]

e The chiral algebra of the KS coset is SW [ito '91], which
gives SWo[A] in the 't Hooft limit [Candu, Gaberdiel 12]

e shs[)\] is a subalgebra of SW,[\] when ¢ — oo, when
restricting to the “wedge” |m| < s — 1




The (modified) Prokushkin-Vasiliev theory

e Look at linearised level in the matter fields
e A C: One-form and scalar generating functions

dA+AxNA=0, dA+ AxNA=0.

dC+AxC—-C+xA=0,
dé—l—/z\*é—é*A:O,

e A, C can be expanded in a basis of shs[}]

A:i 3 Af,,Lf,f)Jri S oAGY,
s=1|m|<s—1 s=g |r\<sf§

C= 2 S oL S+E S ocsa?,
s=1|m|<s—1 3_2 \r|§s——



The SB5[u] Algebra

e Convenient to define shs[)\] through the associative
*-product of an algebra called SB[u]
e This is defined through the relations:

S+t—1 S+t—1
LS« 2 oSl (m,m A LT, L Gl = E het(m, q; \) Gote Y,
; s+t—1 - . s+t—1 t—u)
S u
G« Gy = E G aN L, G« = 33 Ap,m ) G,
u=1

o Explicitly,
gst(m, n; \) Z [ ( (s+t+ )):+h( )Tv( +%E(s+t+%));,\]
x(m—[s] + 1)[i,u,s,ﬂ1 (n— [t + )LUJ 1+h(s+2)FJ(H%)—E(H%)E(HH )7[: u,s,t]

where the range of the sum is

0<i< h( Lh(s + t)) (lu] — 1)+77(u)77(s+ t+ 15) = E(s)ﬁ(qu %77(5+ t+ %))E(qu %)



Some definitions

Fatr. 0 = R0 197 1 (2o = u) oo et
x ([2t = u]) i/2) 1120111,
° h(u)=[u—u] +1] , h(u) = [u—1lull , |nl2=n-2|n/2]
i+ h A
o [iu,s]= {h(u)wzz)(s)w . Tius =T, u+%ﬁ(s+t+%),s1

([u] and |u] are the ceiling and floor functions)

2s—22t-2
_u_1) (@2s+2t—2u—2)! o
—{yleH=r 1J(23+2t7LuJ73))| > D> a(i+j—2s—2t+2u+2)
Y =0 j=0

o Fa(N)=(

X Ai(S, 1 )\)A/'(t’ )\)(—1)23+2/(S+1‘—u),

o A(s)) = (—1)lslFteasitn {Sf 1] (LG +1)/21+2X) 15 1/2) - (Gi+1)/2)
i/2 (Ls+1/2])as—1— stis2)

Computations will clearly get a bit involved!



The shs[\] Algebra
e shs[)\] is an infinite-dimensional Lie superalgebra, with
commutators
— s+t—1

(L, L9] = 2 (mmN L, 1,6 = E hgi(m, q: \) G,

-1
{ 3 } E G5 (P, 4 V) Lpsjc; Y, [G,(J ) ”] B Fg!(p, m; \) pfnt Y

o All definitions as above, with the replacement
Fst(A) = f(A) .

where

B 1
fet(N) = Fet(V) + (1)L £ (0 — ).

e Similar expressions for G5 « G, L' « GI), G§ » LY



Scalars on AdS3

e As an example, consider how the PV theory leads to
scalars with specific masses living on AdS3
e The connection corresponding to AdSs is

A=e’ P dz+1®dp

_ = ds? = dp? + e* dzdz,
A=er1®az-1®dp

where g, = Jtr(e,8,) , e = (A A)
e Plugging Cinto dC+ Ax C — Cx A =0 gives

ooy (dc:‘,, LY + e Cs P« L dz— 62 C5 LY « LB dz

s=1 |m|<s—1

+ s {ng) o L 4 1) ng)} dp) —0.



Scalars on AdS; (cont.)

e Focus on fields in the wedge, i.e. C;, =0 if |m| > s —1.
We get:

i o 1 el
8,C5 +2 [cf;‘ + o g (m,0)+ Cpy 2 gy 27 (m,0)+ Chy 2 gy 27 (m, 0)] =@
2 2

acs + e {cfnj +65°(,m—1)C5_y + g5 (1, m — 1),
25— 1 s—1 2,543 s+3
405 20 m =10, % +9y" 2 (1 m— 10, 3] o,
2 2

aCs — e [cfn;} +05Rm 41, —1)C5 + g5 (m+ 1, —1)CSH,

«

12 o= gnd
+gy 2T (m+1,-1)C, B+, 2

2
m+1

njw

. 2(m+1,71)cs+1]:o.
3

3
e All fields auxiliary apart from C} and CZ = Need to isolate

the equations involving these two fields.
e Reduce to just two coupled equations:

OC) +6A(1—2)0) Gy +20(1 —6A+8)2)C/2 =0,

1—4) 2
0c? - " _pelySa+a-—223)c¥? =—o
0 BA(1-2)) ota(tt )G ’

where 0 = 92 + 209, + 4 &2 90.



Scalars on AdS; (cont.)
e Can rewrite the above as

BA(1 —2)\) 2X\(1 —6) 4 8)?)

DC*[ 14 12X +4x2

}0207 c

I
S
O(E\woq
N————

and convert to mass eigenstates ¢
Cl=(@\-1)¢,+2X¢_,  Cl=o +o_.
satisfying
[D-4(2-N]s:=0, |[O-@x-1)]¢-=0.

e We conclude that the A/ = 2 theory contains two physical
scalars with masses:

(MBY2 =432 -)) and (MB)2=4)2_1,

(Usual convention would take A — \/2)



Holographic OPE’s

We expect to see an N = 2 SW..[\] symmetry arising as
an asymptotic symmetry of the bulk higher-spin theory
Has previously been shown by a Brown-Henneaux-type
analysis [Hanaki,Peng '12]
We provided an alternative derivation using holographic
Ward identities (following [Gutperle,Kraus *11])
Write the connections as

f‘:b \ab+b7db, where b= el .

A=bab~" + bdb~",

where the sources appear in the antiholomorphic part
_ (@ 27 )
a= <L1 + o g {N—SBLSL loja1 + NFws (su Ddz
5,

+<2 DDA S V,SGES)>dz,

s<3 Im<[s]-1 s<3|r|<rs1-32



Holographic OPE’s

Flatness conditions = Holographic Ward identities

8az—5az+[az,az]—2[ > ednlh+ D cﬁ,,Gf}_o

s>3 ~|m[<[s]-1 Ir|<[s]-2

The boundary conserved currents fall into N’ = 2 multiplets

(Ws—7 Gst3)— Gt W(s+1)+)7 s € Zs

The super-Virasoro multiplet is (f, Got, T)
Now turn on sources, e.g. for the Virasoro algebra
3
(1 V2, ,Vi ,#2), and solve the flatness conditions
2 2

Need to do a Sugawara redefinition T(z) = T(z) + 417[/'/'](2)



Holographic OPE’s

e Finally find the A/ = 2 superconformal algebra:

j@iwm ~ =L e Ew ~ —— 6iFw)
(z—w) Z—w
T(2)T e 2 g aT(w)
(2) (W)N(sz)4+(z—w)2 (w)+sz ,
T3t w) ~ —L2 a3+ w)+ — 063 *w)
(z —w)? z—w
aitadtu) ~ T8 F2 gy
(z-—w)l  z-—w
GEE@EEF (W) ~ — 2 jw)+ — oj(w),
(z — w)? z—w
;
T(2)j(w) ~ 5 (W) + aj(w).
(z—w) zZ—w

e Reproduce the Brown-Henneaux central charge

C_ﬂ

e By turning on HS sources, can similarly recover the
structure of SW..[A] (Though no full analysis yet)



Bulk Correlation Functions

Consider a background with one spin-s charge turned on:

2 B}
A= (ep 1@ 4 NLS; e(sl=De L(f)Ls H) dz+ > €™y LY dztLodp
|m|<[s] -1

Would like to compute three-point functions of the type
(On(21,21)On (22, 22)J%(23))

where Op are bosonic operators in the CFT and J° are
higher-spin currents

Standard AdS/CFT methods too cumbersome and don’t
make full use of the higher-spin gauge symmetry

Will use a trick due to [Ammon, Kraus, Perimutter '11]: The
higher-spin background is related to AdS3 by a gauge
transformation



Bulk Correlation Functions

e Start with the AdS3 connection

A=et P dz+1Pdp, A=e 1P dz- 1P dp

e Perform a gauge transformation leading to the spin-s
background

Ls]—1

Me2.2)= D, e —m iy

Ls]—1
1 e B}
(o) SI=mIAseme 1) N B e 1))
m=0

e Need to find how the scalars transform under this
transformation

C=C+6sC, 06C=CxAh—AxC=-AxC



Bulk Correlation Functions

o We find:
oo Ls]—1 [s]—m—1,5
) A
06C==35 > ((Lsi— —yr Chem L L+
t=1 |n|<|t]—1 m=0 ’ m<0
3
=6sCl L 1)JHSSCZ (2)+...
where
Min(2s—1,2t—1)
L+t = 3T gimma L
u=1

e After (quite) some work we obtain for ds¢; = 5,- — ¢;

@ 3
5S¢i = é,‘ 650(1) -‘r b,‘ 650027

[s]—1 (-0) Ls]=m—1,s B .
= ZO (CECEDD emr <a,- C® ng5e_q(m,-m; \) + by [CS m 5 (m -m; \)
m=

+ GO gl momA)x

+1/2 _ss1/2 _
o,Ls—1/2J—1]( m)+ €T g5t (m,—m,)‘)D



Bulk Correlation Functions
e Now apply the standard AdS/CFT procedure
6(0.2) = [ 2 Gonlp.2:2) 82,
with the AdS; bulk-to-boundary propagator

e’ A
A S
Gba(pazrz)_c:t (62p+22/|2) )

e Near boundary expansion:
4. 2) — 19785 (67(@) + o) + 2 (55— (On, @) +00)

e Now gauge transform:

i(p, 2) — $i(p, 2) = bilp, 2) + 8s¢i(p, 2)
to get

Bp.2) — 19785 (32(2) + o) + 2 (G5 (On, (@), + o).



Bulk Correlation Functions

(Oa.(2)), s the vev in the presence of a HS source
It leads directly to the required three-point functions:

(OaL(21,21)), =16 (On.(21,21) O, (22, 22))
+ pg s (Ony (21,21) On, (22, 22) S5(23)) + .- ...
After some computation we find

_ o s BE cp (—1)lsi—1 Ls1Z1 4 Ag+m) (Ls) —m—1)

fS,I(>\’ 7Aj:)
27 | 240 PP 0 3 {S Maz) Z1L35J_m

(Oag (@),

‘ 1 m ’ MAx +m—j) NZY
S —Aar) ST (—y (M) 22T S R Y
i ( x)ZZLSSJ,m /E:o( )J(l) rag) (ls] —m +/)|<223> }

Can also factor out the z-dependence

(Oa(21,21)0n (22,220 (25)) = (OaOAI) (%) (Oa(z1,21)0n (22, 22))



Bulk Correlation Functions
e Final results for the three-point coefficients

r2(s) Tr(s—2x+1)
res—1) r@-2x '’
r2(s) Tr(s—2x)
(2s—1) (1 —2))’

r2(s) r(—=2x+1)
r@es—1) r(-2x—s+2)’
r2(s) r(—2X)
(2s—1) (=2A —s+1)’

(OF, 08, Wet) = (=1)°

(0%_O8_w*r) =(-1)°;

<@g+5g+ Wst) = (—1)5—1

(6585 we) = (-1

r2(s) T(s—2x+1) s—1+2)\
r2s—1) r(2-2») 2s—1 '
r2(s) Tr(s—2)\) s—2\
r@2s—1) r(1—2x 2s—1’

r2(s) M—2x+1) s—1+2x
(@s—1)M(-2x—s+2) 2s—1 '’
r2(s) r(—2)) s—2\
r@es—1) r(-2x—s+1) 2s—1"

(0F, O, w=) = (—=1)°""

(OR_OF_ W) =(-1)°

(OR.0R, we™) = (-1)°;

(0888 we) = (-1



Boundary Correlation Functions

Would like to match the above bulk results by calculating
the same three-point functions from the CFT side
Recall:

(Oa,(21,21)0n, (22, 22) 9 (25))

Ls]
Z: -\ = —
:A:I:(S) <Z1312223> <(9Ai(z1,z1)OAi(22722)>.

So the coefficient is given by the OPE:

(ZA_(Sv?/)S Oa(w, W) +....

JE(2)Oa(w, W) ~

Need to compute OPE’s of HS currents with CFT operators

In principle, should calculate in the Kazama-Suzuki CFT
and take N, k — oo

Can we compute directly at N, k = c0?



Boundary Correlation Functions

[Candu-Gaberdiel]: In the 't Hooft limit, the Kazama-Suzuki
algebra extends to SW. [\

This algebra becomes linear for ¢ — oo, with shs[)] arising
as a wedge subalgebra

L withjm| < s — 1

So representation theory of shs[\] should be enough
Even simpler: Construct a CFT that realises shs[)\] as a
subalgebra.

There exists a very simple free-field construction of such a
CFT [Bergshoeff, de Wit, Vasiliev '91]



Boundary Correlation Functions

e Ghost Action
N T
S:W/dz{wm+ﬁh+MM+ﬁ%}

with
W2Bw) ~ 1 and c(2)b(w) ~

Conformal weights:

| b c B« b e B 5
hlx+: T-Xx X 1-x 0 0 0 0
h| o0 0 0 0 X+ =X X 1-2X



Boundary correlation functions

e Combine to create duals of bulk fields

03.(2,2)

o8 (z,2) =

e Higher Spin Current

Vi

s—1

=7(2) ® 4(2),
c(2) ® ¢(2),

Za’sAE)S - ’{(8’6) }

+5 d(s A+ 1ot {(E)’b)c}

e Similarly for V{9 (z) and Q{°

i=0

“(2)



Correlators from the CFT

Now use free-field OPE’s, for example

_1)s—1(gs —
v @) ~ (60 L s+

First Multiplet with V(%"

r(s) r(s—2x+1)
(2s—1) T(2-2))
s r2(s) TI(s—2)\)
(=1) r2s—1) r(1 —2x)°

(0F, 0, i) = (-1)°¢

(0% 0% V%)

Precise match with the bulk calculation!

Found agreement for all other boson-boson-hs 3-point
functions

Simultaneous work by [Creutzig, Hikida, Renne '12]



Summary

We provided a detailed check of the N/ = 2 version of the
MM/HS duality

Holographic construction of the asymptotic symmetries,
showed how the ' = 2 SW.[\] symmetry arises.

Computed scalar-scalar-hs three-point functions in the bulk
and matched to boson-boson-hs current correlators in the
CFT

A modification of the Prokushkin-Vasiliev theory greatly
simplified the bulk computations

For the boundary calculation, we used a free-field ghost
CFT with shs[A\] symmetry

Our computation can easily be extended to include
fermions, some of these correlators were found in [Creutzig,
Hikida, Renne ’12]



Outlook

Extend to other correlators, such as three matter fields =
Would need to go beyond the linearised Vasiliev equations

Not all quantities can be captured by the free-field CFT.
E.g. four-point functions would be sensitive to the fact that
the spectrum is different from that of the CPN model
Would we need to calculate at finite N, k and take the 't
Hooft limit? Or can we constrain the CFT so as to obtain
SWo[A] directly in the ’t Hooft limit?

Models with different amounts of supersymmetry

BH backgrounds?

Some of these techniques were also recently used in
[Creutzig, Hikida, Renne "13] in the context of matrix
higher-spin theory



