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Introduction 

Solitons- classical static configurations of finite 
energy  show up in a wide range of physical systems 

 Solitons are known for instance  in hydrodynamics 
and non linear optics . 

 In field theory we have  encountered  sine-Gordon 
solitons, ‘t Hooft Polyakov monopoles , Skyrmions 
and Instantons  ( solitons of 5d YM theory)  

In recent years  solitons take the form of Wilson-
lines, Dbranes etc. 
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Introduction 

Determining soliton solutions typically  means 
solving non linear differntial equations. 

 

One would like to find  tools to handle  such 
configurations without solving for them explicitly. 

 

Two important issues are: 

(i) Existence proofs 

(ii) Stability of the solutions. 

 

 



Derrick theorem 

Consider  a scalar field in d+1 dimensions   with 

 

 

                                                             non negative,                                                                                               

;                                                                              vanishes  for  φ=0 

The energy associated with a static  configuration 

 

 

  

Consider a scaling deformation ( not a symmetry) 



Derrick theorem 

The energy of the rescaled configuration  

 

 

 

 

 

 The minimum of the energy  is for the un-rescaled 
soliton with λ=1  
 



Derrick theorem 

We now change  the integration variable 
 
The re-scaled energy is  
 

 
 
 The variation of the energy has to obey 

 
 

 
For  d>2  each term has to vanish separately  and for d=2 
the potential has to vanish.  Both cases  occur only for 
the vacuum. 

 

             Solitons  can exist only for  d=1 



Manton’s integral  constraints 

For a static configuration  the conservation of the 
energy-momentum tensor  implies  a spatial  
conservation of the stress tensor 

 

 

 Define the vector  

 

 

Then  

 

 

 



Manton’s integral  constraints 

Let’s take 

 

For this choice we get  

 

 

 

 

In particular when the surface term vanishes we get 

Manton integral constraint   



Introduction- questions 

The questions  that we have explored are  

 

Can  Derrick’s theorem and Manton’s  integral 
constraints be unified? 

 

Can one generalize these constraints to other types 
of deformations? 

 

What are their  implications  on  Solitons,  Wilson 
lines, static solutions of gravity , D branes  and  
spatially modulated configurations.  

 

 



Outline 

 Part I- General formalism 

 

A. Geometrical deformations of solitons 

 

B. Deformations by global  transformations   

 

C.  Deformation, and stress forces  of  periodic 
solutions 

 

D.  “ Elasticity  requirements” ( or minimizing and 
not only extreemizing) 

 

 

 

 

 



Outline 

Part II- Applications- 

 

 (i)  Higher derivative actions and sigma models 

 

 (ii) Current  constraints on  known  solitons 

 

(iii) Solitons of non linear(DBI)Electromagnetism 

 



Outline 

(v) Constraints on D brane  and string actions 

 

(vii) Probe branes in brane backgrounds  

 

(vii) D3 brane with electric and magnetic fields 

 

(viii) Adding  Wess –Zumino terms 

 

(ix)Flavor branes in M- theory MQCD 

 

 (x) Application to the Ooguri Park  spatial 
modulation models 

 

  



General formalism 

Part I-  

      General formalism 



(i) Geometrical deformations  

Consider  a theory  of several scalar fields  

 Take               to be a  soliton    with ( finite) energy  

 

 

 

 We now  deform the soliton 

 

 

 We expand the geometrical deformation 

 

We take it to be linear 

 



Geometrical deformations  

           - rigid translations 

 

 

 

 

 

 antisymmetic             -rotations 

http://www.see.leeds.ac.uk/structure/strain/translation/translation.html
http://anorganik.uni-tuebingen.de/klaus/nmr/index.php?p=conventions/euler/euler


Geometrical deformations 

 diagonal            -dilatation 

(not necessarily isotropic) 

 

 

Symmetric            no diagonal components - shear 

http://en.wikipedia.org/wiki/Shear_stress
http://whites-geometry-wiki.wikispaces.com/dotrac


Geometrical deformation 

The energy of the deformed soliton  is 

 

 

 

 

 

 

 

 

 

  The Stress tensor is  



Geometrical deformation 

Thus the variation of the energy relates to the stress 
tensor as   

 

 

 

 

For theories with scalars and no gauge fields  

Hence the stress and energy momentum tensors are 
related via  



Geometrical deformation 

Since           are arbitrary we get Manton’s integral 
conditions 

 

 

More precisely we get 

 

 

So that for vanishing surface term we get the 
constraint of vanishing integral of the stress tensor 

 

 

 

 



Geometrical deformation 

As is well known for Maxwell theory, the canonical 
energy momentum tensor is not  gauge invariant 
and one has to  add to it an improvement term  

 

 

Such that                              which  guarantees the 
conservation of the improved tensor  

For  these cases we get that the variation of the 
energy   



Geometrical deformation 

For the modified case the integral constraint reads 

 

 

 

Again when the surface term vanishes we get that 
the integral of the stress tensor vanishes 



BPS configurations and the vanishing of the stress  tensor 

With right fall off   we have 

 

 

 

What about the vanishing of the stress tensor itself? 

For 1+1 dim. solitions   the virial theorem  reads 

 

So the stress tensor  

                                                              0 



BPS configurations and the vanishing of the stress  tensor 

This result can be related to a  1+1 supersymmetic  model  
 
 

for which 
 
Supersymmetry relates  the stress tensor  Tij  to the supercurrent 
 
 
Via the susy Ward Identity 
 
 
 
   
From the fact that the BPS solutions are invariant under half  
of the supersymmetris                        vanishing of Tij  
[Moreno Schaposnik] 
  



(ii) Deformations by global symmetry 

Suppose  that  our  system  is invariant under a  global 
symmetry.  

The corresponding current conservation for static 
configurations reads 

Deforming  the soliton     

                                                                    

  yields a variation of the energy  

 

 

For constant      it is obviously a symmetry  but again 
we take  the transformation parameter  

  

 

 



Deformations by global symmetry 

Thus we get the integral equation  

 

 

 

 

 

For  vanishing surface term the integral of the space 
components of the global currents vanishes  



Deformations by global symmetry 

In order to have a finite  surface integral the current 
should  go as  

 

At leading order for large radii  the current  reads 

 

 

So there must be a massless mode 

This happens generically when the symmetry is 
spontaneously broken and the mode is the NG mode 



(iii)Geometric deformation of periodic solutions 

Apart from solitons there are also static solutions  
that break translational invariance  but have 
divergent energy ( but finite energy density). 

The  analysis of above does not apply but one can do  
a local analysis on some  restricted region. 

For periodic configurations  will take the unit cell 

The total force on the surface surrounding the unit 
cell of such a solid should be zero. 

The force  on a face of the cell is  

 

 



Geometric deformation of periodic solutions 

 We can increase the size of a unit cell and at the 
same time deform the neighboring cells so the 
periodic solution remains unchanged farther away.  

The forces on the faces of the unit cell no longer 
cancel:  

The net force on the surface after the transformation 
could be pointing  

  

 (i) Out of  the unit cell - unstable since the 
deformed cell will now continue increasing its size. 

  (ii)  Into  the  unit cell – restoring stability   



Geometric deformation of periodic solutions 

 



Geometric deformation of periodic solutions 

 



(iv) Elastic properties of inhomogeneous solutions 

We need to  minimize and not only extreemize the 
energy.  

 

We vary the energy  to second order. 

 

We use an analogy with elasticity theory and map 
the minimization to a positivity condition on the 
stiffness tensor. 

 



Elastic properties of inhomogeneous solutions 

In general in thermodynamics we have  

 

      Stress tensor  

                                         Strain 

 

For ideal isotropic fluid                       displacement vector 



Elastic properties of inhomogeneous solutions 

Hook’s law for small deformations 

 

 

The energy is minimized  if for any two unit vectors 

 

a and b  the stiffness tensor obeys 

 

 

 

 



``Elastic properties of inhomogeneous solutions 

 

Consider fluctuations of the coordinates 

 

 

The variation  of the energy of a scalar field theory  to 
second order is  

 

 

The stiffness tensor  is 

 

 

 

 



Elastic properties of inhomogeneous solutions 

For  a  gauge theory  the stiffness tensor is 

 

 

 

 

 

Where  



Part II- 

Aplications  



1. ( warm-up) Sigma models 

 One can easily generalize Derrick’s theorem to a case of 
a sigma model  

 

 

 

Repeating the procedure  of above yields 

 

 

 

When the signature of the metric               is positive 
then the conclusions for the generalized case are the 
same . 

If the signature is not positive  there is no constraints in 
any dimension. 



2. Higher derivative  actions  

Consider  the higher derivative lagrangian density 

 

 

 

The corresponding equations of motion 

 

 

The conserved energy momentum tensor  



Higher derivative  actions  

The Hamiltonian of the static  system  

 

 

 

Under  isotropic re-scaling of the  coordinates  

 

 

Requiring extreemality  for  



Higher derivative  actions  

The higher derivative terms thus ease the restriction 
on solitonic solutions for pure scalar  field theories: 
we can get solitons for d < 4. 

That’s the mechanism in the Skyrme model 

Generalizing this result to any higher order 
derivative Lagrangian density, where the derivative 
terms are quadratic in the fields of the form 

 

 

 

Now the constraint in principle allows solitons for 
any dimension d < 2N. 



3.  integral of the current constraint  

Let’s examine  this constraints  on   familiar solitons 
for:  Topological currents, global and local currents. 

Topological currents are conserved without the use 
of equations of motion.  

The general structure of these currents in d space 
dimensions is  

 

  is a tensor  of degree d composite of the underlying   
fields and their  derivatives 

If the current is  composed  of  only scalar fields,  
abelian or non-abelian,  the spatial components 
have to include a time derivative  

 So we conclude that 

 

 



The current constraint in the ‘t Hooft Polyakov monople 

The system is based on SO(3) gauge fields and  iso-
vector scalars described by 

 

 

The  SO(3) current  is 

 

 

 The equations of motion 



The current constraint in the ‘t Hooft Polyakov monople 

The relevant ansatz for the classical configurations 

 

 

Asymptotically they behave as  

 

 

Substituting the ansatz to the current 

 

 

It is obvious that  

The current constraint is obeyed 



The constraint on the axial current of the skyrme model 

The two flavor   Skyrme model  is invariant under 
both the SU(2) vector and axial flavor global 
transformations.  

The currents read  

 

plus higher derivative corrections that follow from 
the Skyrme term.   

 The space integral of the non-abelian (axial)current 

 

 is  

 

In accordance with the fact that there is an SSB 

 

 



4. Soliton of non linear electromagnetism 

Let us analyze the constraints on  EM expressed in 
terms of a DBI action. 

We check first  the ordinary Maxwell theory 

The energy is  

 

The scaling of E and B are  

The scaled energy  

 

Derrick’s condition 

 

 

No solitons apart from d=3 for self duals  

 



Soliton of  DBI non- linear electromagnetism 

The DBI  action of EM   in d+1 =4 is  

 

 

The associated energy density  

 

 

Derrick’s constraint 

 

 

Electric and magnetic solitons are not excluded  



5. Constraints on string and D-brane actions 

If the generalized constraints  are  fulfilled by some 
string or D brane configuration it may indicate 
about possible  states apart from the trivial ones. 

 

The constraints are based on comparing  
configurations with the same boundary conditions 

For finite volume ones, the variation may change the 
boundary conditions. 

 

Satisfying the constraints is not a proof of existence 

The constraints my exclude classes of solitons 

 



Constraints on string and D-brane actions 

The  action of the low energy dynamics  of D-branes  

 

 

           Dp brane       dilaton                          pull back 

             tension        induced metric        of the NS form  

D-branes can also carry charge  that couples to a RR 
flux. This corresponds to a WZ (CS) action 

 

 

 

                                  pullback of the RR k-form    



Constraints on strings 

Similarly  the NG action describes the fundamental 
string  

 

 

 

The string is charged under the NS two form  

 

 

The induced metric is  

 

 

                                         the embedding  coordinates 

 



Fixing diffeomorphism  

The brane ( string) action is invariant under 
diffeomorphism  hence the constraints are trivially 
satisfied. 

For instance for the NG string the energy  

 

 

 

 

To get non-trivial constraints we must gauge fixed  
the diffeomorphis invariance 



Fixing diffeomorphism  

We use the usual static gauge. 

We split the coordinates  

                                                                -  -worldvolume 

                                                                              --transverse 

We impose 

(i) space-time translation invariance on the worlvolume 

(ii)                          truly static 

    

                            



Constraints on D brane action without gauge fields 

In the static gauge the pull-back metric reads 

 

 

The energy is  

 

 

                                                                                                  
.            -Dbrane                                     subtraction  for                  
.            -string 

.                                                                           E=0   

  



Constraints on D brane action without gauge fields 

Derrick’s condition is now 

 

 

Where we have used 

 

 

After some algebra we find that the condition is 

 

 

 

This can be obeyed so we can not exclude Dbrane 
solitons  

 

 

 

 



Constraints on D brane action without gauge fields 

However for         depending only on a single x   

 

 

 

Since  for non-trivial            the integrand is positive  
the constraints cannot be satisfied. 

There are no solitons  D-branes ( even for p=1)   
that depend on  only one coordinate  



Probe brane in Dp brane background 

The near horizon background  has  the metric 

 

 

 

The dilaton 

 

A RR form 

 

The DBI+ CS actions read 



Probe brane in Dp brane background 

Derrick’s condition is now 

 

 

 

The second derivative condition is 

 

 

 

There are no soliton solutions for any p that 
obey the stronger condition of vanishing of the 
integrand. 



Generalized conditions for Branes with gauge fields 

When electric field is turned on  the energy is not 
just –LDBI     but rather the Legendre transform 

 

 

It is convenient to  define M such that  

 

 

The energy can be written as  

 



Deformation constraints on D branes with gauge fields 

Rather than deriving Derrick’s condition let’s look 
this time on Manton’s constraints 

 

 

The explicit form of the stress tensor reads  



Adding the WZ terms 

Again like the DBI action we have first to gauge fix 

The pullback of the RR fields is  

 

 

For instance for D1 brane the WZ action reads 

 

 

 

The contribution to the stress tensor is  

 

 

In the absence of gauge fields              

 

Hence we see again that there is no D1 soliton solution 



The D3 brane case  

For the D3 brane  case the WZ term is  

 

 

 

 

The contribution of the WZ term to the stress tensor 



Application to gravitational backgrounds 

Upon gauge fixing the diffeomorphism and 
parameterizing the metric the dilaon and fluxes we 
get an action of a bunch of scalar fields with a 
potential. 

In case that there is a dependence only on the radial 
direction it is a 1+1 dimensional action.  

Generically the ``kintic terms”  are not positive 
definite.  

It turns out that the integrand of Derrick’s condition 
translates to the ``null energy condition”. 

Let’s demonstrate this    



Application to  gravitational backgrounds 

Consider the DC on d brane solutions  of gravity  

The bosonic part of the SUGRA action in D dimensions 

 

 

 

 

 

We take the metric in the string frame  



Application to  gravitational backgrounds 

In terms of the metric fields and the dilaton 

 

 

 

 

 The ``null energy” condition which is a Gauss law 
associated with fixing  

 

It  is identical to the integrand of Derrick’s condition  



Application to gravitational backgrounds 

Consider the following 1+1 dim model with N degrees of 
freedom 

 

 

 

The extremum condition reads  

 

 

 

 

 

The integrand is just the energy of  a 0+1 dim.  where x is 
taken to be the time. Thus the vanishing of the 
integrand is identical to the ``null energy 
condition”   



Flavor branes in MQCD 

The type IIA brane configuration  [Aharony,Kutasov,Lunin,Yankielowicz] 

  

 

 

 

 

Can be uplifted to M theory background  

 



Flavor branes in MQCD 

The shape of the curved five brane  

 

 

 

The induced metric  is 

 

 

 

The Lagrangian density  



Flavor branes in MQCD 

The Neother charges associated with the  shifts of 
x6 and  α  are  

 

 

 

 

Applying Derrick’s condition  yields 

 

 

 

The integrand is identical to the Noether charge  E 
thus the condition translates to `` null energy 
condition” 



Application to spatially modulated models 

Spatial modulation (S.M) was identified in YM+CS 
theory on an AdS5 black-hole 

 

 

The background metric is given by  

 

 

With the warp factor  



Application to spatially modulated models 

The background electric field is given by  

 

 

The spatially modulated solution 

 

 

The equations of motion 



Application to spatially modulated models 

Integrating the first equation we end up with 

 

 

 

 

This  equation admits solution with amplitude 

 

The relation between  

    h0 and k    



Application to spatially modulated models 

The energy density of the boundary field theory is 

 

 

It is minimized at  



The stiffness tensor 

The energy density is given by 

 

 

The expression for the stiffness tensor is complicated 

For the unit vectors 

 

It is given by   

 

 

 



The stiffness tensor 

 

 

                                                                              positive  

 

 

                                                                              negative 

                                                                                               

                                                                                          

                                                                                            

                                                                                      

Thus there are regions which indeed correspond to 
minima but other ( blue ones) correspond to maxima 



Stress foreces 

We check now for the stability against deformation in 
the x2 direction 

 

 

The pressure is negative for all k and has a maximum   
for    

In the region                          the system is not restored  

The minimum of the free energy at               is in the 
instability region  

 



 



Summary and open questions 

We unified and generalized Derrick’s and Manton 
constraints on solitons.  

We have applied the condtions to sytems of soltions 
with global currents  

Sigma model and higher derivative actions 

DBI electromagnetism 

Dbranes  including the DBI and WZ terms 

The method can be applied to many more `` 
modern solitons” 

In particular we are investigating the stability of the 
spatially modulated  brane and bulk solutions. 


