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Introduction

@ Solitons- classical static configurations of finite
energy show up in a wide range of physical systems

@ Solitons are known for instance in hydrodynamics
and non linear optics .

@ In field theory we have encountered sine-Gordon
solitons, ‘t Hooft Polyakov monopoles , Skyrmions
and Instantons ( solitons of 5d YM theory)

@ In recent years solitons take the form of Wilson-
lines, Dbranes etc.
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Introduction

@ Determining soliton solutions typically means
solving non linear differntial equations.

@ One would like to find tools to handle such
configurations without solving for them explicitly.

@ Two important issues are:
(i) Existence proofs
(11) Stability of the solutions.



Derrick theorem

@ Consider a scalar field in d+1 dimensions with

non negative,
: vanishes for ¢=0

@ The energy associated with a static configuration

@ Consider a scaling deformation ( not a symmetry)



Derrick theorem

@ The energy of the rescaled configuration

@ The minimum of the energy is for the un-rescaled
soliton with A=1



Derrick theorem

@ We now change the integration variable

@ The re-scaled energy is

@ The variation of the energy has to obey

@ For d>2 each term has to vanish separately and for d=2
the potential has to vanish. Both cases occur only for
the vacuum.

9 Solitons can exist only for d=1



Manton’s integral constraints

@ For a static configuration the conservation of the
energy-momentum tensor implies a spatial
conservation of the stress tensor

@ Define the vector

@ Then




Manton’s integral constraints

@ Let’s take

@ For this choice we get

@ In particular when the surface term vanishes we get

Manton integral constraint




Introduction- questions

@ The questions that we have explored are

@ Can Derrick’s theorem and Manton’s integral
constraints be unified?

@ Can one generalize these constraints to other types
of deformations?

@ What are their implications on Solitons, Wilson
lines, static solutions of gravity , D branes and
spatially modulated configurations.



@ Part I- General formalism

@ A. Geometrical deformations of solitons
@ B. Deformations by global transformations

@ C. Deformation, and stress forces of periodic
solutions

@ D. “ Elasticity requirements” ( or minimizing and
not only extreemizing)
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Part II- Applications-
@ (i) Higher derivative actions and sigma models
@ (ii) Current constraints on known solitons

@ (iii) Solitons of non linear(DBI)Electromagnetism
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@ (v) Constraints on D brane and string actions
@ (vii) Probe branes in brane backgrounds

@ (vii) D3 brane with electric and magnetic fields
@ (viii) Adding Wess —Zumino terms

@ (ix)Flavor branes in M- theory MQCD

@ (x) Application to the Ooguri Park spatial
modulation models



General formalism
P

Part I-
General formalism



(1) Geometrical deformations

@ Consider atheory of several scalar fields ¢
@ Take to bea soliton with ( finite) energy

@ We now deform the soliton

@ We expand the geometrical deformation

@ We take it to be linear




Geometrical deformations

Q - rigid translations

@ antisymmetic -rotations



http://www.see.leeds.ac.uk/structure/strain/translation/translation.html
http://anorganik.uni-tuebingen.de/klaus/nmr/index.php?p=conventions/euler/euler

Geometrical deformations

@ diagonal -dilatation .
(not necessarily isotropic) e<--

T My

@ Symmetric no diagonal components - shear


http://en.wikipedia.org/wiki/Shear_stress
http://whites-geometry-wiki.wikispaces.com/dotrac

Geometrical deformation

@ The energy of the deformed soliton is

\

\

@ The Stress tensor is




Geometrical deformation

@ Thus the variation of the energy relates to the stress
tensor as

@ For theories with scalars and no gauge fields

@ Hence the stress and energy momentum tensors are
related via



Geometrical deformation

@ Since ' ; are arbitrary we get Manton’s integral
conditions

@ More precisely we get

@ So that for vanishing surface term we get the
constraint of vanishing integral of the stress tensor



Geometrical deformation

@ As is well known for Maxwell theory, the canonical
energy momentum tensor is not gauge invariant
and one has to add to it an improvement term

@ Such that which guarantees the
conservation of the improved tensor

@ For these cases we get that the variation of the
energy



Geometrical deformation

@ For the modified case the integral constraint reads

@ Again when the surface term vanishes we get that
the integral of the stress tensor vanishes



BPS configurations and the vanishing of the stress tensor

@ With right fall off we have

@ What about the vanishing of the stress tensor itself?
@ For 1+1 dim. solitions the virial theorem reads

V =
So the stress tensor



BPS configurations and the vanishing of the stress tensor

@ This result can be related to a 1+1 supersymmetic model

for which v

Supersymmetry relates the stress tensor Tij to the supercurrent

Via the susy Ward Identity

From the fact that the BPS solutions are invariant under half

of the supersymmetris g ~ vanishing of Tijj
[Moreno Schaposnik]



(i) Deformations by global symmetry

@ Suppose that our system is invariant under a global
symmetry.

@ The corresponding current conservation for static
configurations reads

@ Deforming the soliton

yields a variation of the energy

@ For constant g4 it is obviously a symmetry but again
we take the transformation parameter



Deformations by global symmetry

@ Thus we get the integral equation

@ For vanishing surface term the integral of the space
components of the global currents vanishes




Deformations by global symmetry

@ In order to have a finite surface integral the current
should go as

@ At leading order for large radii the current reads

@ So there must be a massless mode

@ This happens generically when the symmetry is
spontaneously broken and the mode is the NG mode



(i) Geometric deformation of periodic solutions

@ Apart from solitons there are also static solutions
that break translational invariance but have
divergent energy ( but finite energy density).

@ The analysis of above does not apply but one can do
a local analysis on some restricted region.

@ For periodic configurations will take the unit cell

@ The total force on the surface surrounding the unit
cell of such a solid should be zero.

@ The force on a face of the cell is




Geometric deformation of periodic solutions

@ We can increase the size of a unit cell and at the
same time deform the neighboring cells so the
periodic solution remains unchanged farther away.

@ The forces on the faces of the unit cell no longer
cancel:

@ The net force on the surface after the transformation
could be pointing

@ (i) Out of the unit cell - unstable since the
deformed cell will now continue increasing its size.

@ (ii) Into the unit cell - restoring stability



Geometric deformation of periodic solutions
P



Geometric deformation of periodic solutions
P



(iv) Elastic properties of inhomogeneous solutions

@ We need to minimize and not only extreemize the
energy.

@ We vary the energy to second order.

@ We use an analogy with elasticity theory and map
the minimization to a positivity condition on the
stiffness tensor.



Elastic properties of inhomogeneous solutions

@ In general in thermodynamics we have

Strain

r

@ For ideal isotropic fluid displacement vector



Elastic properties of inhomogeneous solutions

@ Hook’s law for small deformations

@ The energy is minimized if for any two unit vectors

aand b the stiffness tensor obeys




" Elastic properties of inhomogeneous solutions

@ Consider fluctuations of the coordinates

@ The variation of the energy of a scalar field theory to
second order is

@ The stiffness tensor is




Elastic properties of inhomogeneous solutions

@ For a gauge theory the stiffness tensor is

@ Where



Part 11-
Aplications



1. ( warm-up) Sigma models

@ One can easily generalize Derrick’s theorem to a case of
a sigma model

@ Repeating the procedure of above yields

@ When the signature of the metric is positive
then the conclusions for the generalized case are the
same .

@ If the signature is not positive there is no constraints in
any dimension.



2. Higher derivative actions

@ Consider the higher derivative lagrangian density

@ The corresponding equations of motion

@ The conserved energy momentum tensor

Ty = 0,00y ¢ + a[0*60,0,¢ — 0,(5°0) 0y ] — 1 L.




Higher derivative actions

@ The Hamiltonian of the static system

@ Under isotropic re-scaling of the coordinates

@ Requiring extreemality for A =1




Higher derivative actions

@ The higher derivative terms thus ease the restriction
on solitonic solutions for pure scalar field theories:
we can get solitons for d < 4.

@ That’s the mechanism in the Skyrme model

@ Generalizing this result to any higher order
derivative Lagrangian density, where the derivative
terms are quadratic in the fields of the form

@ Now the constraint in principle allows solitons for
any dimension d < 2N.



3. integralof the current constraint ____________

@ Let’s examine this constraints on familiar solitons
for: Topological currents, global and local currents.

@ Topological currents are conserved without the use
of equations of motion.

@ The general structure of these currents in d space
dimensions is

-
is a tensor of degree d composite of the underlying

fields and their derivatives

@ If the current is composed of only scalar fields,
abelian or non-abelian, the spatial components
have to include a time derivative

@ So we conclude that



The current constraint in the ‘t Hooft Polyakov monople

@ The system is based on SO(3) gauge fields and iso-
vector scalars described by

@ The SO(3) current is

@ The equations of motion



The current constraint in the ‘t Hooft Polyakov monople

@ The relevant ansatz for the classical configurations

@ Asymptotically they behave as

Qo Substituting the ansatz to the current

@ It is obvious that
@ The current constraint is obeyed



The constraint on the axial current of the skyrme model

@ The two flavor Skyrme model is invariant under
both the SU(2) vector and axial flavor global
transformations.

@ The currents read

@ plus higher derivative corrections that follow from
the Skyrme term.

@ The space integral of the non-abelian (axial)current

1S

In accordance with the fact that there is an SSB



4. Soliton of non linear electromagnetism

@ Let us analyze the constraints on EM expressed in
terms of a DBI action.

@ We check first the ordinary Maxwell theory
@ The energy is

@ The scaling of E and B are
@ The scaled energy

@ Derrick’s condition

@ No solitons apart from d=3 for self duals



Soliton of DBI non- linear electromagnetism

@ The DBI actionof EM ind+1=41is

@ The associated energy density

e =1+ (BR+ (D2 +BxD2-1

@ Derrick’s constraint

@ Electric and magnetic solitons are not excluded



5. Constraints on string and D-brane actions

@ If the generalized constraints are fulfilled by some
string or D brane configuration it may indicate
about possible states apart from the trivial ones.

@ The constraints are based on comparing
configurations with the same boundary conditions

@ For finite volume ones, the variation may change the
boundary conditions.

@ Satisfying the constraints is not a proof of existence
@ The constraints my exclude classes of solitons



Constraints on string and D-brane actions

@ The action of the low energy dynamics of D-branes

\ - / /
Dp brane  dilaton / pull back
tension induced metric of the NS form

@ D-branes can also carry charge that couples toa RR
flux. This corresponds to a WZ (CS) action

/
/

pullback of the RR k-form




Constraints on strings

@ Similarly the NG action describes the fundamental
string

@ The string is charged under the NS two form

@ The induced metric is

e

the embedding coordinates



Fixing diffeomorphism

@ The brane ( string) action is invariant under
diffeomorphism hence the constraints are trivially
satisfied.

@ For instance for the NG string the energy

@ To get non-trivial constraints we must gauge fixed
the diffeomorphis invariance



Fixing diffeomorphism

@ We use the usual static gauge.
@ We split the coordinates
- -worldvolume
--transverse
We impose
(i) space-time translation invariance on the worlvolume

(ii) truly static



Constraints on D brane action without gauge fields

@ In the static gauge the pull-back metric reads

goo = Goo, goi = Goi. gij = Gij + G0, Y 0, Y"

@ The energy is

.

€ =1 _Dbrane subtraction for
. = 0. -string

E=0



Constraints on D brane action without gauge fields

@ Derrick’s condition is now

@ Where we have used

@ After some algebra we find that the condition is

@ This can be obeyed so we can not exclude Dbrane
solitons



Constraints on D brane action without gauge fields

@ However for ¥“ depending only on a single x

@ Since for non-trivial the integrand is positive
the constraints cannot be satisfied.

@ There are no solitons D-branes ( even for p=1)
that depend on only one coordinate



Probe brane in Dp brane background

@ The near horizon background has the metric

@ The dilaton
@ A RR form

@ The DBI+ CS actions read




Probe brane in Dp brane background

@ Derrick’s condition is now

=

@ The second derivative condition is

@ There are no soliton solutions for any p that
obey the stronger condition of vanishing of the
integrand.



Generalized conditions for Branes with gauge fields

@ When electric field is turned on the energy is not
just —-Lpsi  but rather the Legendre transform

@ It is convenient to define M such that

@ The energy can be written as




Deformation constraints on D branes with gauge fields

@ Rather than deriving Derrick’s condition let’s look
this time on Manton’s constraints

@ The explicit form of the stress tensor reads




Adding the WZ terms

@ Again like the DBI action we have first to gauge fix
@ The pullback of the RR fields is

@ For instance for D1 brane the WZ action reads

@ The contribution to the stress tensor is

ATTL = —T4 [C{gi}fh}m + 27a’C {D}Fﬁlw + 11 [C{%} T Clgi} 1Y + 21’ COF DJ =11 Cfé?

@ In the absence of gauge fields

@ Hence we see again that there is no D1 soliton solution



The D3 brane case

@ For the D3 brane case the WZ term is

@ The contribution of the WZ term to the stress tensor




Application to gravitational backgrounds

@ Upon gauge fixing the diffeomorphism and
parameterizing the metric the dilaon and fluxes we
get an action of a bunch of scalar fields with a
potential.

@ In case that there is a dependence only on the radial
direction it is a 1+1 dimensional action.

@ Generically the " "kintic terms” are not positive
definite.

@ It turns out that the integrand of Derrick’s condition
translates to the ' 'null energy condition”.

@ Let’'s demonstrate this



Application to gravitational backgrounds

@ Consider the DC on d brane solutions of gravity
@ The bosonic part of the SUGRA action in D dimensions

/ \

@ We take the metric in the string frame




Application to gravitational backgrounds

@ In terms of the metric fields and the dilaton

@ The ''null energy” condition which is a Gauss law
associated with fixing ¢, =1

@It is identical to the integrand of Derrick’s condition




Application to gravitational backgrounds

@ Consider the following 1+1 dim model with N degrees of
freedom

@ The extremum condition reads

@ The integrand is just the energy of a o+1 dim. where x is
taken to be the time. Thus the vanishing of the
integrand is identical to the ' "'null energy
condition”



Flavor branes in MQCD

@ The type IIA brane configuration [Aharony,Kutasov,Lunin,Yankielowicz]

N D4

~
AT

e

=

= NS

@ Can be uplifted to M theory background




Flavor branes in MQCD

@ The shape of the curved five brane

@ The induced metric is

@ The Lagrangian density




Flavor branes in MQCD

@ The Neother charges associated with the shifts of
x6 and o are

@ Applying Derrick’s condition yields

r

['he integrand is identical to the Noether charge E
thus the condition translates to ** null energy
condition”

Q9



Application to spatially modulated models

@ Spatial modulation (S.M) was identified in YM+CS
theory on an AdSs black-hole

@ The background metric is given by

@ With the warp factor



Application to spatially modulated models

@ The background electric field is given by

@ The spatially modulated solution

@ The equations of motion



Application to spatially modulated models

@ Integrating the first equation we end up with

T~

-

@ This equation admits solution with amplitude

@ The relation between

ho and k



Application to spatially modulated models

@ The energy density of the boundary field theory is

@ It is minimized at



The stiffness tensor

@ The energy density is given by

@ The expression for the stiffness tensor is complicated
@ For the unit vectors

It is given by




The stiffness tensor

____ positive

\

negative

Thus there are regions which indeed correspond to
minima but other ( blue ones) correspond to maxima



Stress foreces

@ We check now for the stability against deformation in
the x2 direction

@ The pressure is negative for all k and has a maximum

for
@ In the region the system is not restored
@ The minimum of the free energy at is in the

instability region






Summary and open questions

@ We unified and generalized Derrick’s and Manton
constraints on solitons.

@ We have applied the condtions to sytems of soltions
with global currents

@ Sigma model and higher derivative actions
@ DBI electromagnetism
@ Dbranes including the DBl and WZ terms

@ The method can be applied to many more ™
modern solitons”

@ In particular we are investigating the stability of the
spatially modulated brane and bulk solutions.



