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The Fractional Quantum Hall Effect
I In systems with 2D electron gases, at very low temperatures,

high magnetic fields, clean samples :

[Tsui+Stoermer]



The Fractional Quantum Hall Effect

I FQHE states are gapped states with quantized Hall conductvitiy

σxy =
p
q

(
e2

h

)
, p,q ∈ Z , q odd

I Physics of pseudoparticle excitations invariant under Modular
Group Action : σ = σxy + iσxx

σ 7→ aσ + b
cσ + d

,

(
a b
c d

)
∈ Γ0(2) ⊂ SL(2,Z) , c even

• σ 7→ σ + 1 Landau Level addition (T)
• − 1

σ 7→ 2− 1
σ 2π Statistical Flux attachment (ST 2S)

I Group action commuting with the RG flow implies that RG fixed
points are Γ0(2) fixed points, structure imprinted on σ flows in
σxx − σxy plane
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The Fractional Quantum Hall Effect
I Assume:
• Integers are attractive
• σxx ↓ as T ↓ (semi-conductor behaviour )
Modular symmetry ⇒ Even denominators repulsive

[Burgess+Lutken 1997, Dolan 1999, Lutken+Ross 2009]



The Fractional Quantum Hall Effect

[S.S. Murzin et al 2002]



The Fractional Quantum Hall Effect

I Any transition can be reached from σ : 0→ 1 by a Γ0(2):

σ′ =
(p′ − p)σ + p
(q′ − q)σ + q

⇒ γ =

(
p′ − p p
q′ − q q

)
∈ Γ0(2)

⇒ Selection Rule: p′q − pq′ = 1 (e.g. 1/3→ 2/5) [Dolan 1998]



Universal Behaviour in FQH Transitions

I Semi-Circle law in σ-plane

I QHL-QHI Transition: Bc is temperature independent and
ρxx (Bc) largely sample-independent

[cond-mat/9805143]

I Transition is a 2nd order QPT : [Fisher ’90]

I Simple scaling⇒ σ(T ,∆B,n, ...) = σ(∆B/Tκ,n/Tκ′ , ...)
I Superuniversality: κ and κ′ are same for all transitions
I Experimentally: κ = κ′ = 0.42± 0.01 [Wanli et al 2009]

I Nonlinear inversion symmetry around critial point

I CAN WE REPRODUCE THIS IN A SINGLE
HOLOGRAPHIC MODEL BY USING MODULAR
INVARIANCE?
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SL(2,R) and Black Hole Charges
I The main idea of [1007.2490,1008.1917,WIP] is to use an

SL(2,R) or SL(2,Z) invariant gravity action. These groups act on
the electric and magnetic charges of the black hole solutions,
which label the QH plateaux with charge density n and external
magnetic field B. The filling fraction n/B inherits the group
action, as do the conductivity and other observables.

I The starting point of [1007.2490] is the SL(2,R) invariant action

S =

∫
d4x
√
−g
[
R − 2Λ− 1

2
(∂φ)2 − 1

2
e2φ(∂a)2 − 1

4
(e−φF 2 + aFF̃ )

]

I SL(2,R) acts on the fields as

τ = a + ie−φ = τ1 + iτ2 , τ → aτ + b
cτ + d

and

F → F ′ = (cτ1 + d)F − cτ2F̃ ds2 → ds2
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SL(2,R) and Black Hole Charges
I Dyonic black branes generated from purely electric ones by

SL(2,R). [1007.2490]

Q′e = aQe , Q′m = cQe

I Any filling fraction can be generated in this way.
The electric solution flows in the IR to τ1∗ = 0 , τ2∗ = +∞, which
after SL(2,R) becomes τ ′1∗ = a

c and τ ′2∗ = τ2∗
−1 = 0 . The filling

fraction in the IR is hence equal to the value of the transformed
axion

ν =
Q′e
Q′m

=
a
c

= τ ′1∗ ,

which can be roughly though of setting the Chern-Simons level
in the dual field theory. [1007.2490] .
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SL(2,R) and Black Hole Charges
I Are these black branes the QH plateaux?

Evidence 1: They are unique IR attractors by the attractor
mechanism (in the absence of a scalar).

Evidence 2: Hall Conductivity [1007.2490] used the known AC
conductivity of the purely electric solution,

σxx = C′ T
2

µ2 + iC′′ µω + ... , σyx = 0

and the action of SL(2,R) on the AC conductivity to show that at
low frequencies the Hall conductivity agrees with the filling
fraction and also the axionic attractor value. .

σ′yx = a
c

(
1 + O(ω2)

)
, σ′xx = 16

i(Q′m)2C′′
ω
µ (1 + O(ω)) .

The DC conductivity vanishes exactly.
N.B.: No ω−1 pole since momentum is nonconserved in external
magnetic field.



Summary: SL(2,R) invariant model of [1007.2490]
I We have seen that the model has attractor solutions with the

right filling fractions (if we restrict SL(2,R) to Γ0(2)) and Hall
conductivities . [1007.2490] .

I However, the DC conductivity does not show the features
expected from a QH plateaux:

1. There is no hard gap in the
charged excitations, i.e. σDC

does not vanish as e−
∆
T at

low temperatures (T � µ),
but as a power law.

2. Performing a SL(2,R) trafo
from one filling fraction to
another, σDC(T = 0) = 0
along the way, while the Hall
conductivity changes. This is
not the experimentally
observed behavior.
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Gapped Spectra in Charged Systems and the FQHE
[WIP with Elias Kiritsis, Matthew Lippert, Anastasios Taliotis]

I In string theory, SL(2,R) is usually broken to SL(2,Z) by
nonperturbative effects. This typically will generate a SL(2,Z)
invariant potential for the axio-dilaton (τ = τ1 + iτ2 = a + ieγφ)

S = M2
Pl

∫
d4x
√
−g
[
R − 1

2γ2
∂τ∂τ̄
τ2

2
+ V (τ, τ̄)− 1

4

(
τ2F 2 + τ1FF̃

)]

I A simple choice is the real-analytic Eisenstein series

V (τ, τ̄) = Es(τ, τ̄) =
∑

m,n∈Z2/0,0

(
|m+nτ |
τ2

)−s

I For large τ2 there is a expansion

Es = 2ζ(2s)τ s
2 +2

√
π Γ(s−1/2)

Γ(s) ζ(2s−1)τ1−s
2 + instanton contributions

I We tune the two parameters (γ, s) such that the dyonic ground
state has a gapped charged excitation spectrum. The SL(2,Z )
dual CDBH we start from has a gapped and discrete spectrum.
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Gapped Spectra in Charged Systems and the FQHE
I For large τ2 the potential is dominated by V ∼ eγsφ. CDBHs with

this potential were extensively analyzed in [1005.4690] .
Gubser’s constraint, thermodynamic instability of small black
holes, consistency of the spin 1 fluctuation problem and
existence of a discrete and gapped spectrum restrict (γ, s):



Gapped Spectra in Charged Systems and the FQHE
I QH Plateaux? Since Es is SL(2,Z) invariant it has runaway

minima at τ1 = p
q , τ2 = 0, the images of the CDBH at τ2 =∞.

Their charges fulfill
Qe

Qm
=

p
q

= τ1∗ .

IR Geometry: Magnetically charged DBH w. τ2 = e−γφ

I RG Flows: Es is stationary in the fundamental domain at the
SL(2,Z) fixed points:
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Gapped Spectra in Charged Systems and the FQHE
I Since SL(2,Z) commutes with the RG flow it suffices to construct

the RG flows inside the fundamental domain:



Gapped Spectra in Charged Systems and the FQHE
I By SL(2,Z) we can generate flows to any QH plateaux τ1 = p/q.

E.g. ν = 1 :



Gapped Spectra in Charged Systems and the FQHE
I Our flows are the IR scaling geometries of [1005.4690]



Gapped Spectra in Charged Systems and the FQHE
I Conductivities: At low enough temperatures the purely electric

state is discrete and gapped. Hence the conductivity at small ω
is dominated by the contribution from translation invariance:

σxx (ω) ' iC′′µ
ω + ... , σxy = 0

I We calculated the zero temperature conductivity at small
frequencies by numerically solving the gauge field fluctuation
equations in our electric flow geometries. We find

Reσxx = C′′δ(ω) , C′′ = O(1)

I Thus after SL(2,Z ) the QH plateaux have the correct Hall
conductivity

σxy =
a
c

But are they gapped as well?
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Gapped Spectra in Charged Systems and the FQHE
I We calculate the charged spectrum in the dyonic geometry

directly. We fluctuate

δAx , δAy , δgtx , δgty .

In general dyonic solutions with running scalars the equations
can be decoupled into a single second order equation after
taking linear combinations [0910.0645]

Ez = ω(δAx + iδAy ) + hgrr (δgx
t − iδgy

t ) .

The fluctuations obey a single 2nd order ODE

E ′′z + F (r)E ′z + G(r)Ez = 0

This is equivalent to the Schrödinger problem

−Ψ′′ + V (r ,w)Ψ = 0

if we set Ψ(r) = Ez(r)e
1
2

∫
drF (z)



Gapped Spectra in Charged Systems and the FQHE
I For our choice of γ, s the potential

V (r ,w) = 1
4

(
F 2 − 4G + 2F ′

)
diverges in the IR and approaches 1

4L2 in the UV. The spectrum
is hence gapped in the QH state. .
E.g. Flow to filling fraction one from image of τ = i :

(blue w = 10−5 , purple w = 10−2 , red w = 1)



Gapped Spectra in Charged Systems and the FQHE
I Flows with varying axion: Bound states possible at larger

frequencies

(blue w = 10−5 , purple w = 10−2 , red w = 1)

I N.B.: The singularity in the potential is an accessory singularity,
i.e. there is no monodromy, and the singularity is traversable by
the wavefunctions. This was not appreciated in e.g. [0910.0645]]
.
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Conclusions
I Several holographic bottom-up models of the FQHE so far have

employed SL(2,R) transformations to infer the properties of the
QH state from an ungapped state at zero magnetic field. The
resulting QH state was ungapped. [1007.2490(,1008.1917)]

I We use a SL(2,Z) invariant Eisenstein potential which allows us
to tune the electric state to have a gapped and discrete charge
spectrum at low temperatures. We constructed the RG flows to
CDBHs in the fundamental domain, and hence all RG flows to
QH plateaux states, and showed that the QH states have the
correct Hall conductivity, and a real gap (no δ(ω) pole).

I Future Directions/Open Questions:

1. Interpretation of the two UV fixed points, and walking?
2. IR fixed points (AdS2 and running) and thermodynamics
3. Transitions between QH Plateaux as a QPT?
4. How to break SL(2,Z)? Does this mimic impurities?
5. Phenomenology? Subgroups such as Γ0(2)/Γθ(2)?

I STAY TUNED!
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Backup Slides



The Fractional Quantum Hall Effect

I Semicircle law: Conductivity sweeps out a semicircle in σ plane
during QH transitions [e.g. Burgess etal 1008.1917]



WIP: Other IR Fixed Points
I In order to assess whether we are in the right ground state we

need to classify all possible ground states of the model,
construct the flows from the UV and compare the free energies.

I There can be constant scalar or running scalar solutions.

I Constant Scalar solutions are AdS2 × R2 :

τ2∗∂τV |∗ = i(q−hτ̄∗)2

2τ2∗
, L−2

AdS2
= V∗

These are gapless and come in SL(2,Z) orbits→ QCPs for
Plateaux Transitions?

I For the leading exponential potential in the Eisenstein series
Es = eγsφ + . . . there are also more general running scalar
solutions where both the axion and the dilaton runs:

grr = b0rb , gtt = rd , gxx = r c , φ = κ log r , a = a0rλ

We are classifying all of them along the lines of [Gouteraux &
Kiritsis ’12] in order to find all possible translation and
rotationally invariant ground states.
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SL(2,R) invariant probe branes [1008.1917]
I [Burgess etal 1008.1917] realized that the DC conductivity in the QH state

of [1007.2490] vanishes due to the momentum-conservation pole in
=σxx of the purely electric solution.

I They introduce dissipation by separating the sector that
generates the gravity background of [1007.2490] from the sector of
charge carriers, which they model using a SL(2,R) invariant
probe brane

S = M2
Pl

∫
d4x
√
−g
[
R − 2Λ− 1

2
(
(∂φ)2 + e2φ(∂a)2)]+

+M2
PlSLifshitz + Sgauge

The first two terms are assumed to be separately SL(2,R)
invariant, and SLifshitz to be chosen such as to generate the
metric of the z = 5 Lifshitz black hole of [1007.2490] , together with
an appropriate axio-dilaton profile.
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SL(2,R) invariant probe branes [1008.1917]
I Sgauge is taken to be a SL(2,R) invariant version of the DBI

action, treated in the probe limit:

Sgauge = −T
∫

d4x
[√
−det

(
gµν + `2e−φ/2Fµν

)
−
√
−g
]

−1
4

∫
d4x
√
−gaFµν F̃µν

I This describes self-interacting charge carriers coupled to a large
reservoir of quantum critical excitations into which they can
loose energy via dissipation:
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SL(2,R) invariant probe branes [1008.1917]
I The method of [Karch, O’Bannon ’07] is used to calculate the

(nonlinear) DC conductivity in the purely electric background
solution

I The QH state conductivity is then inferred by a SL(2,R) (or a
subgroup such as Γ0(2)) transformation

σxx =
σ0

d2 + c2σ2
0
, σxy =

acσ2
0 + bd

d2 + c2σ2
0
,

with σ0(T/µ) the DC conductivity of the probe brane in the
purely electric state (with σyx = 0). For probe branes in Lifshitz
backgrounds like

ds2
z = L2

[
−h(r)

dt2

r2z +
dr2

r2h(r)
+

dx2 + dy2

r2

]
σ0 grows monotonically with falling temperature ∝ T−2/z , and
parametrizes the RG flow of the conductivity in the QH state.

I This temperature flow commutes with SL(2,R) or any subgroup.
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SL(2,R) invariant probe branes [1008.1917]
I The four parameters of the necessary SL(2,R) transformation

are fixed by the data of the endpoint (Q′e,Q′m,a,e−φ). The
temperature flow of the conductivities then trace out semi-circles
in the σ plane, and for small T asymptote to (in linear response)

σxx ∼ ρT 2/z

B2 → 0
σxy = ν = a

c

This also predicts the superuniversality exponents κ ≈ 2
z = κ′

close to the measured value if z = 5 as in [1007.2490] .
However there is still no hard gap. .
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