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Introduction-Motivation

Holography is one of the main tools for studying the
proeprties of of strongly coupled QFTs. Recently: also
proved useful for investigating formal aspects of QFTs

e.g.

• holographic c-theorem and entanglement entropy

• energy-flux constraints and unitarity .

Such results often come from enlarging the set of grav-
ity duals under consideration, e.g. higher derivative
gravities.
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Introduction-Motivation

In this talk:

A massive vector boson propagates in the bulk of AdS.
We investigate the consistency of its electromagnetic
and gravitational couplings.

In top-down holographic models such couplings are fixed
(e.g. consistent truncations, DBI). [talk by C. Rosen]

Here we take a phenomenological approach. Assume
AdS gravity defines a CFT and check if it consistent.

Based on work with R. Rahman.
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Introduction-Motivation

Is there reason to expect such constraints from holography?

• Assuming duality relates two theories, certain patholo-
gies may be more manifest on one side of the duality.

• Explicit example in the past – Gauss-Bonnet gravity

L = R−
d(d+ 1)

2
L2 + λGB

L2

2

(
R2 − 4R2

µν +R2
µνρσ

)
For arbitrary values of the Gauss-Bonnet coupling,
λGB, the theory is classically consistent (causal prop-
agation, no ghosts).

The dual CFT violates causality unless λGB:

−(3d+2)(d−2)
4(d+2)2 ≤ λGB ≤ (d−2)(d−3)(d2−d+6)

4(d2−3d+6)
.

[Brigante etal][Buchel etal][deBoer, Parnachev, MK][Camanho etal]
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Outline

• Massive vector field and its interactions.

• AdS/CFT setup: background and fluctuations.

• Fluctuation analysis and WKB.

• Holographic Constraints.

• Summary, conclusions and open questions.
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Massive spin-1: Free case.

L = −
1

4
(∂µWν − ∂νWµ)2 −

1

2
m2WµW

µ

= −
1

2
(∂µWν)

2 +
1

2
(∂µW

µ)2 −
1

2
m2W µWµ

The two lines are equivalent since ordinary derivatives
commute with each other.

EOM and constraint:

(
�−m2

)
Wµ = 0, ∂µW

µ = 0, m2 6= 0

In d + 1 dimensions there are d (causally) propagating
degrees of freedom.
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Massive spin-1: Electromagnetic Interactions.

Lorentz invariance, parity and time-reversal implies

L = −|∇µWν|2 + |∇µW
µ|2 −m2W ∗

µW
µ + iqgF µνW ∗

µWν+

+
i

2
∆Qe

[
W ∗

µ (∇νWρ −∇ρWν) ∂
µF νρ − h.c.

]

[∇µ,∇ν]Wρ = iqFµνWρ, µm =
qg

2m
, Qe = q

1− g
m2

+ ∆Qe

• q is the charge

• g is the gyromagnetic ratio or g-factor.

• Qe the quadrupole moment.
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Massive spin-1: Electromagnetic Interactions.

EOM and constraint:

�Wµ −
iq(g − 2)

m2
∇µ (F ρν∇ρWν) + · · · = 0

∇µW
µ −

iq(g − 2)

m2
F µν∇µWν + ∆Qe (· · · ) = 0

d propagating degrees of freedom in d+ 1 dimensions.

Causallity requires

• g-factor arbitrary

• ∆Qe = 0 [Velo-Zwanziger]

8



Massive spin-1:Electromagnetic Interactions

Determine Hyperbolicity and Causality of the EOM by
the method of characteristic determinant.

• Replace the highest derivatives in EOM i∂µ by nµ

nµ is the normal to the characteristic hypersurface.

• Find the determinant ∆(n) of the resulting coefficient
matrix.

The system is hyperbolic when:

∆(n) = 0 has real solutions for n0 for any n.

The system is causal when:

umax = |n0|
|n| ≤ 1. Timelike nµ ⇒ acausal propagation.
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Massive spin-1: Adding Gravity.

L = −|∇µWν|2 + |∇µW
µ|2 −m2W ∗

µW
µ + iqgF µνW ∗

µWν−
− hRµνW ∗

µWν

• A gravitational quadrupole term is present due to the
non-commutativity of the covariant derivatives.

• h is referred to as the gravimagnetic ratio or h-factor

• The theory is classically consistent for arbitrary values
of the h-factor(
∇2 −m2

)
Wµ −∇µ (∇ ·W ) + iqgFµνW

ν − hRµνW
ν = 0
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Holography: the setup

Objective: To assess the consistency of the couplings
g, h using holography.

Qubic couplings ⇔ three-point functions in CFT.

Investigating three-point functions in the dual boundary
CFT holographically, involves writing down an action
third order in the fluctuating fields.

• Is there a simpler way?

Consider the quadratic action in an asymptotically AdS
background with non-trivial profiles for Fµν, Rµν.
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Holography: the setup

Simplest choice:

The extremal AdS-Reissner-Nordstrom black hole.

ds2 =
L2

r2

dr2

f(r)
+
r2

L2

[
−f(r)dt2 + d~x2

]
, Aσ = µ

(
1−

rd−2
0

rd−2

)
δtσ

f(r) = 1 +
d

d− 2

(
r0

r

)2d−2

−
2(d− 1)

d− 2

(
r0

r

)d

Chemical Potential and Charge Density

µ =
√

d(d−1)
2(d−2)2

gFr0

L2
ρ =

√
2d(d− 1)

gF

(
L

lp

)d−1 (
r0

L2

)d−1
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Holography: the setup

AdS/CFT viewpoint:

• massive, spin-1 Wµ ⇐⇒ non-conserved operator Oµ
m2 6= 0→∆ > d− 1

• RN-background ⇐⇒ CFT at finite charge density

〈Jt〉 6= 0.

• Quadratic action for W µ in the bulk ⇐⇒
2-point function of Oµ

Consider the eom(
∇2 −m2

)
Wµ −∇µ (∇ ·W ) + iqgFµνW

ν − hRµνW
ν = 0

as eom for fluctuations of Wµ in the bulk.
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Fluctuation analysis

Define

δg = 2− g δh = h− 1 m2 = m2 − dδh

Note: m is the effective mass in pure AdS.

To avoid instabilities m2 > 0 (BF bound).

Set d = 4 and Fourier transform:

Wµ(r, t, x3) =
∫
dωdk

(2π)2
Ŵµ(r) ei(kx3−ωt).

Degrees of freedom are distinguished into longitudinal
Ŵµ=0,3 and transverse Ŵµ=2,3. Ŵr is not a dynamical
field; can be completely determined from the longitudi-
nal modes.
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Fluctuation Analysis

Transverse modes decouple from the rest (no obvious
pathology). To study the longitudinal modes make a
field redefinition

E+(r) ≡ kŴt(r) + [ω − qAt(r)] Ŵ3(r),

E−(r) ≡ [ω − qAt(r)] Ŵt(r) + kf(r)Ŵ3(r).

Now the boundary operators dual to the new fields are
completely decoupled.

EoM still coupled and complicated. Can be simplified in
a suitable scaling limit, where frequency ω, momentum
k and chemical potential µ ≡ qµ are large.
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Fluctuation Analysis

The scaling limit is

kz � 1 & µz � 1, with u ≡
ω

k
= fixed & v ≡

qµ

k
= fixed.

where the new radial variable is defined as z = r
r0

.

The coupled eom for the modes E± are

E ′′+ + ka(z)E ′− + k2b(z)E+ = 0,

E ′′− + kc(z)E ′+ + k2d(z)E− = 0,

• Functions a(z), b(z), c(z), d(z) have no simple form but
are all rational functions of z.

• a(z) and c(z) are proportional to vδg. When either the
field is uncharged or δg = 0 the equations decouple.
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WKB

WKB for coupled differential equations [Yabana-Horiuchi].

Consider the standard ansatz

E±(z) = eikS±(z), S± ≡ S(0)
± + k−1S(1)

± + · · ·

The standard amplitude factor for the WKB solution is
hidden in S(1)

± .

Substitute the ansatz into eom - order by order analysis:

• S(0)
± = S(0), i.e., S(0) is independent of the mode.

• Following standard conventions, set

p(z) ≡
dS0

dz
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WKB

• Leading order analysis shows that a non-trivial solu-
tion requires

G ≡
∣∣∣∣∣−p2 + b(z) ia(z)p(z)
ic(z)p(z) −p2(z) + d(z)

∣∣∣∣∣ = 0.

and thus determines p(z).

• Next order analysis determines S(1)
± etc.

The leading order WKB solution is of the usual form

E± ' A±(z)eik
∫
p±(z)

where A±(z) is real and inversely proportional to
√
∂G
∂p

.
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WKB

The phase factor is

p2
± =

1

z4f2(z)

[(√
E± +

v

z2

)2

− V±
]
,

where

V±(z) =
f(z)

m2z6 − 8δh

[
H(z) + δg2v2z2 ∓ 2

√
δg2v2z2H(z) +K2(z)

]

H(z) = δg (2 + δg) v2z2 + m2z6 − 2δh K(z) = δg v2z2 + 3δh.

V±(z) vanishes at the horizon z = 1 and tends to unity
at the boundary z = ∞. E± is the square of the phase
velocity u− v.

19



WKB

The equation

∂G
∂p

∣∣∣∣∣
zt

= 0 ⇒ p(zt) = 0 or p(zt) = −1
2
(ac− b− d).

determines the turning points where the WKB approx-
imation breaks down.

The first solution p(z) = 0 is familiar from the single
channel WKB analysis. The second solution is a new
feature of the coupled system and corresponds to the
point where the phases of the different modes p+(z) and
p−(z) coalesce.
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WKB

Study of the turning points reveals:

• The second class of turning points do not exist in
this case.

• The first class exists and the standard approach for
matching the solutions can be used.

Treating the boundary z =∞ as an infinite wall yields

k
∫ ∞
zt

p(z) +O(k̃0) = π
(
n± 1

4

)
, n = 1,2, ... ... .
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WKB

The quantization condition yields the group velocity

ug ≡
dω

dk
− v =

∫
u∂p
∂u

+ v∂p
∂v
− p∫ ∂p

∂u

− v

The integrals are strongly peaked around the turning
point and one can approximate the group velocity with:

u2
g ' E

[
1−

v√
E

(
∂u

∂v

)
p

]2

z=zt

.

At the turning point the phase velocity E > 1. For a
neutral field v = 0 and for v << 1 in general, the exis-
tence of a turning point will lead to causality violation.
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WKB

• Should appropriately constrain the bulk couplings g, h
so that a turning point does not exist.

Consider the effective potential (v > 0)

V eff
± (z) ≡

(√
V± −

v

z2

)2

,

equal to the phase velocity E at the turning point zt.

At the boundary, V eff
± is normalized to unity.

A turning point exists when it develops a maximum in
the bulk.
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Holographic Constraints

• The (+) mode is always consistent.

2 3 4 5
z

0.4

0.6

0.8

1.0
V+

eff
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Holographic Constraints

• V −eff for different values of δg.

As δg increases, a turning point develops.

1 2 3 4 5
z

0.8

0.9

1.0

1.1

V-
eff
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Holographic Constraints

Expand close to the boundary

V eff
± = 1−

2v

z2

(
1±

|δg|√
m2

)
+O(z−4),

The (-) potential develops a maximum when

δg2 > m2

While for v ≡ qµ
k
<< 1, the group velocity behaves like

u2
g = 1 + v +O(v2) > 1

Consistency of the dual boundary CFT requires δg2 < m2.

26



Holographic Constraints

We can separately analyze the neutral case v = 0. The
potential is

Vi=± =
(

1−
3

z4
+

2

z6

) [
1 + δ−i

12δh

m2z6 − 8δh

]
,

If the potential increases as we move inwards from the
boundary, where Vi(z = ∞) = 1, there will be a turning
point with E = Vi > 1. Group velocity will then be
greater than unity.

Causality combined with stability requirements then yield

− 1
4
m2 ≤ δh < 1

8
m2.
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Summary

• Holography constraints both δg and δh.

δg2 < m2 and − 1
4
m2 ≤ δh < 1

8
m2.

• Constraints depend on the mass m of the bulk field.
In the dual CFT this translates to a dependance on
the conformal dimension ∆ of the spin-1 operator.

• For a field of arbitrary mass consistency requires

g = 2, h = 1
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Discussion-Open Questions

• Constraints obtained in simlar manner to the case of
Gauss-Bonnet gravity.

In Gauss-Bonnet theory λGB is related via hologra-
phy to the parameters which determine the two- and
three- point functions of the stress energy tensor.

Holographically obtained constraints on λGB turn out
to be in ”1-1” correspondence to the positivity of
energy flux constraints.

Example: d+ 1 = 5

−
7

36
≤ λGB =

(a− 5c)(a− c)
4(a− 3c)2

≤
9

100
⇒ −

1

2
≤
c− a
c
≤

1

2
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Discussion: Energy Flux one-point function

Definition: The energy flux operator E(n̂) per unit angle
measured through a very large sphere of radius r is

E(n̂) = lim
r→∞

rd−2
∫
dt n̂i T 0

i (t, rn̂i)

ni is a unit vector specifying the position on Sd−2 where
energy measurements may take place. Integrating over
all angles yields the total energy flux at large distances.

Focus on the energy flux one-point function on states
created by the stress–energy tensor operator

Oq = εijTij(q)

with εij a symmetric, traceless polarization tensor.
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Discussion: Energy Flux one-point function

• Rotational symmetry fixes the form of the energy flux
one–point function up to two independent parame-
ters.

〈E(n̂)〉Tij =
〈ε∗ikTikE(n̂)εljTlj〉
〈ε∗ikTikεljTlj〉

=

=
E

Ωd−2

[
1 + t2

(
ε∗ilεljninj

ε∗ijεij
−

1

d− 1

)
+ t4

(
|εijninj|2

ε∗ijεij
−

2

d2 − 1

)]

Here t2, t4 are arbitrary constants. By construction, they
can be related to a, c.
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Discussion: Energy Flux and Constraints

Demand positivity of the energy flux one point function,
i.e., 〈E(n̂)〉 ≥ 0.

Positivity of the energy flux yields constraints on t2, t4:

CG(A,B, C) ≡ 1 −
1

d− 1
t2 −

2

d2 − 1
t4 ≥ 0

CV (A,B, C) ≡ 1 −
1

d− 1
t2 −

2

d2 − 1
t4 +

t2

2
≥ 0

CS(A,B, C) ≡ 1 −
1

d− 1
t2 −

2

d2 − 1
t4 +

d− 2

d− 1
(t2 + t4) ≥ 0
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Discussion: Energy Flux and Holography

• Positivity of the energy flux constraints on states cre-
ated by Tµν obtained holography from the study of the
two-point function of Tµν in AdS-black hole.

– Compare this calculation with ours:

Comparison with Calculation of Energy Flux Constraints

〈TµνTρσ〉∆=4 〈OµOν〉∆(g)
〈T00〉 6= 0 〈T00〉 6= 0 & 〈Jt〉 6= 0

BH & T 6= 0 RN-BH & µ 6= 0
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Discussion-Open Questions

• What is the meaning of these constraints? What do
the g, h-factors correspond to in field theory?

Possible interpretation:

h-factor ←→ 〈OµEOν〉

E = lim
r→∞

rd−2
∫
dt n̂i T 0

i (t, rn̂i)

g-factor ←→
〈
O†µQOν

〉

Q ≡ lim
r→∞

rd−2
∫
dt n̂i ji(t, rn̂

i)
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Discussion-OpenQuestions

• The following field redefinition

gµν → gµν
(
1 + a1|W |2

)
+ a2W

?
µWν

absorbs the h-coupling and introduces quartic terms

e.g. W ?
µWνW ?

ρWσ.

– h-factor constraints must then be related to four-
and higher- point functions of Oµ.

• Constraints result from requiring 〈E〉 ≥ 0.

Is there any physical reason for 〈Q〉 ≥ 0 ?

Constraints related to higher-point functions?
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Discussion-Open Questions

More questions ...

• The meaning of the scaling limit:

Violation of causality observed for qµ large compared
to other couplings but small compared to the mo-
mentum k.

• Constraints related to the conformal dimension of
the operator - here we implicitly work in the strong
coupling regime.
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Discussion-Open Questions

More things to do...

• Holographic computation of three point functions.

• CFT analysis of the three- and four- point functions
- constraints?

• Similar analysis for fields of other spin?

• Holographic bounds for generic values of q.
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Discussion-Open Questions

• Gravity side - a different perspective:

– What is known for the action of a massive spin-1
field in flat space?

∗ Tree level unitarity requires g = 2
[Cornwall, Levin, Tiktopoulos].

∗ Standard model predicts g = 2 at tree level.

∗ No known constraint for h unless susy - then
h = 1 [Giannakis, Liu, Porrati].

– What is the holographic analysis telling us?

Pathologies in classically (seemingly) consistent

theories show up in the dual boundary CFT.

38



Thank you!

39


