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Introduction-Motivation

Holography is one of the main tools for studying the
proeprties of of strongly coupled QFTs. Recently: also
proved useful for investigating formal aspects of QFTs

e.d.

e holographic c-theorem and entanglement entropy

e energy-flux constraints and unitarity .

Such results often come from enlarging the set of grav-
ity duals under consideration, e.dg. higher derivative
gravities.



Introduction-Motivation

In this talk:

A massive vector boson propagates in the bulk of AdS.
We investigate the consistency of its electromagnetic
and gravitational couplings.

In top-down holographic models such couplings are fixed
(e.g. consistent truncations, DBI). [talk by C. Rosen]

Here we take a phenomenological approach. Assume
AdS gravity defines a CFT and check if it consistent.

Based on work with R. Rahman.



Introduction-Motivation

Is there reason to expect such constraints from holography?

e Assuming duality relates two theories, certain patholo-
gies may be more manifest on one side of the duality.

e EXplicit example in the past — Gauss-Bonnet gravity

dd+1) _, L2, , 5 5
L=R-— 5 L _l_ AGB? (R _ 4R,u1/ + R,ul/po)

For arbitrary values of the Gauss-Bonnet coupling,
Aas, the theory is classically consistent (causal prop-
agation, no ghosts).

The dual CFT violates causality unless )\3:

(3d+2)(d—2) (d—2)(d—3)(d*>—d+6)
a2z S AGB < 4(d?=3d+6)

[Brigante etal][Buchel etal][deBoer, Parnachev, MK][Camanho etal]



Outline

e Massive vector field and its interactions.

e AdS/CFT setup: background and fluctuations.
e Fluctuation analysis and WKB.

e Holographic Constraints.

e Summary, conclusions and open questions.



Massive spin-1: Free case.

1 1
L= _Z(aﬂwy — O,W,)? — EmQWMW’“‘

1 1 1
= _E(a”w”)Q + 5(8,,1/{/#)2 — §m2W“WM

The two lines are equivalent since ordinary derivatives
commute with each other.

EOM and constraint:
(D _ m2> W, =0, W+ =0, m?2 # 0

In d 4+ 1 dimensions there are d (causally) propagating
degrees of freedom.



Massive spin-1: Electromagnetic Interactions.

Lorentz invariance, parity and time-reversal implies

L= —|V W)+ |V WH? = m*WiW* 4 iqgF*WiW,+
i * v
+ 4@ Wi (V,W, — V,W,) 8"F* — h.c.]

q9 l—g
Qe:q >
™m

[V, VUIW, = iqF,,W,,  pm =

=39 AQ.
S + AQ
e g IS the charge

e ¢ IS the gyromagnetic ratio or g-factor.

e (). the quadrupole moment.



Massive spin-1: Electromagnetic Interactions.

EOM and constraint:
' — 2
W, — iq(y : )

m

iq(g — 2)
m2

YV, (F"V,W,)+ =0

V. WH— F*"N Wy, + AQ.(-++) =0

d propagating degrees of freedom in d + 1 dimensions.

Causallity requires

e g-factor arbitrary

e AQ. = 0 [Velo-Zwanziger]



Massive spin-1:Electromagnetic Interactions

Determine Hyperbolicity and Causality of the EOM by
the method of characteristic determinant.

e Replace the highest derivatives in EOM 9, by n,
n, 1S the normal to the characteristic hypersurface.

e Find the determinant A(n) of the resulting coefficient
matrix.

The system is hyperbolic when:

A(n) = 0 has real solutions for ng for any n.

The system is causal when:

Umee = 120l < 1. Timelike n, = acausal propagdation.

0



Massive spin-1: Adding Gravity.

L= —|V W)+ |V WH? = m*WiW* 4 iqgFHWiW, —
— hRWW,

e A gravitational quadrupole term is present due to the
non-commutativity of the covariant derivatives.

e h IS referred to as the gravimagnetic ratio or h-factor

e T he theory is classically consistent for arbitrary values
of the h-factor

(V2= m?) W, = V. (V- W) +iggF,W* — hR,W” =0



Holography: the setup

Objective: To assess the consistency of the couplings
g, h using holography.

Qubic couplings < three-point functions in CFT.

Investigating three-point functions in the dual boundary
CFT holographically, involves writing down an action
third order in the fluctuating fields.

e Is there a simpler way?

Consider the quadratic action in an asymptotically AdS
background with non-trivial profiles for F,,, R,..



Holography: the setup

Simplest choice:
The extremal AdS-Reissner-Nordstrom black hole.

L2 dr? 7“2
r2 f (7")

2d—2 d
70 2(d — 1) (To)
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d—1
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Holography: the setup

AdS/CFT viewpoint:
e massive, spin-1 W, <= non-conserved operator O,
m2#~0—A>d—1
e RN-background «<— CFT at finite charge density
(Ji) # 0.
e Quadratic action for W* in the bulk <—-
2-point function of O,
Consider the eom
(V2= m?) Wy = V,u (V- W) +iggFuW” — hRuW” =0

as eom for fluctuations of W, in the bulk.



Fluctuation analysis

Define
bdg=2—g Sh=h-—1 m? = m? — déh
Note: m 1S the effective mass in pure AdS.

To avoid instabilities m? > 0 (BF bound).

Set d = 4 and Fourier transform:

dwdk —~ .« e
(27)2 Wu(r) S

WM(T, t, 333) —

I:A)egrees of freedom areAdistinglgshed into longitudinal
W,=03 and transverse W,—->3. W, is not a dynamical
field; can be completely determined from the longitudi-

nal modes.



Fluctuation Analysis

Transverse modes decouple from the rest (no obvious
pathology). To study the longitudinal modes make a
field redefinition

Er(r) = kWi(r) + [w /—\th(r)] vAvg,(rl,
E_(r) = [w— qAi(r)] Wi(r) + kf(r)Ws(r).

Now the boundary operators dual to the new fields are
completely decoupled.

EoM still coupled and complicated. Can be simplified in
a suitable scaling limit, where frequency v, momentum
k and chemical potential u = qu are large.



Fluctuation Analysis

The scaling limit is

kz>1 & pz > 1, withuzngixed&vz%zfixed.

where the new radial variable is defined as z = %.

The coupled eom for the modes £, are

EN 4+ ka(2)E. + k°b(2)E+ = 0,
E" + ke(2)EL + k*d(2)E- = 0,

e Functions a(z), b(z2), ¢(z), d(z) have no simple form but
are all rational functions of :z.

e a(z) and c(z) are proportional to vég. When either the
field is uncharged or ég = 0 the equations decouple.



WKB

WKB for coupled differential equations [Yabana-Horiuchi].
Consider the standard ansatz
Ex(z) =™ 6, =80 + k18 + -

The standard amplitude factor for the WKB solution is
hidden in S{.

Substitute the ansatz into eom - order by order analysis:

¢ 519 =350 ;e 5O jsindependent of the mode.

e Following standard conventions, set

 dSo
p(z) = e



WKB

e Leading order analysis shows that a non-trivial solu-
tion requires

oo [P ia@et) |,

~ | ic()p(z) —p2(2) +d(2)]
and thus determines p(z).

e Next order analysis determines S{" etc.

The leading order WKB solution is of the usual form
£y ~ Ai(z)eikfpi(z)

where A.(z) is real and inversely proportional to ,/%.



WKB

The phase factor is

pi=z4f2(z) [(\/74— )_Vila

f(2) [
2,6 — 86h

where

Vi(z) =

H(2) + 6g°v°2° F 2\/5921)222[—[(2) + K2(z2)

H(z) =69 (24 69)v°2° +m?2° —26h  K(z2) = §gv22® + 36h.

Vi(z) vanishes at the horizon z = 1 and tends to unity
at the boundary z = . FE;1 IS the square of the phase
velocity u — v.



WKB

The equation
0G
Op .

determines the turning points where the WKB approx-
imation breaks down.

=0 = plzx)=0 or plz) = —%(ac —b—d).

The first solution p(z) = 0 is familiar from the single
channel WKB analysis. The second solution is a new
feature of the coupled system and corresponds to the
point where the phases of the different modes p,(z) and
p_(z) coalesce.



WKB

Study of the turning points reveals:

e The second class of turning points do not exist in
this case.

e T he first class exists and the standard approach for
matching the solutions can be used.

Treating the boundary z = oo as an infinite wall yields

k/oop(z)+c9(7;0)=w(ni§), S N



WKB

The quantization condition yields the group velocity

9 9
dw Juzl + vk —p

Ug = —— — UV = % — v

dk -

The integrals are strongly peaked around the turning
point and one can approximate the group velocity with:

2

w2~ E [1 - \/UE @;‘j)p]

2=z

At the turning point the phase velocity £ > 1. For a
neutral field v = 0 and for v << 1 in general, the exis-
tence of a turning point will lead to causality violation.



WKB

e Should appropriately constrain the bulk couplings g, h
so that a turning point does not exist.

Consider the effective potential (v > 0)

Ve = (Ve - 2)

equal to the phase velocity £ at the turning point z;.

At the boundary, VET is normalized to unity.

A turning point exists when it develops a maximum in
the bulk.



Holographic Constraints

e The (4+) mode is always consistent.

Ve
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Holographic Constraints

o V., for different values of Jg.
As dg Increases, a turning point develops.

v
111
10

0.9

0.8




Holographic Constraints

Expand close to the boundary

eff __ _@ |9 —4
Ve =1 ZQ(li\/nT>—I—O( ),

The (-) potential develops a maximum when
5g° > m?
While for v = % << 1, the group velocity behaves like
u?=1+v+0w*) >1

Consistency of the dual boundary CFT requires §g° < m?.



Holographic Constraints

We can separately analyze the neutral case v = 0. The
potential is

126K
m2z6 — 86h]

If the potential increases as we move inwards from the
boundary, where V;(z = o0) = 1, there will be a turning
point with £ =V, > 1. Group velocity will then be
greater than unity.

Causality combined with stability requirements then yvield

1...2 1.2
— zm §5h<§m.



Summary

e Holography constraints both dg and /h.
09> <m?® and —Im® < Sh < im?
e Constraints depend on the mass m of the bulk field.

In the dual CFT this translates to a dependance on
the conformal dimension A of the spin-1 operator.

e For a field of arbitrary mass consistency requires

g = 2, h=1



Discussion-Open Questions

e Constraints obtained in simlar manner to the case of
Gauss-Bonnet gravity.

In Gauss-Bonnet theory )\;3 IS related via hologra-
phy to the parameters which determine the two- and
three- point functions of the stress energy tensor.

Holographically obtained constraints on ),z turn out
to be in "1-1" correspondence to the positivity of
energy flux constraints.

Example: d+1=5

_l§>\GB:(CL—50)(CL—C)S 9 1 1
36 4(0 — 30)2 100 2="¢ =2




Discussion: Energy Flux one-point function

Definition: The energy flux operator £(n) per unit angle
measured through a very large sphere of radius r iIs

£(7) = lim 742 / dt 7 TO(t, 77)

T—00

n' is a unit vector specifying the position on S 2 where
energy measurements may take place. Integrating over
all angles yields the total energy flux at large distances.

Focus on the energy flux one-point function on states
created by the stress—energy tensor operator

O, = €i;Ti;(q)

with ¢; a symmetric, traceless polarization tensor.



Discussion: Energy Flux one-point function

e Rotational symmetry fixes the form of the energy flux
one—point function up to two independent parame-
ters.

(enTiE(n)eyTyy)
(e Tiner i)

E X €1 MM 1 T 2 2
_ 14t ezleiyn i 4t e ]ZL n;| —
Qd_g ez-jez-j d—1 eijeij dc —1

Here t,, t4 are arbitrary constants. By construction, they
can be related to a, c.

<5(’ﬁ)>Tij —




Discussion: Energy Flux and Constraints

Demand positivity of the energy flux one point function,
ie., (£(n)) > 0.

Positivity of the energy flux yields constraints on t,, t4:

1

C B.C)=1 — to — ta >0
G(Aa 7) dI]-Q d22_14_t

2
C B.C)=1 — to — t — >0
V(Aa ’ ) dI]_Q d22_14+2_

t_
d—1° d2—1

d— 2
CS(A, B,C) =1 — t4+d_—1(t2+t4> Z 0



Discussion: Energy Flux and Holography

e Positivity of the energy flux constraints on states cre-
ated by 7,, obtained holography from the study of the
two-point function of 7, in AdS-black hole.

— Compare this calculation with ours:

Comparison with Calculation of Energy Flux Constraints
(T Tpo) n=4 (OpOv) A(g)

(Too) 70 |{Tog) #0 & (Jy) 0
BH & 740 RN-BH & 1 #0




Discussion-Open Questions

e \What is the meaning of these constraints? What do
the ¢, h-factors correspond to in field theory?

Possible interpretation:

h-factor — (0,£0,)

£ = lim rdQ/dtﬁi TO(t, rii?)

r—00

g-factor — <OL QOV>

0= lim rd_Q/dt A (¢, T

r—00



Discussion-OpenQuestions

e T he following field redefinition

9uv — 9uv (1 + a1|W|2> _I_ CLQW:WI/
absorbs the hA-coupling and introduces quartic terms
e.g. W;W,W W,.

— h-factor constraints must then be related to four-
and higher- point functions of O,,.

e Constraints result from requiring (£) > 0.
Is there any physical reason for (Q) >0 7

Constraints related to higher-point functions?



Discussion-Open Questions

More questions ...

e The meaning of the scaling limit:

Violation of causality observed for qu large compared
to other couplings but small compared to the mo-
mentum k.

e Constraints related to the conformal dimension of
the operator - here we implicitly work in the strong
coupling regime.



Discussion-Open Questions

More things to do...

e Holographic computation of three point functions.

e CFT analysis of the three- and four- point functions
- constraints?

e Similar analysis for fields of other spin?

e Holographic bounds for generic values of q.



Discussion-Open Questions

e Gravity side - a different perspective:

— What is known for the action of a massive spin-1
field in flat space?

x Tree level unitarity requires g = 2
[Cornwall, Levin, Tiktopoulos].
x* Standard model predicts ¢ = 2 at tree level.
x* NO known constraint for h unless susy - then
h = 1 [Giannakis, Liu, Porrati].
— What is the holographic analysis telling us?
Pathologies in classically (seemingly) consistent
theories show up in the dual boundary CFT.



Thank you!



