String Self-energies on the Lightcone Worldsheet Lattice

Georgios Papathanasiou

Institute for Fundamental Theory

Department of Physics, University of Florida
$7^{\text {th }}$ Crete Regional Meeting on String Theory June 17, 2013

Outline

Motivation

Lattice for Strings in the Lightcone Gauge

String Field Theory-based Approach

Worldsheet Quantum Field Theory Approach

Conclusions \& Future Directions

Introduction

Introduction

Gauge theories, such as Quantum Chromodynamics, have been instrumental in our quest to understand what the elementary constituents of matter are, and how they interact.

Introduction

Gauge theories, such as Quantum Chromodynamics, have been instrumental in our quest to understand what the elementary constituents of matter are, and how they interact.

Our main tool for making sense of them is perturbation theory, which is however inapplicable at strong coupling, and cannot explain important physical phenomena such as confinement. ${ }^{\text {[Millenium Prize] }}$

Introduction

Gauge theories, such as Quantum Chromodynamics, have been instrumental in our quest to understand what the elementary constituents of matter are, and how they interact.

Our main tool for making sense of them is perturbation theory, which is however inapplicable at strong coupling, and cannot explain important physical phenomena such as confinement. ${ }^{\text {[Millenium Prize] }}$

Alternative approaches: Large $N \supset A d S / C F T$ OR lattice gauge theory, however quite challenging to combine both. N fixed at simulations.

Motivation

In this talk, we will view gauge theory as the infinite string tension T_{0} $\left(\alpha^{\prime}=\left(2 \pi T_{0}\right)^{-1} \rightarrow 0\right)$ limit of open string theory in flat space. ${ }^{[S c h e r k}{ }^{\text {71] }}$

Motivation

In this talk, we will view gauge theory as the infinite string tension T_{0} $\left(\alpha^{\prime}=\left(2 \pi T_{0}\right)^{-1} \rightarrow 0\right)$ limit of open string theory in flat space. $\left.{ }^{[S c h e r k}{ }^{\top} 71\right]$

- Organization of string diagrams much simpler than gauge theory diagrams.

Motivation

In this talk, we will view gauge theory as the infinite string tension T_{0} $\left(\alpha^{\prime}=\left(2 \pi T_{0}\right)^{-1} \rightarrow 0\right)$ limit of open string theory in flat space. $\left.{ }^{[S c h e r k}{ }^{\top} 71\right]$

- Organization of string diagrams much simpler than gauge theory diagrams.

- Existence of milder divergences in string theory.

Motivation

In this talk, we will view gauge theory as the infinite string tension T_{0} $\left(\alpha^{\prime}=\left(2 \pi T_{0}\right)^{-1} \rightarrow 0\right)$ limit of open string theory in flat space. $\left.{ }^{[S c h e r k}{ }^{\top} 71\right]$

- Organization of string diagrams much simpler than gauge theory diagrams.

- Existence of milder divergences in string theory.
- Large N AND lattice methods accessible simultaneously for strings.

Motivation

In this talk, we will view gauge theory as the infinite string tension T_{0} $\left(\alpha^{\prime}=\left(2 \pi T_{0}\right)^{-1} \rightarrow 0\right)$ limit of open string theory in flat space. ${ }^{[S c h e r k}{ }^{\text {71] }}$

- Organization of string diagrams much simpler than gauge theory diagrams.

- Existence of milder divergences in string theory.
- Large N AND lattice methods accessible simultaneously for strings. Aim: Use lattice methods to sum planar multiloop string diagrams, and obtain information about large N QCD by taking $\alpha^{\prime} \rightarrow 0$ at the end.

Flat Space Bosonic Strings in Lightcone Gauge

Flat Space Bosonic Strings in Lightcone Gauge

- Fix $x^{+} \equiv\left(x^{0}+x^{1}\right) / \sqrt{2}=\tau$, and $P^{+}=\left(P^{0}+P^{1}\right) / \sqrt{2}=T_{0}$ and solve Virasoro constraints for $x^{-} \equiv\left(x^{0}-x^{1}\right) / \sqrt{2}$. [GGRT'73]

Flat Space Bosonic Strings in Lightcone Gauge

- Fix $x^{+} \equiv\left(x^{0}+x^{1}\right) / \sqrt{2}=\tau$, and $P^{+}=\left(P^{0}+P^{1}\right) / \sqrt{2}=T_{0}$ and solve Virasoro constraints for $x^{-} \equiv\left(x^{0}-x^{1}\right) / \sqrt{2}$. [GGRT ${ }^{73]}$
- Left with unconstrained action for remaining transverse coordinates \boldsymbol{x}

$$
S=\frac{1}{2} \int_{0}^{T} d \tau \int_{0}^{P^{+}} d \sigma\left(\dot{\boldsymbol{x}}^{2}-T_{0}^{2} \boldsymbol{x}^{\prime 2}\right)
$$

Flat Space Bosonic Strings in Lightcone Gauge

- Fix $x^{+} \equiv\left(x^{0}+x^{1}\right) / \sqrt{2}=\tau$, and $P^{+}=\left(P^{0}+P^{1}\right) / \sqrt{2}=T_{0}$ and solve Virasoro constraints for $x^{-} \equiv\left(x^{0}-x^{1}\right) / \sqrt{2}$. [GGRT ${ }^{773]}$
- Left with unconstrained action for remaining transverse coordinates \boldsymbol{x}

$$
S=\frac{1}{2} \int_{0}^{T} d \tau \int_{0}^{P^{+}} d \sigma\left(\dot{\boldsymbol{x}}^{2}-T_{0}^{2} \boldsymbol{x}^{\prime 2}\right)
$$

- In path integral formalism with $\tau \rightarrow-i \tau$, add interactions as discontinuities of \boldsymbol{x} in $\sigma=$ slits on the same rectangular worldsheet.
[Mandelstam'73]

Flat Space Bosonic Strings in Lightcone Gauge

- Fix $x^{+} \equiv\left(x^{0}+x^{1}\right) / \sqrt{2}=\tau$, and $P^{+}=\left(P^{0}+P^{1}\right) / \sqrt{2}=T_{0}$ and solve Virasoro constraints for $x^{-} \equiv\left(x^{0}-x^{1}\right) / \sqrt{2}$. [GGRT ${ }^{\prime}{ }^{73]}$
- Left with unconstrained action for remaining transverse coordinates \boldsymbol{x}

$$
S=\frac{1}{2} \int_{0}^{T} d \tau \int_{0}^{P^{+}} d \sigma\left(\dot{\boldsymbol{x}}^{2}-T_{0}^{2} \boldsymbol{x}^{\prime 2}\right)
$$

- In path integral formalism with $\tau \rightarrow-i \tau$, add interactions as discontinuities of \boldsymbol{x} in $\sigma=$ slits on the same rectangular worldsheet.
[Mandelstam'73]

Worldsheet Dicretization

Turn worldsheet into $M \times N$ grid by taking $T=(N+1) a$ and $P^{+}=M a T_{0}$. Then ${ }^{[\text {Giles,Thorn'77] }}$

Worldsheet Dicretization

Turn worldsheet into $M \times N$ grid by taking $T=(N+1) a$ and $P^{+}=M a T_{0}$. Then ${ }^{[\text {Giles,Thorn'T7] }}$

- $\boldsymbol{x}(\sigma, \tau)=\boldsymbol{x}\left(k a T_{0}, j a\right) \rightarrow \boldsymbol{x}_{k}^{j}$,

Worldsheet Dicretization

Turn worldsheet into $M \times N$ grid by taking $T=(N+1) a$ and $P^{+}=M a T_{0}$. Then ${ }^{[\text {Giles,Thorn'77] }}$

- $\boldsymbol{x}(\sigma, \tau)=\boldsymbol{x}\left(k a T_{0}, j a\right) \rightarrow \boldsymbol{x}_{k}^{j}$,
- $S \rightarrow \frac{T_{0}}{2} \sum_{i j}\left[\left(x_{i}{ }^{j+1}-x_{i}{ }^{j}\right)^{2}+S_{i}{ }^{j}\left(x_{i+1}^{j}-x_{i}{ }^{j}\right)^{2}\right], \quad S_{i}{ }^{j}=0,1$,

Worldsheet Dicretization

Turn worldsheet into $M \times N$ grid by taking $T=(N+1) a$ and $P^{+}=M a T_{0}$. Then ${ }^{[\text {Giles,Thorn'77] }}$

- $\boldsymbol{x}(\sigma, \tau)=\boldsymbol{x}\left(k a T_{0}, j a\right) \rightarrow \boldsymbol{x}_{k}^{j}$,
- $S \rightarrow \frac{T_{0}}{2} \sum_{i j}\left[\left(x_{i}{ }^{j+1}-x_{i}{ }^{j}\right)^{2}+S_{i}{ }^{j}\left(x_{i+1}^{j}-x_{i}{ }^{j}\right)^{2}\right], \quad S_{i}{ }^{j}=0,1$,
- Interacting propagator $\mathcal{D}=\int \prod_{k j} d \boldsymbol{x}_{k}^{j} \sum_{S_{i}{ }^{j}} e^{-S}$.

Worldsheet Dicretization

Turn worldsheet into $M \times N$ grid by taking $T=(N+1) a$ and $P^{+}=M a T_{0}$. Then ${ }^{[\text {Giles,Thorn'T7] }}$

- $\boldsymbol{x}(\sigma, \tau)=\boldsymbol{x}\left(k a T_{0}, j a\right) \rightarrow \boldsymbol{x}_{k}^{j}$,
- $S \rightarrow \frac{T_{0}}{2} \sum_{i j}\left[\left(x_{i}{ }^{j+1}-x_{i}{ }^{j}\right)^{2}+S_{i}{ }^{j}\left(x_{i+1}^{j}-x_{i}{ }^{j}\right)^{2}\right], \quad S_{i}{ }^{j}=0,1$,
- Interacting propagator $\mathcal{D}=\int \prod_{k j} d \boldsymbol{x}_{k}^{j} \sum_{S_{i}{ }^{j}} e^{-S}$.
- Extract string state energies by identifying exponential behaviors $e^{-a(N+1) E_{\lambda}(M)}$ of different P^{-}eigenvalues $E_{\lambda}(M)$. Typically

$$
E_{\lambda}(M) \sim \alpha M+\beta+\frac{\gamma_{\lambda}}{M}+\ldots
$$

Worldsheet Dicretization

Turn worldsheet into $M \times N$ grid by taking $T=(N+1) a$ and $P^{+}=M a T_{0}$. Then ${ }^{[\text {Giles,Thorn'T7] }}$

- $\boldsymbol{x}(\sigma, \tau)=\boldsymbol{x}\left(k a T_{0}, j a\right) \rightarrow \boldsymbol{x}_{k}^{j}$,
- $S \rightarrow \frac{T_{0}}{2} \sum_{i j}\left[\left(x_{i}{ }^{j+1}-x_{i}{ }^{j}\right)^{2}+S_{i}{ }^{j}\left(x_{i+1}^{j}-x_{i}{ }^{j}\right)^{2}\right], \quad S_{i}{ }^{j}=0,1$,
- Interacting propagator $\mathcal{D}=\int \prod_{k j} d \boldsymbol{x}_{k}^{j} \sum_{S_{i}{ }^{j}} e^{-S}$.
- Extract string state energies by identifying exponential behaviors $e^{-a(N+1) E_{\lambda}(M)}$ of different P^{-}eigenvalues $E_{\lambda}(M)$. Typically

$$
E_{\lambda}(M) \sim \alpha M+\beta+\frac{\gamma_{\lambda}}{M}+\ldots
$$

- First two terms lead to divergences in $m^{2}=P^{+} P^{-}$, but at tree level can be canceled by two geometrical counterterms (bulk/boundary).

Reliability of Lattice Regularization

Question: Can UV divergences be absorbed by naturally defined counterterms, or renormalization of physical parameters, also at loop level?

Reliability of Lattice Regularization

Question: Can UV divergences be absorbed by naturally defined

 counterterms, or renormalization of physical parameters, also at loop level?For this reason, we studied 1-loop self-energy corrections to low-lying string states in the bosonic

Reliability of Lattice Regularization

Question: Can UV divergences be absorbed by naturally defined

 counterterms, or renormalization of physical parameters, also at loop level?For this reason, we studied 1-loop self-energy corrections to low-lying string states in the bosonic

1. closed string (simpler)

Reliability of Lattice Regularization

Question: Can UV divergences be absorbed by naturally defined

 counterterms, or renormalization of physical parameters, also at loop level?For this reason, we studied 1-loop self-energy corrections to low-lying string states in the bosonic

1. closed string (simpler)
2. open string (complications due to boundaries)

Reliability of Lattice Regularization

Question: Can UV divergences be absorbed by naturally defined

 counterterms, or renormalization of physical parameters, also at loop level?For this reason, we studied 1-loop self-energy corrections to low-lying string states in the bosonic

1. closed string (simpler)
2. open string (complications due to boundaries)
3. open string ending on D-branes (physically relevant)

Reliability of Lattice Regularization

Question: Can UV divergences be absorbed by naturally defined

 counterterms, or renormalization of physical parameters, also at loop level?For this reason, we studied 1-loop self-energy corrections to low-lying string states in the bosonic

1. closed string (simpler)
2. open string (complications due to boundaries)
3. open string ending on D-branes (physically relevant)

$$
\begin{aligned}
& \text { Self-energy diagram with } \\
& J+K+L=N+1 \rightarrow \infty \\
& \text { and } J, L \sim N / 2
\end{aligned}
$$

Hence characterized by K, M_{1}, M.

1-loop Closed String Self-energy

String field theory-based approach

- We initially built up path integral from products of free string propagators. ${ }^{[G P, ~ T h o r n ' 12 A]}$

1-loop Closed String Self-energy
String field theory-based approach

- We initially built up path integral from products of free string propagators. ${ }^{[G P, ~ T h o r n ' 12 A]}$
- Obtained complicated formula involving M-dimensional determinants

$$
-\frac{a \Delta P_{\text {tach }}^{-}}{M} \equiv \sum_{K=1}^{\infty} \delta P_{K}^{-}=\sum_{K=1}^{\infty}\left[\left(\frac{\operatorname{coth}\left(M \sinh ^{-1} 1\right)}{M \sqrt{2}}\right)^{1 / 2} \frac{e^{K \sum_{m=1}^{M-1}\left(\lambda_{m}^{\delta}-\lambda_{m}^{o}\right)-(K-1)\left(B_{0}+c\right)}}{\operatorname{det} A^{\prime} \operatorname{det} B^{\prime} \prod_{m=1, \text { odd }}^{M-1}\left(1-e^{\left.-2 K \lambda_{m}^{o}\right)}\right.}\right]^{12}
$$

1-loop Closed String Self-energy

String field theory-based approach

- We initially built up path integral from products of free string propagators. ${ }^{[G P, ~ T h o r n ' 12 A]}$
- Obtained complicated formula involving M-dimensional determinants
- We numerically evaluated summand for wide range of M, K and found dependence by fitting with the help of Mathematica.

Analyzed ground (tachyon) and $1^{\text {st }}$ excited (graviton) state, left- and right-hand side respectively

Numerics: Tachyon Self-energy Summand

Numerics: Graviton Self-energy Summand

Worldsheet Quantum Field Theory Approach

Worldsheet Quantum Field Theory Approach

- String propagator-based method becomes unwieldy for open string.

Worldsheet Quantum Field Theory Approach

- String propagator-based method becomes unwieldy for open string.
- Study how free propagator changes as we drop links from worldsheet, [GP,Thorn'12B]

$$
\mathcal{L} \equiv \frac{T_{0}}{2} \boldsymbol{x}^{T} \cdot\left[\Delta^{-1}+V(S)\right] \boldsymbol{x}+A(\{S\})
$$

Worldsheet Quantum Field Theory Approach

- String propagator-based method becomes unwieldy for open string.
- Study how free propagator changes as we drop links from worldsheet, [GP,Thorn'12B]

$$
\mathcal{L} \equiv \frac{T_{0}}{2} \boldsymbol{x}^{T} \cdot\left[\Delta^{-1}+V(S)\right] \boldsymbol{x}+A(\{S\})
$$

Then $\mathcal{D}=\mathcal{D}_{0} \sum_{\{S\}} \operatorname{det}^{-12}(I+V \Delta) e^{-A(\{S\})}$, where

$$
\Delta_{i j, k l}=T_{0}\left\langle x_{i}^{j} x_{k}^{l}\right\rangle=T_{0} \frac{\int \mathcal{D} x x_{i}^{j} x_{k}^{l} e^{-S}}{\int \mathcal{D} x e^{-S}} \mathrm{WS} \text { propagator. }
$$

Worldsheet Quantum Field Theory Approach

- String propagator-based method becomes unwieldy for open string.
- Study how free propagator changes as we drop links from worldsheet, [GP,Thorn'12B]

$$
\mathcal{L} \equiv \frac{T_{0}}{2} \boldsymbol{x}^{T} \cdot\left[\Delta^{-1}+V(S)\right] \boldsymbol{x}+A(\{S\})
$$

Then $\mathcal{D}=\mathcal{D}_{0} \sum_{\{S\}} \operatorname{det}^{-12}(I+V \Delta) e^{-A(\{S\})}$, where

$$
\Delta_{i j, k l}=T_{0}\left\langle x_{i}^{j} x_{k}^{l}\right\rangle=T_{0} \frac{\int \mathcal{D} x x_{i}^{j} x_{k}^{l} e^{-S}}{\int \mathcal{D} x e^{-S}} \text { WS propagator. }
$$

Main result of paper: Closed WS propagator a simple sum

$$
\Delta_{h j, k l}^{c}=\frac{N_{T}-|l-j|}{2 M}+\frac{1}{2 M} \sum_{m=1}^{M-1} \frac{e^{-|l-j| \lambda_{m}^{c}}}{\sinh \lambda_{m}^{c}} \exp \frac{2 m(h-k) i \pi}{M}
$$

where $2 N_{T}=2 N+l-j$, and similarly for open string.

Testing Efficiency

Worldsheet propagator approach drastically improves calculational efficiency, at least in UV region $M \gg K$.

Testing Efficiency

Worldsheet propagator approach drastically improves calculational efficiency, at least in UV region $M \gg K$.

- Self-energy building block now a simple ($K-1$)-dim. determinant,

$$
\begin{gathered}
\operatorname{det}(I+V \Delta)=\operatorname{det}\left(h_{l p}\right), \quad l, p=1,2, \ldots K-1, \\
h_{l p}=\delta_{l p}+\Delta_{(k+1) l, k p}-\Delta_{k l, k p}+\Delta_{k l,(k+1) p}-\Delta_{(k+1) l,(k+1) p}
\end{gathered}
$$

Testing Efficiency

Worldsheet propagator approach drastically improves calculational efficiency, at least in UV region $M \gg K$.

- Self-energy building block now a simple ($K-1$)-dim. determinant,

$$
\begin{gathered}
\operatorname{det}(I+V \Delta)=\operatorname{det}\left(h_{l p}\right), \quad l, p=1,2, \ldots K-1, \\
h_{l p}=\delta_{l p}+\Delta_{(k+1) l, k p}-\Delta_{k l, k p}+\Delta_{k l,(k+1) p}-\Delta_{(k+1) l,(k+1) p}
\end{gathered}
$$

- Allows for asymptotic expansion in M with the Euler-Maclaurin formula,

$$
\frac{1}{M} \sum_{m=0}^{M-1} f\left(\frac{m}{M}\right)=\int_{0}^{1} d x f(x)-\left.\frac{1}{2 M} f(x)\right|_{0} ^{1}+\sum_{k=1}^{\infty} \frac{B_{2 k}}{(2 k)!} \frac{\left.f^{(2 k-1)}(x)\right|_{0} ^{1}}{M^{2 k}}
$$

Testing Efficiency

Worldsheet propagator approach drastically improves calculational efficiency, at least in UV region $M \gg K$.

- Self-energy building block now a simple ($K-1$)-dim. determinant,

$$
\begin{gathered}
\operatorname{det}(I+V \Delta)=\operatorname{det}\left(h_{l p}\right), \quad l, p=1,2, \ldots K-1, \\
h_{l p}=\delta_{l p}+\Delta_{(k+1) l, k p}-\Delta_{k l, k p}+\Delta_{k l,(k+1) p}-\Delta_{(k+1) l,(k+1) p}
\end{gathered}
$$

- Allows for asymptotic expansion in M with the Euler-Maclaurin formula, and coefficients can be calculated exactly!

K	$\operatorname{det}\left(h_{l p}(x)\right)$ up to $\mathcal{O}(x), x=\frac{\pi}{6 M^{2}}$
2	$\frac{1}{2}+x$
3	$-\frac{4}{\pi^{2}}+\frac{2}{\pi}+\frac{4 x}{\pi}$
4	$-2-\frac{64}{\pi^{3}}+\frac{16}{\pi^{2}}+\frac{8}{\pi}+\left(-4+\frac{16}{\pi}\right) x$
5	$-16-\frac{8192}{9 \pi^{4}}-\frac{2048}{9 \pi^{3}}+\frac{256}{\pi^{2}}+\frac{64}{3 \pi}+\left(-64-\frac{16384}{9 \pi^{3}}+\frac{2048}{3 \pi^{2}}+\frac{512}{3 \pi}\right) x$

1-loop Open String Self-energy

1-loop Open String Self-energy

With the help of the WS approach, similarly obtain [GP, Thorn'13]

$$
h_{l p}=\int_{0}^{\lambda_{0}} d \lambda \frac{\sinh \frac{\lambda}{2} \cos \left[2(l-p) \sin ^{-1}\left(\sinh \frac{\lambda}{2}\right)\right]}{\pi \sqrt{1-\sinh ^{2} \frac{\lambda}{2}}} \frac{\sinh \lambda\left(M-M_{1}\right) \sinh \lambda M_{1}}{\sinh (\lambda M / 2) \cosh (\lambda M / 2)}
$$

1-loop Open String Self-energy

With the help of the WS approach, similarly obtain [GP, Thorn'13]
$h_{l p}=\int_{0}^{\lambda_{0}} d \lambda \frac{\sinh \frac{\lambda}{2} \cos \left[2(l-p) \sin ^{-1}\left(\sinh \frac{\lambda}{2}\right)\right]}{\pi \sqrt{1-\sinh ^{2} \frac{\lambda}{2}}} \frac{\sinh \lambda\left(M-M_{1}\right) \sinh \lambda M_{1}}{\sinh (\lambda M / 2) \cosh (\lambda M / 2)}$

- Asymptotic expansion $M \gg K$ challenging because of M_{1} sum,

$$
-\delta P_{K}^{-}=\sum_{M_{1}=1}^{M-1} \operatorname{det}\left(h_{l p}\right)^{-12}
$$

1-loop Open String Self-energy

With the help of the WS approach, similarly obtain ${ }^{[G P, \text { Thorn'13] }}$
$h_{l p}=\int_{0}^{\lambda_{0}} d \lambda \frac{\sinh \frac{\lambda}{2} \cos \left[2(l-p) \sin ^{-1}\left(\sinh \frac{\lambda}{2}\right)\right]}{\pi \sqrt{1-\sinh ^{2} \frac{\lambda}{2}}} \frac{\sinh \lambda\left(M-M_{1}\right) \sinh \lambda M_{1}}{\sinh (\lambda M / 2) \cosh (\lambda M / 2)}$

- Asymptotic expansion $M \gg K$ challenging because of M_{1} sum,

$$
-\delta P_{K}^{-}=\sum_{M_{1}=1}^{M-1} \operatorname{det}\left(h_{l p}\right)^{-12}=a(K) M+b(K)+\frac{c(K)}{M}+\mathcal{O}\left(M^{-2}\right)
$$

- Can be done by separating large M behavior of integral.

1-loop Open String Self-energy

With the help of the WS approach, similarly obtain [GP, Thorn'13]
$h_{l p}=\int_{0}^{\lambda_{0}} d \lambda \frac{\sinh \frac{\lambda}{2} \cos \left[2(l-p) \sin ^{-1}\left(\sinh \frac{\lambda}{2}\right)\right]}{\pi \sqrt{1-\sinh ^{2} \frac{\lambda}{2}}} \frac{\sinh \lambda\left(M-M_{1}\right) \sinh \lambda M_{1}}{\sinh (\lambda M / 2) \cosh (\lambda M / 2)}$

- Asymptotic expansion $M \gg K$ challenging because of M_{1} sum,

$$
-\delta P_{K}^{-}=\sum_{M_{1}=1}^{M-1} \operatorname{det}\left(h_{l p}\right)^{-12}=a(K) M+b(K)+\frac{c(K)}{M}+\mathcal{O}\left(M^{-2}\right)
$$

- Can be done by separating large M behavior of integral.
- Leading K-dependence of coefficients can also be calculated analytically! Due to $h_{l p}=h(l-p)$ being a Toeplitz matrix. [Fisher,Hartwig'68, Rambour,Seghier'09]

$$
\begin{aligned}
& \text { Open String Self-energy Summand } \\
& -\delta P_{K}^{-}(m) \simeq \frac{\sqrt{2} G^{36}}{e^{3} \pi^{6}}\left(\frac{M}{K^{3}}+b(K)+\frac{\pi^{2}}{8 K} \frac{m-1}{M}\right)+\mathcal{O}\left(M^{-2}\right),
\end{aligned}
$$

where $G \simeq 1.282, m=0$ tachyon, $m=1$ gluon,

$$
\Delta P^{-}=\sum_{K} e^{-\epsilon(K-1)} \delta P_{K}^{-}
$$

$$
\begin{aligned}
& \text { Open String Self-energy Summand } \\
& -\delta P_{K}^{-}(m) \simeq \frac{\sqrt{2} G^{36}}{e^{3} \pi^{6}}\left(\frac{M}{K^{3}}+b(K)+\frac{\pi^{2}}{8 K} \frac{m-1}{M}\right)+\mathcal{O}\left(M^{-2}\right),
\end{aligned}
$$

where $G \simeq 1.282, m=0$ tachyon, $m=1$ gluon,

$$
\Delta P^{-}=\sum_{K} e^{-\epsilon(K-1)} \delta P_{K}^{-}
$$

- Power series in M.

Open String Self-energy Summand

$$
-\delta P_{K}^{-}(m) \simeq \frac{\sqrt{2} G^{36}}{e^{3} \pi^{6}}\left(\frac{M}{K^{3}}+b(K)+\frac{\pi^{2}}{8 K} \frac{m-1}{M}\right)+\mathcal{O}\left(M^{-2}\right),
$$

where $G \simeq 1.282, m=0$ tachyon, $m=1$ gluon,

$$
\Delta P^{-}=\sum_{K} e^{-\epsilon(K-1)} \delta P_{K}^{-}
$$

- Power series in M.
- Leading term same for $m=0,1$ states in both the closed and open string. Hence can be absorbed in bulk counterterm.

Open String Self-energy Summand

$$
-\delta P_{K}^{-}(m) \simeq \frac{\sqrt{2} G^{36}}{e^{3} \pi^{6}}\left(\frac{M}{K^{3}}+b(K)+\frac{\pi^{2}}{8 K} \frac{m-1}{M}\right)+\mathcal{O}\left(M^{-2}\right),
$$

where $G \simeq 1.282, m=0$ tachyon, $m=1$ gluon,

$$
\Delta P^{-}=\sum_{K} e^{-\epsilon(K-1)} \delta P_{K}^{-}
$$

- Power series in M.
- Leading term same for $m=0,1$ states in both the closed and open string. Hence can be absorbed in bulk counterterm.
- $1 / M$ term for closed string four times larger (and $b=0$)

Open String Self-energy Summand

$$
-\delta P_{K}^{-}(m) \simeq \frac{\sqrt{2} G^{36}}{e^{3} \pi^{6}}\left(\frac{M}{K^{3}}+b(K)+\frac{\pi^{2}}{8 K} \frac{m-1}{M}\right)+\mathcal{O}\left(M^{-2}\right),
$$

where $G \simeq 1.282, m=0$ tachyon, $m=1$ gluon,

$$
\Delta P^{-}=\sum_{K} e^{-\epsilon(K-1)} \delta P_{K}^{-}
$$

- Power series in M.
- Leading term same for $m=0,1$ states in both the closed and open string. Hence can be absorbed in bulk counterterm.
- $1 / M$ term for closed string four times larger (and $b=0$)
- Implies $\sum_{K} e^{-\epsilon(K-1)} / K \simeq-\log \epsilon$ can be consistently absorbed in renormalization of string tension T_{0} as $\epsilon \rightarrow 0$.

Open String Self-energy Summand

$$
-\delta P_{K}^{-}(m) \simeq \frac{\sqrt{2} G^{36}}{e^{3} \pi^{6}}\left(\frac{M}{K^{3}}+b(K)+\frac{\pi^{2}}{8 K} \frac{m-1}{M}\right)+\mathcal{O}\left(M^{-2}\right),
$$

where $G \simeq 1.282, m=0$ tachyon, $m=1$ gluon,

$$
\Delta P^{-}=\sum_{K} e^{-\epsilon(K-1)} \delta P_{K}^{-}
$$

- Power series in M.
- Leading term same for $m=0,1$ states in both the closed and open string. Hence can be absorbed in bulk counterterm.
- $1 / M$ term for closed string four times larger (and $b=0$)
- Implies $\sum_{K} e^{-\epsilon(K-1)} / K \simeq-\log \epsilon$ can be consistently absorbed in renormalization of string tension T_{0} as $\epsilon \rightarrow 0$.

Hence in the absense of D-branes, can sensibly study the sum of all planar diagrams of bosonic string theory with the help of Monte Carlo methods!

Open Strings ending on D-branes

Open Strings ending on D-branes

When we add a $\mathrm{D} p$-brane however, obtain leading divergence

$$
\delta P_{K}^{-} \sim \frac{\alpha M}{K^{3}(\ln (M / K))^{(25-p) / 2}}
$$

Open Strings ending on D-branes

When we add a $\mathrm{D} p$-brane however, obtain leading divergence

$$
\delta P_{K}^{-} \sim \frac{\alpha M}{K^{3}(\ln (M / K))^{(25-p) / 2}}
$$

- Can no longer be canceled by the counterterms, perhaps pointing to the need for the cancellations of divergences provided by SUSY.

Open Strings ending on D-branes

When we add a $\mathrm{D} p$-brane however, obtain leading divergence

$$
\delta P_{K}^{-} \sim \frac{\alpha M}{K^{3}(\ln (M / K))^{(25-p) / 2}}
$$

- Can no longer be canceled by the counterterms, perhaps pointing to the need for the cancellations of divergences provided by SUSY.
- Initiated preliminary investigation of this possibility by discretizing the known continuum self-energy formulas for the RNS superstring, with supersymmetry broken by the compactification of one dimension.

$$
\Delta P^{-}=\frac{C_{s}}{2 P^{+}} \int \frac{d q}{q} \int d \theta \sum_{m=\mathrm{odd}} q^{\frac{m^{2} R^{2} T_{0}}{4 \pi^{2}}}\left(\frac{1-8 q+36 q^{2}}{4 q \sin ^{2}(\theta / 2)}-2 q+4 q \sin ^{2} \frac{\theta}{2}+\mathcal{O}\left(q^{2}\right)\right)
$$

Open Strings ending on D-branes

When we add a $\mathrm{D} p$-brane however, obtain leading divergence

$$
\delta P_{K}^{-} \sim \frac{\alpha M}{K^{3}(\ln (M / K))^{(25-p) / 2}}
$$

- Can no longer be canceled by the counterterms, perhaps pointing to the need for the cancellations of divergences provided by SUSY.
- Initiated preliminary investigation of this possibility by discretizing the known continuum self-energy formulas for the RNS superstring, with supersymmetry broken by the compactification of one dimension.

$$
\Delta P^{-}=\frac{C_{s}}{2 P+} \int \frac{d q}{q} \int d \theta \sum_{m=\mathrm{odd}} q^{\frac{m^{2} R^{2} T_{0}}{4 \pi^{2}}}\left(\frac{1-8 q+36 q^{2}}{4 q \sin ^{2}(\theta / 2)}-2 q+4 q \sin ^{2} \frac{\theta}{2}+\mathcal{O}\left(q^{2}\right)\right)
$$

- With D p-brane, multiply by $(\ln q)^{(p-9) / 2}$. In both cases, leading divergence $\mathcal{O}\left(M^{0}\right)$!

Conclusions \& Future Directions

In this presentation we talked about

- How lattice-regularized string theory in the lightcone gauge can be used as a numerical tool for summing planar string diagrams, which via $\alpha^{\prime} \rightarrow 0$ limit could teach us about large N QCD.
- How to test the reliability of the lattice as a regulator of divergences in bosonic string perturbation theory at 1-loop level.
- The fact that bosonic open string theory passes this test in the absence of D-branes, but not in their presence.

Next Stage

- Extend lattice model for the case of the superstring, which improves behavior of divergences and hence may restore power dependence on the regulator M in the presence of D-branes.
- Should this be possible, the next natural step would be the numerical evaluation of the full path integral with the help of Monte Carlo methods.

Closed Tachyon Self-Energy in String Field Theory Approach

For value of boundary counterterm that makes tree-level Lorentz invariant,

$$
\begin{aligned}
\delta P_{\text {tach }}^{-}(K, M) & \simeq c_{1}^{K}+\frac{2.8}{K M^{2}}+\mathcal{O}\left(1 / M^{3}\right) \\
-\frac{a \Delta P_{\text {tach }}^{-}}{M} & =c_{1}+c_{2} \frac{1}{M^{2}}+c_{3} \frac{\log M}{M^{2}}
\end{aligned}
$$

$$
c_{1}=1.158863267 \pm 3 \cdot 10^{-9}, \quad c_{2}=2.799 \pm 0.011, \quad c_{3}=-2.800 \pm 0.002
$$

Closed Tachyon Self-Energy Interpretation

Closed Tachyon Self-Energy Interpretation

- Mass ${ }^{2}$ shift is coefficient of $1 / M^{2}$.

Closed Tachyon Self-Energy Interpretation

- Mass ${ }^{2}$ shift is coefficient of $1 / M^{2}$.
- Boundary counterterm in energy shift $e^{-(K-1)\left(B_{0}+\epsilon\right)}$

Closed Tachyon Self-Energy Interpretation

- Mass ${ }^{2}$ shift is coefficient of $1 / M^{2}$.
- Boundary counterterm in energy shift $e^{-(K-1)\left(B_{0}+\epsilon\right)}$
- Previous computations for $\epsilon=0$, namely for value that makes tree-level energy shift Lorentz invariant.

Closed Tachyon Self-Energy Interpretation

- Mass ${ }^{2}$ shift is coefficient of $1 / M^{2}$.
- Boundary counterterm in energy shift $e^{-(K-1)\left(B_{0}+\epsilon\right)}$
- Previous computations for $\epsilon=0$, namely for value that makes tree-level energy shift Lorentz invariant.
- Hence when fixing boundary counterterm to this value from the beginning, we have violation of Lorentz invariance at 1-loop.

Closed Tachyon Self-Energy Interpretation

- Mass ${ }^{2}$ shift is coefficient of $1 / M^{2}$.
- Boundary counterterm in energy shift $e^{-(K-1)\left(B_{0}+\epsilon\right)}$
- Previous computations for $\epsilon=0$, namely for value that makes tree-level energy shift Lorentz invariant.
- Hence when fixing boundary counterterm to this value from the beginning, we have violation of Lorentz invariance at 1-loop.
- Comes from $\sum e^{-\xi K / M} / K$.

Closed Tachyon Self-Energy Interpretation

- Mass ${ }^{2}$ shift is coefficient of $1 / M^{2}$.
- Boundary counterterm in energy shift $e^{-(K-1)\left(B_{0}+\epsilon\right)}$
- Previous computations for $\epsilon=0$, namely for value that makes tree-level energy shift Lorentz invariant.
- Hence when fixing boundary counterterm to this value from the beginning, we have violation of Lorentz invariance at 1-loop.
- Comes from $\sum e^{-\xi K / M} / K$.
- When we add $\epsilon>0$ to b.c., $\log M \rightarrow \log (1 / \epsilon)$, and then we obtain Lorentz invariant regularization.

Closed Tachyon Self-Energy Interpretation

- Mass ${ }^{2}$ shift is coefficient of $1 / M^{2}$.
- Boundary counterterm in energy shift $e^{-(K-1)\left(B_{0}+\epsilon\right)}$
- Previous computations for $\epsilon=0$, namely for value that makes tree-level energy shift Lorentz invariant.
- Hence when fixing boundary counterterm to this value from the beginning, we have violation of Lorentz invariance at 1-loop.
- Comes from $\sum e^{-\xi K / M} / K$.
- When we add $\epsilon>0$ to b.c., $\log M \rightarrow \log (1 / \epsilon)$, and then we obtain Lorentz invariant regularization.
- Divergence as $\epsilon \rightarrow 0$ simply renormalizes T_{0}.

Graviton Self-Energy in String Field Theory Approach

For value of boundary counterterm that makes tree-level Lorentz invariant,

$$
\begin{gathered}
\delta P_{\text {grav }}^{-}(K, M) \simeq c_{1}^{K}+\frac{\hat{c}_{2} K}{M^{4}}+\mathcal{O}\left(1 / M^{5}\right) \\
-\frac{a \Delta P_{\text {grav }}^{-}}{M}=\tilde{c}_{1}+\tilde{c}_{2} \frac{1}{M^{2}}
\end{gathered}
$$

with

$$
\tilde{c}_{1}=1.158863276 \pm 1.5 \cdot 10^{-8} \quad \tilde{c}_{2}=0.454 \pm 0.004
$$

Worldsheet Propagator Interpretation

When transformed to Fourier space w.r.t. σ, inverse of lattice Laplacian,

$$
\left(-\triangle+4 \sinh ^{2} \lambda / 2\right) f_{j} \equiv 2 f_{j}-f_{j+1}-f_{j-1}+4 f_{j} \sinh ^{2} \lambda / 2 .
$$

Worldsheet Propagator Interpretation

When transformed to Fourier space w.r.t. σ, inverse of lattice Laplacian,

$$
\left(-\triangle+4 \sinh ^{2} \lambda / 2\right) f_{j} \equiv 2 f_{j}-f_{j+1}-f_{j-1}+4 f_{j} \sinh ^{2} \lambda / 2 .
$$

Remarkably, proof so simple it can fit on one slide!

Worldsheet Propagator Interpretation

When transformed to Fourier space w.r.t. σ, inverse of lattice Laplacian,

$$
\left(-\triangle+4 \sinh ^{2} \lambda / 2\right) f_{j} \equiv 2 f_{j}-f_{j+1}-f_{j-1}+4 f_{j} \sinh ^{2} \lambda / 2 .
$$

Remarkably, proof so simple it can fit on one slide!

$$
\begin{aligned}
2 e^{-|l-j| \lambda}-e^{-|l+1-j| \lambda}-e^{-|l-1-j| \lambda} & = \begin{cases}e^{-(l-j) \lambda}(2-2 \cosh \lambda) & l>j \\
e^{-(j-l) \lambda}(2-2 \cosh \lambda) & l<j \\
2-e^{-\lambda}-e^{-\lambda} & l=j\end{cases} \\
& =-4 e^{-|l-j|} \sinh ^{2} \frac{\lambda}{2}+2 \delta_{l j} \sinh \lambda
\end{aligned}, \begin{aligned}
& \left(-\triangle+4 \sinh ^{2} \frac{\lambda}{2}\right) \frac{e^{-|l-j| \lambda}}{2 \sinh \lambda}
\end{aligned}=\delta_{l j} .
$$

Hence 2d propagator given as a simple sum or integral. Drastically improves calculational efficiency.

Closed Tachyon Self-Energy Summand

$$
\begin{aligned}
-\delta P_{\text {tach }}^{-} & =\frac{e^{-24(K-1) B_{0}}}{\operatorname{det}^{12}\left(h_{l p}\right)}=\frac{e^{-24(K-1) B_{0}}}{\operatorname{det}^{12}\left(c_{l p}\right)}\left(1-\frac{2 \pi}{M^{2}} \sum_{l, s=1}^{K-1} c_{l s}^{-1}\right)+\mathcal{O}\left(1 / M^{4}\right) \\
c_{l p} & =\int_{0}^{1} d x \frac{\sin (\pi x / 2) \cos [(l-p) \pi x]}{\sqrt{1+\sin ^{2}(\pi x / 2)}}, \quad l, p=1, \ldots, K-1
\end{aligned}
$$

K	$-\delta P_{\text {tach }}^{-}$fit	$-\delta P_{\text {tach }}^{-}$actual
2	$0.1044844648-1.31291 / M^{2}$	$0.104484465146-1.31299 / M^{2}$
3	$0.027700432-0.9578 / M^{2}$	$0.0277004334342-0.957933 / M^{2}$
4	$0.010959556-0.7268 / M^{2}$	$0.0109595576932-0.727031 / M^{2}$
5	$0.005388196-0.5811 / M^{2}$	$0.00538819758183-0.581471 / M^{2}$
6	$0.003032942-0.4828 / M^{2}$	$0.00303294412639-0.483277 / M^{2}$

Results agree within margins of error, notice however difference increases with K. Due to systematic error from not taking into account $\mathcal{O}\left(1 / M^{4}\right)$ term in the fits, whose relative size also increases with K.

Graviton Self-Energy Summand

This is equal to tachyon summand times

$$
\begin{gathered}
1+2 \tilde{U}+2 \tilde{U}^{2} \simeq 1+\frac{2 \pi}{M^{2}} \sum_{l, s=1}^{K-1} c_{l s}^{-1}+\mathcal{O}\left(\frac{1}{M^{4}}\right), \\
\tilde{U}=\frac{\sin \frac{\pi}{M}}{M \sqrt{1+\sin ^{2} \frac{\pi}{M}}} \sum_{l, s=1}^{K-1}\left(\sin \frac{\pi}{M}+\sqrt{1+\sin ^{2} \frac{\pi}{M}}\right)^{2(l-s)} h_{l s}^{-1} .
\end{gathered}
$$

Graviton Self-Energy Summand

This is equal to tachyon summand times

$$
\begin{gathered}
1+2 \tilde{U}+2 \tilde{U}^{2} \simeq 1+\frac{2 \pi}{M^{2}} \sum_{l, s=1}^{K-1} c_{l s}^{-1}+\mathcal{O}\left(\frac{1}{M^{4}}\right), \\
\tilde{U}=\frac{\sin \frac{\pi}{M}}{M \sqrt{1+\sin ^{2} \frac{\pi}{M}}} \sum_{l, s=1}^{K-1}\left(\sin \frac{\pi}{M}+\sqrt{1+\sin ^{2} \frac{\pi}{M}}\right)^{2(l-s)} h_{l s}^{-1} .
\end{gathered}
$$

Able to rigorously prove two important facts, for which we only had strong indications up to now:

Graviton Self-Energy Summand

This is equal to tachyon summand times

$$
\begin{gathered}
1+2 \tilde{U}+2 \tilde{U}^{2} \simeq 1+\frac{2 \pi}{M^{2}} \sum_{l, s=1}^{K-1} c_{l s}^{-1}+\mathcal{O}\left(\frac{1}{M^{4}}\right), \\
\tilde{U}=\frac{\sin \frac{\pi}{M}}{M \sqrt{1+\sin ^{2} \frac{\pi}{M}}} \sum_{l, s=1}^{K-1}\left(\sin \frac{\pi}{M}+\sqrt{1+\sin ^{2} \frac{\pi}{M}}\right)^{2(l-s)} h_{l s}^{-1} .
\end{gathered}
$$

Able to rigorously prove two important facts, for which we only had strong indications up to now:

1. Leading term in the M-expansion same for tachyon and graviton.

Graviton Self-Energy Summand

This is equal to tachyon summand times

$$
\begin{gathered}
1+2 \tilde{U}+2 \tilde{U}^{2} \simeq 1+\frac{2 \pi}{M^{2}} \sum_{l, s=1}^{K-1} c_{l s}^{-1}+\mathcal{O}\left(\frac{1}{M^{4}}\right), \\
\tilde{U}=\frac{\sin \frac{\pi}{M}}{M \sqrt{1+\sin ^{2} \frac{\pi}{M}}} \sum_{l, s=1}^{K-1}\left(\sin \frac{\pi}{M}+\sqrt{1+\sin ^{2} \frac{\pi}{M}}\right)^{2(l-s)} h_{l s}^{-1} .
\end{gathered}
$$

Able to rigorously prove two important facts, for which we only had strong indications up to now:

1. Leading term in the M-expansion same for tachyon and graviton.
2. Nontrivial cancelation of $\mathcal{O}\left(1 / M^{2}\right)$ term! Graviton massless in $K \ll M(\mathrm{UV})$ region.
K-Dependence of terms in asymptotic M-expansion
Governed by determinant and inverse of

$$
c_{l p}=\int_{0}^{1} d x \frac{\sin (\pi x / 2) \cos [(l-p) \pi x]}{\sqrt{1+\sin ^{2}(\pi x / 2)}}, \quad l, p=1, \ldots, K-1 .
$$

For any specific $n \equiv K-1$, can evaluate exactly as
$\operatorname{det}\left(c_{l p}\right)=\sum_{r=0}^{n} \frac{n}{n+r}\binom{n+r}{2 r} 2^{2 r} \frac{\Gamma\left(\frac{1}{2}+\frac{r}{2}\right)}{2 \sqrt{\pi} \Gamma\left(1+\frac{r}{2}\right)}-{ }_{2} F_{1}(1-n, 1+n ; 2 ;-1)$.
But also for $n \gg 1$, can find leading analytic dependence! [Fisher,Hartwig' 68]

$$
\operatorname{det}\left(c_{l p}\right)=n^{\frac{1}{4}} \exp \left(-\log (1+\sqrt{2}) n-\frac{1}{8} \log 2\right) \frac{G\left(\frac{3}{2}\right)^{2}}{G(2)}\left(1+\mathcal{O}\left(n^{-1}\right)\right)
$$

Similarly, ${ }^{[\text {Rambour,Seghier’09] }} \sum_{l, p=1}^{n}\left(c^{-1}\right)_{l p} \simeq \frac{\pi}{4} n^{2}$

Continuum self-energies

In UV $q \sim 0$ region,

$$
\begin{aligned}
\Delta P_{\text {Tach }}^{-} & =\frac{C_{o}}{2 P^{+}} \int_{0}^{1} \frac{d q}{q^{3}} \int_{0}^{2 \pi} d \theta\left[\frac{1+24 q^{2}}{4 \sin ^{2}(\theta / 2)}-2 q^{2}+\mathcal{O}\left(q^{4}\right)\right] \\
\Delta P_{\text {Gluon }}^{-} & =\frac{C_{o}}{2 P^{+}} \int_{0}^{1} \frac{d q}{q^{3}} \int_{0}^{2 \pi} d \theta\left[\frac{1+24 q^{2}}{4 \sin ^{2}(\theta / 2)}-2 q^{2} \cos \theta+\mathcal{O}\left(q^{4}\right)\right]
\end{aligned}
$$

For the gluon in RNS, after we compactify one of the transverse target space dimensions by imposing periodic (antiperiodic) boundary conditions on bosonic (fermionic) states in order to break supersymmetry,
$\Delta P^{-}=\frac{C_{s}}{2 P^{+}} \int \frac{d q}{q} \int d \theta \sum_{m=\text { odd }} q^{\frac{m^{2} R^{2} T_{0}}{4 \pi^{2}}}\left(\frac{1-8 q+36 q^{2}}{4 q \sin ^{2}(\theta / 2)}-2 q+4 q \sin ^{2} \frac{\theta}{2}+\mathcal{O}\left(q^{2}\right)\right)$
In all cases, introducing a $\mathrm{D} p$-brane implies the insertion of factors of $(-2 \pi / \ln q)^{(D-p) / 2}$ in the integrand.

