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Introduction

Gauge theories, such as Quantum Chromodynamics, have been
instrumental in our quest to understand what the elementary constituents
of matter are, and how they interact.

Our main tool for making sense of them is perturbation theory, which is
however inapplicable at strong coupling, and cannot explain important
physical phenomena such as confinement.[Millenium Prize]

Alternative approaches: Large N ⊃ AdS/CFT OR lattice gauge theory,
however quite challenging to combine both. N fixed at simulations.
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Motivation

In this talk, we will view gauge theory as the infinite string tension T0

(α′ = (2πT0)
−1 → 0) limit of open string theory in flat space.[Scherk’71]
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Motivation

In this talk, we will view gauge theory as the infinite string tension T0

(α′ = (2πT0)
−1 → 0) limit of open string theory in flat space.[Scherk’71]

◮ Organization of string diagrams much simpler than gauge theory
diagrams.

◮ Existence of milder divergences in string theory.
◮ Large N AND lattice methods accessible simultaneously for strings.

Aim: Use lattice methods to sum planar multiloop string diagrams, and

obtain information about large N QCD by taking α′ → 0 at the end.
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Flat Space Bosonic Strings in Lightcone Gauge
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Flat Space Bosonic Strings in Lightcone Gauge

◮ Fix x+ ≡ (x0 + x1)/
√
2 = τ , and P+ = (P 0 + P 1)/

√
2 = T0 and

solve Virasoro constraints for x− ≡ (x0 − x1)/
√
2. [GGRT’73]
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√
2 = τ , and P+ = (P 0 + P 1)/

√
2 = T0 and

solve Virasoro constraints for x− ≡ (x0 − x1)/
√
2. [GGRT’73]

◮ Left with unconstrained action for remaining transverse coordinates x

S =
1

2

∫ T

0
dτ

∫ P+

0
dσ(ẋ2 − T 2

0x
′2) .
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√
2 = τ , and P+ = (P 0 + P 1)/

√
2 = T0 and

solve Virasoro constraints for x− ≡ (x0 − x1)/
√
2. [GGRT’73]

◮ Left with unconstrained action for remaining transverse coordinates x

S =
1

2

∫ T

0
dτ

∫ P+

0
dσ(ẋ2 − T 2

0x
′2) .

◮ In path integral formalism with τ → −iτ , add interactions as
discontinuities of x in σ = slits on the same rectangular worldsheet.
[Mandelstam’73]
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0
dσ(ẋ2 − T 2

0x
′2) .

◮ In path integral formalism with τ → −iτ , add interactions as
discontinuities of x in σ = slits on the same rectangular worldsheet.
[Mandelstam’73]
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Worldsheet Dicretization

Turn worldsheet into M ×N grid by taking T = (N + 1)a and
P+ = MaT0. Then

[Giles,Thorn’77]
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P+ = MaT0. Then

[Giles,Thorn’77]

◮ x(σ, τ) = x(kaT0, ja) → x
j
k ,

◮ S → T0
2

∑

ij

[

(x j+1
i − x j

i )2 + S j
i (x j

i+1 − x j
i )2

]

, S j
i = 0, 1 ,
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∑

ij
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(x j+1
i − x j

i )2 + S j
i (x j

i+1 − x j
i )2

]

, S j
i = 0, 1 ,

◮ Interacting propagator D =

∫

∏

kj

dxj
k

∑

S j
i

e−S .
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Worldsheet Dicretization

Turn worldsheet into M ×N grid by taking T = (N + 1)a and
P+ = MaT0. Then

[Giles,Thorn’77]

◮ x(σ, τ) = x(kaT0, ja) → x
j
k ,

◮ S → T0
2

∑

ij

[

(x j+1
i − x j

i )2 + S j
i (x j

i+1 − x j
i )2

]

, S j
i = 0, 1 ,

◮ Interacting propagator D =

∫

∏

kj

dxj
k

∑

S j
i

e−S .

◮ Extract string state energies by identifying exponential behaviors
e−a(N+1)Eλ(M) of different P− eigenvalues Eλ(M). Typically

Eλ(M) ∼ αM + β +
γλ
M

+ . . . .
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i = 0, 1 ,

◮ Interacting propagator D =

∫

∏

kj
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k

∑

S j
i

e−S .

◮ Extract string state energies by identifying exponential behaviors
e−a(N+1)Eλ(M) of different P− eigenvalues Eλ(M). Typically

Eλ(M) ∼ αM + β +
γλ
M

+ . . . .

◮ First two terms lead to divergences in m2 = P+P−, but at tree level
can be canceled by two geometrical counterterms (bulk/boundary).
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Reliability of Lattice Regularization

Question: Can UV divergences be absorbed by naturally defined

counterterms, or renormalization of physical parameters, also at loop level?
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Reliability of Lattice Regularization

Question: Can UV divergences be absorbed by naturally defined

counterterms, or renormalization of physical parameters, also at loop level?

For this reason, we studied 1-loop self-energy corrections to low-lying
string states in the bosonic

1. closed string (simpler)
2. open string (complications due to boundaries)
3. open string ending on D-branes (physically relevant)

M1

1

M

J K L

Self-energy diagram with

J +K + L = N + 1 → ∞

and J,L ∼ N/2

Hence characterized by K,M1,M .
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1-loop Closed String Self-energy
String field theory-based approach

◮ We initially built up path integral from products of free string
propagators.[GP, Thorn’12A]
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1-loop Closed String Self-energy
String field theory-based approach

◮ We initially built up path integral from products of free string
propagators.[GP, Thorn’12A]

◮ Obtained complicated formula involving M -dimensional determinants

◮ We numerically evaluated summand for wide range of M,K and
found dependence by fitting with the help of Mathematica.
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Numerics: Tachyon Self-energy Summand
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Numerics: Graviton Self-energy Summand
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Worldsheet Quantum Field Theory Approach

◮ String propagator-based method becomes unwieldy for open string.

◮ Study how free propagator changes as we drop links from worldsheet,
[GP,Thorn’12B]

L ≡ T0

2
x
T ·

[

∆−1 + V (S)
]

x+A({S}) .
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Worldsheet Quantum Field Theory Approach

◮ String propagator-based method becomes unwieldy for open string.

◮ Study how free propagator changes as we drop links from worldsheet,
[GP,Thorn’12B]

L ≡ T0

2
x
T ·

[

∆−1 + V (S)
]

x+A({S}) .

Then D = D0
∑

{S} det
−12(I + V∆)e−A({S}), where

∆ij,kl = T0〈xjixlk〉 = T0

∫
Dx xj

ix
l
k

e−S

∫
Dx e−S WS propagator.
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Worldsheet Quantum Field Theory Approach

◮ String propagator-based method becomes unwieldy for open string.

◮ Study how free propagator changes as we drop links from worldsheet,
[GP,Thorn’12B]

L ≡ T0

2
x
T ·

[

∆−1 + V (S)
]

x+A({S}) .

Then D = D0
∑

{S} det
−12(I + V∆)e−A({S}), where

∆ij,kl = T0〈xjixlk〉 = T0

∫
Dx xj

ix
l
k

e−S

∫
Dx e−S WS propagator.

Main result of paper: Closed WS propagator a simple sum

∆c
hj,kl =

NT − |l − j|
2M

+
1

2M

M−1
∑

m=1

e−|l−j|λc
m

sinhλc
m

exp
2m(h− k)iπ

M

where 2NT = 2N + l − j, and similarly for open string.

GP — Strings on the Lightcone Worldsheet Lattice Worldsheet Quantum Field Theory Approach 11/25



Testing Efficiency

Worldsheet propagator approach drastically improves calculational
efficiency, at least in UV region M ≫ K.
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◮ Self-energy building block now a simple (K − 1)-dim. determinant,

det(I + V∆) = det(hlp) , l, p = 1, 2, . . . K − 1 ,

hlp = δlp +∆(k+1)l,kp −∆kl,kp +∆kl,(k+1)p −∆(k+1)l,(k+1)p .
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Worldsheet propagator approach drastically improves calculational
efficiency, at least in UV region M ≫ K.

◮ Self-energy building block now a simple (K − 1)-dim. determinant,

det(I + V∆) = det(hlp) , l, p = 1, 2, . . . K − 1 ,

hlp = δlp +∆(k+1)l,kp −∆kl,kp +∆kl,(k+1)p −∆(k+1)l,(k+1)p .

◮ Allows for asymptotic expansion in M with the Euler-Maclaurin
formula,

1

M

M−1
∑

m=0

f
(m

M

)

=

∫ 1

0
dxf(x)− 1

2M
f(x)|10 +

∞
∑

k=1

B2k

(2k)!

f (2k−1)(x)
∣

∣

1

0

M2k
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Testing Efficiency

Worldsheet propagator approach drastically improves calculational
efficiency, at least in UV region M ≫ K.

◮ Self-energy building block now a simple (K − 1)-dim. determinant,

det(I + V∆) = det(hlp) , l, p = 1, 2, . . . K − 1 ,

hlp = δlp +∆(k+1)l,kp −∆kl,kp +∆kl,(k+1)p −∆(k+1)l,(k+1)p .

◮ Allows for asymptotic expansion in M with the Euler-Maclaurin
formula, and coefficients can be calculated exactly!

K det(hlp(x)) up to O(x), x = π
6M2

2 1
2 + x

3 − 4
π2 + 2

π + 4x
π

4 −2− 64
π3 + 16

π2 + 8
π +

(

−4 + 16
π

)

x
5 −16− 8192

9π4 − 2048
9π3 + 256

π2 + 64
3π +

(

−64− 16384
9π3 + 2048

3π2 + 512
3π

)

x
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1-loop Open String Self-energy
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1-loop Open String Self-energy

With the help of the WS approach, similarly obtain [GP, Thorn’13]

hlp =

∫ λ0

0
dλ

sinh λ
2 cos

[

2(l − p) sin−1(sinh λ
2 )
]

π
√

1− sinh2 λ
2

sinhλ(M −M1) sinhλM1

sinh(λM/2) cosh(λM/2)
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0
dλ

sinh λ
2 cos

[

2(l − p) sin−1(sinh λ
2 )
]

π
√

1− sinh2 λ
2

sinhλ(M −M1) sinhλM1

sinh(λM/2) cosh(λM/2)

◮ Asymptotic expansion M ≫ K challenging because of M1 sum,

−δP−
K =

M−1
∑

M1=1

det(hlp)
−12
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hlp =

∫ λ0

0
dλ

sinh λ
2 cos

[

2(l − p) sin−1(sinh λ
2 )
]

π
√

1− sinh2 λ
2

sinhλ(M −M1) sinhλM1

sinh(λM/2) cosh(λM/2)

◮ Asymptotic expansion M ≫ K challenging because of M1 sum,

−δP−
K =

M−1
∑

M1=1

det(hlp)
−12 = a(K)M + b(K) +

c(K)

M
+O(M−2)

◮ Can be done by separating large M behavior of integral.
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∫ λ0

0
dλ
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2 cos

[

2(l − p) sin−1(sinh λ
2 )
]

π
√

1− sinh2 λ
2

sinhλ(M −M1) sinhλM1

sinh(λM/2) cosh(λM/2)

◮ Asymptotic expansion M ≫ K challenging because of M1 sum,

−δP−
K =

M−1
∑

M1=1

det(hlp)
−12 = a(K)M + b(K) +

c(K)

M
+O(M−2)

◮ Can be done by separating large M behavior of integral.

◮ Leading K-dependence of coefficients can also be calculated
analytically! Due to hlp = h(l − p) being a Toeplitz matrix.
[Fisher,Hartwig’68, Rambour,Seghier’09]
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−δP−
K (m) ≃

√
2G36

e3π6

(

M

K3
+ b(K) +

π2

8K

m− 1

M

)

+O(M−2) ,

Open String Self-energy Summand

where G ≃ 1.282, m = 0 tachyon, m = 1 gluon,
∆P− =

∑

K e−ǫ(K−1)δP−
K
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Open String Self-energy Summand

where G ≃ 1.282, m = 0 tachyon, m = 1 gluon,
∆P− =

∑

K e−ǫ(K−1)δP−
K

◮ Power series in M .
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K

◮ Power series in M .

◮ Leading term same for m = 0, 1 states in both the closed and open
string. Hence can be absorbed in bulk counterterm.
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◮ Power series in M .
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◮ 1/M term for closed string four times larger (and b = 0)
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◮ Power series in M .

◮ Leading term same for m = 0, 1 states in both the closed and open
string. Hence can be absorbed in bulk counterterm.

◮ 1/M term for closed string four times larger (and b = 0)

◮ Implies
∑

K e−ǫ(K−1)/K ≃ − log ǫ can be consistently absorbed in
renormalization of string tension T0 as ǫ → 0.
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(
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K3
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π2

8K

m− 1

M

)

+O(M−2) ,

Open String Self-energy Summand

where G ≃ 1.282, m = 0 tachyon, m = 1 gluon,
∆P− =

∑

K e−ǫ(K−1)δP−
K

◮ Power series in M .

◮ Leading term same for m = 0, 1 states in both the closed and open
string. Hence can be absorbed in bulk counterterm.

◮ 1/M term for closed string four times larger (and b = 0)

◮ Implies
∑

K e−ǫ(K−1)/K ≃ − log ǫ can be consistently absorbed in
renormalization of string tension T0 as ǫ → 0.

Hence in the absense of D-branes, can sensibly study the sum of all planar
diagrams of bosonic string theory with the help of Monte Carlo methods!
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δP−
K ∼ αM

K3(ln(M/K))(25−p)/2
.

◮ Can no longer be canceled by the counterterms, perhaps pointing to
the need for the cancellations of divergences provided by SUSY.

◮ Initiated preliminary investigation of this possibility by discretizing the
known continuum self-energy formulas for the RNS superstring, with
supersymmetry broken by the compactification of one dimension.

∆P− = Cs

2P+

∫ dq
q

∫

dθ
∑

m=odd

q
m2R2T0

4π2

(

1−8q+36q2

4q sin2(θ/2)
− 2q + 4q sin2 θ

2 +O(q2)
)
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K3(ln(M/K))(25−p)/2
.

◮ Can no longer be canceled by the counterterms, perhaps pointing to
the need for the cancellations of divergences provided by SUSY.

◮ Initiated preliminary investigation of this possibility by discretizing the
known continuum self-energy formulas for the RNS superstring, with
supersymmetry broken by the compactification of one dimension.

∆P− = Cs

2P+

∫ dq
q

∫

dθ
∑

m=odd

q
m2R2T0

4π2

(

1−8q+36q2

4q sin2(θ/2)
− 2q + 4q sin2 θ

2 +O(q2)
)

◮ With Dp-brane, multiply by (ln q)(p−9)/2. In both cases, leading
divergence O(M0)!
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Conclusions & Future Directions

In this presentation we talked about

◮ How lattice-regularized string theory in the lightcone gauge can be
used as a numerical tool for summing planar string diagrams, which
via α′ → 0 limit could teach us about large N QCD.

◮ How to test the reliability of the lattice as a regulator of divergences
in bosonic string perturbation theory at 1-loop level.

◮ The fact that bosonic open string theory passes this test in the
absence of D-branes, but not in their presence.

Next Stage

◮ Extend lattice model for the case of the superstring, which improves
behavior of divergences and hence may restore power dependence on
the regulator M in the presence of D-branes.

◮ Should this be possible, the next natural step would be the numerical
evaluation of the full path integral with the help of Monte Carlo
methods.
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Closed Tachyon Self-Energy in String Field Theory Approach

For value of boundary counterterm that makes tree-level Lorentz invariant,

δP−
tach(K,M) ≃ cK1 +

2.8

KM2
+O(1/M3)

−a∆P−
tach

M
= c1 + c2

1

M2
+ c3

logM

M2

c1 = 1.158863267±3 ·10−9 , c2 = 2.799±0.011 , c3 = −2.800±0.002
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Closed Tachyon Self-Energy Interpretation

◮ Mass2 shift is coefficient of 1/M2.

◮ Boundary counterterm in energy shift e−(K−1)(B0+ǫ)

◮ Previous computations for ǫ = 0, namely for value that makes
tree-level energy shift Lorentz invariant.

◮ Hence when fixing boundary counterterm to this value from the
beginning, we have violation of Lorentz invariance at 1-loop.

◮ Comes from
∑

e−ξK/M/K.

◮ When we add ǫ > 0 to b.c., logM → log(1/ǫ), and then we obtain
Lorentz invariant regularization.

◮ Divergence as ǫ → 0 simply renormalizes T0.
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Graviton Self-Energy in String Field Theory Approach

For value of boundary counterterm that makes tree-level Lorentz invariant,

δP−
grav(K,M) ≃ cK1 +

ĉ2K

M4
+O(1/M5)

−
a∆P−

grav

M
= c̃1 + c̃2

1

M2
,

with
c̃1 = 1.158863276 ± 1.5 · 10−8 c̃2 = 0.454 ± 0.004 ,
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Worldsheet Propagator Interpretation

When transformed to Fourier space w.r.t. σ, inverse of lattice Laplacian,

(−△+ 4 sinh2 λ/2)fj ≡ 2fj − fj+1 − fj−1 + 4fj sinh
2 λ/2 .
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Worldsheet Propagator Interpretation

When transformed to Fourier space w.r.t. σ, inverse of lattice Laplacian,

(−△+ 4 sinh2 λ/2)fj ≡ 2fj − fj+1 − fj−1 + 4fj sinh
2 λ/2 .

Remarkably, proof so simple it can fit on one slide!

2e−|l−j|λ − e−|l+1−j|λ − e−|l−1−j|λ =











e−(l−j)λ (2− 2 cosh λ) l > j

e−(j−l)λ (2− 2 cosh λ) l < j

2− e−λ − e−λ l = j

= −4e−|l−j| sinh2
λ

2
+ 2δlj sinhλ ,

(

−△+ 4 sinh2
λ

2

)

e−|l−j|λ

2 sinhλ
= δlj .

Hence 2d propagator given as a simple sum or integral. Drastically
improves calculational efficiency.
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Closed Tachyon Self-Energy Summand

−δP−
tach =

e−24(K−1)B0

det12(hlp)
=

e−24(K−1)B0

det12(clp)

(

1− 2π

M2

K−1
∑

l,s=1

c−1
ls

)

+O(1/M4) ,

clp =

∫ 1

0
dx

sin(πx/2) cos [(l − p)πx]
√

1 + sin2(πx/2)
, l, p = 1, . . . ,K − 1 .

K −δP−
tach fit −δP−

tach actual

2 0.1044844648 − 1.31291/M2 0.104484465146 − 1.31299/M2

3 0.027700432 − 0.9578/M2 0.0277004334342 − 0.957933/M2

4 0.010959556 − 0.7268/M2 0.0109595576932 − 0.727031/M2

5 0.005388196 − 0.5811/M2 0.00538819758183 − 0.581471/M2

6 0.003032942 − 0.4828/M2 0.00303294412639 − 0.483277/M2

Results agree within margins of error, notice however difference increases
with K. Due to systematic error from not taking into account O(1/M4)
term in the fits, whose relative size also increases with K.
GP — Strings on the Lightcone Worldsheet Lattice Conclusions & Future Directions 22/25



Graviton Self-Energy Summand

This is equal to tachyon summand times

1 + 2Ũ + 2Ũ2 ≃ 1 +
2π

M2

K−1
∑

l,s=1

c−1
ls +O

(

1

M4

)

,

Ũ =
sin π

M

M
√

1 + sin2 π
M

K−1
∑

l,s=1

(

sin
π

M
+

√

1 + sin2
π

M

)2(l−s)

h−1
ls .
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Able to rigorously prove two important facts, for which we only had strong
indications up to now:
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1 + 2Ũ + 2Ũ2 ≃ 1 +
2π

M2

K−1
∑

l,s=1

c−1
ls +O

(

1

M4

)

,
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Graviton Self-Energy Summand

This is equal to tachyon summand times

1 + 2Ũ + 2Ũ2 ≃ 1 +
2π
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,

Ũ =
sin π

M

M
√

1 + sin2 π
M

K−1
∑

l,s=1

(

sin
π

M
+

√

1 + sin2
π

M

)2(l−s)

h−1
ls .

Able to rigorously prove two important facts, for which we only had strong
indications up to now:

1. Leading term in the M -expansion same for tachyon and graviton.

2. Nontrivial cancelation of O(1/M2) term! Graviton massless in
K ≪ M (UV) region.
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K-Dependence of terms in asymptotic M -expansion

Governed by determinant and inverse of

clp =

∫ 1

0
dx

sin(πx/2) cos [(l − p)πx]
√

1 + sin2(πx/2)
, l, p = 1, . . . ,K − 1 .

For any specific n ≡ K − 1, can evaluate exactly as

det(clp) =

n
∑

r=0

n

n+ r

(

n+ r
2r

)

22r
Γ(12 +

r
2 )

2
√
πΓ(1 + r

2)
−2F1(1−n, 1+n; 2;−1) .

But also for n ≫ 1, can find leading analytic dependence! [Fisher,Hartwig’68]

det(clp) = n
1
4 exp

(

− log(1 +
√
2)n − 1

8
log 2

)

G(32 )
2

G(2)

(

1 +O(n−1)
)

.

Similarly, [Rambour,Seghier’09]

n
∑

l,p=1

(c−1)lp ≃
π

4
n2
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Continuum self-energies

In UV q ∼ 0 region,

∆P−
Tach =

Co

2P+

∫ 1

0

dq

q3

∫ 2π

0
dθ

[

1 + 24q2

4 sin2(θ/2)
− 2q2 +O(q4)

]

,

∆P−
Gluon =

Co

2P+

∫ 1

0

dq

q3

∫ 2π

0
dθ

[

1 + 24q2

4 sin2(θ/2)
− 2q2 cos θ +O(q4)

]

.

For the gluon in RNS, after we compactify one of the transverse target
space dimensions by imposing periodic (antiperiodic) boundary conditions
on bosonic (fermionic) states in order to break supersymmetry,

∆P− = Cs

2P+

∫ dq
q

∫

dθ
∑

m=odd

q
m2R2T0

4π2

(

1−8q+36q2

4q sin2(θ/2)
− 2q + 4q sin2 θ

2 +O(q2)
)

In all cases, introducing a Dp-brane implies the insertion of factors of
(−2π/ ln q)(D−p)/2 in the integrand.
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