Introduction	HWRG oo	Stochastic Quantization	Relating SQ and HWRG	Examples ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	Conclusion

Stochastic Quantization and AdS/CFT

Dileep Jatkar

Harish-Chandra Research Institute, Allahabad

With Jae-Hyuk Oh, (arXiv:1209.2242 and 1305.2008)

Introduction	HWRG 00	Stochastic Quantization	Relating SQ and HWRG	Examples ೦೦೦೦೦೦೦೦೦೦೦೦೦	Conclusion
Qutling					

- Motivation
- Summary of Results
- 2 HWRG
 - Faulkner et al. notation
- Stochastic Quantization
 - Basics
 - The Fokker-Planck Action
- 4 Relating SQ and HWRG
 - SQ \Leftrightarrow HWRG
- 5 Examples
 - Massless Scalar Field in AdS₂
 - Scalar field in AdS_{d+1}

Conclusion

Introduction ●○○○	HWRG oo	Stochastic Quantization	Relating SQ and HWRG	Examples ০০০০০০০০০০০০০০০০	Conclusion
Motivation					
Motivati	on				

Recent progress in holographic Wilsonian renormalisation group (HWRG) has emphasised two aspects:

- Flow equations have Hamilton-Jacobi form,
- Complete description of HWRG flow necessarily requires multi-trace operators.Nickel-Son, Heemskerk-Polchinski, Faulkner-Liu-Rangamani

Stochastic Quantization

- There has been a proposal of describing AdS/CFT in terms of Stochastic Quantization (SQ) of a theory in one lower dimension. Lifschytz-Periwal, Polyakov, Akhmedov, Mansi-Mauri-Petkou
- They involve Hamilton-Jacobi set up with Fokker-Planck Hamiltonian.

Introduction	HWRG 00	Stochastic Quantization	Relating SQ and HWRG	Examples ০০০০০০০০০০০০০০০০	Conclusion
Motivation					
Motivati	on Cor	ntd			

Questions

- Is it possible to relate SQ to HWRG in AdS/CFT correspondence?
- What is the relation between Fokker-Planck Hamiltonian and the HWRG Hamiltonian?
- What is the relation between the stochastic time and the radial direction in AdS?
- Is it possible to accommodate multi-trace operators in the SQ formulation?
- If yes, is it consistent with the SQ-HWRG dictionary?

Introduction	HWRG 00	Stochastic Quantization	Relating SQ and HWRG	Examples ০০০০০০০০০০০০০০০০	Conclusion
Summary of Re	esults				
Relating	sQ to	HWRG			

The Proposal

- (The stochastic time) *t* = *r* (the radial coordinate in AdS)
- (Classical action in SQ) S_c ≡ 2Γ(φ) (Classical effective action in AdS/CFT) Mansi-Mauri-Petkou
- (The Fokker-Planck Hamiltonian) $\mathcal{H}_{FP}(t) = \mathcal{H}_{RG}(r)$ (HWRG Hamiltonian in AdS/CFT).

Check

- We check our proposal by studying three examples, massless scalar field theory in AdS₂, U(1) gauge theory on AdS₄ and conformally coupled scalar field in AdS_d.
- In each case, description of double trace operator deformation agrees between SQ and HWRG.

Introduction ○○○●	HWRG 00	Stochastic Quantization	Relating SQ and HWRG	Examples ০০০০০০০০০০০০০০০০	Conclusion
Summary of Res	ults				

Relating SQ to HWRG Contd...

Relation

The boundary action S_B in AdS/CFT is given by

$$S_{B} = \int_{t_{0}}^{t} d\tilde{t} \int d^{d}x \ \mathcal{L}_{FP}(\phi(\tilde{t}, x)), \qquad (1$$

(2)

 \mathcal{L}_{FP} is the Fokker-Planck Lagrangian density

The Langevin dynamics gives the relation between stochastic 2-point correlation functions and the double trace coupling in AdS/CFT

$$\langle \phi_q(t)\phi_{q'}(t)\rangle_H^{-1} = \langle \phi_q(t)\phi_{q'}(t)\rangle_S^{-1} - \frac{1}{2}\frac{\delta^2 S_c}{\delta\phi_q(t)\delta\phi_{q'}(t)},$$

Consider a bulk action in the Euclidean AdS_{d+1}

$$S = \int_{r>\epsilon} dr d^d x \sqrt{g} \mathcal{L}(\phi, \partial \phi) + S_B[\phi, \epsilon], \qquad (3)$$

 S_B is the boundary effective action and ϵ is radial cutoff. • The AdS metric is

$$ds^{2} = \frac{dr^{2} + \sum_{i=1}^{d} dx_{i} dx_{i}}{r^{2}}.$$
 (4)

Canonical momentum is defined with boundary condition

$$\Pi_{\phi} = \sqrt{g} \frac{\partial \mathcal{L}}{\partial (\partial_r \phi)} = \frac{\delta S_B}{\delta \phi(x)}.$$
(5)

Introduction	HWRG ○●	Stochastic Quantization	Relating SQ and HWRG	Examples ০০০০০০০০০০০০০০০০	Conclusion
Faulkner et al.	notation				
Liahtnir	na Revi	ew			

Cutoff independence of the action implies

$$\partial_{\epsilon} S_{B} = \int_{r=\epsilon} d^{d} x \left(\frac{\delta S_{B}}{\delta \phi} \partial_{r} \phi - \mathcal{L}(\phi, \partial \phi) \right)$$
$$= \int_{r=\epsilon} d^{d} x \mathcal{H}_{RG}(\frac{\delta S_{B}}{\delta \phi}, \phi), \tag{6}$$

second equality follows from the Legendre transform.

• With a wavefunctional $\psi_H = \exp(-S_B)$, we can write

$$\partial_{\epsilon}\psi_{H} = -\int_{r=\epsilon} d^{d}x \ \mathcal{H}_{RG}(-\frac{\delta}{\delta\phi},\phi)\psi_{H},$$
 (7)

where we have assumed $\left(\frac{\delta S_B}{\delta \phi}\right)^2 >> \frac{\delta^2 S_B}{\delta \phi^2}$.

Introduction	HWRG 00	Stochastic Quantization ●○○○	Relating SQ and HWRG	Examples ০০০০০০০০০০০০০০০০	Conclusion
Basics					
Stochas	stic Qua	antization			

- Stochastic quantization is a Hamiltonian description of Euclidean field theory evolving along fictitious stochastic time *t*. Damgaard-Huffel, Dijkgraaf-Orlando-Reffert
- The probability distribution P(φ, t) describes evolution of the system and reduces to the Boltzmann measure at late time.
- N-point correlator is given by

$$\langle \phi(\mathbf{x}_1)...\phi(\mathbf{x}_N) \rangle = \int D\phi \ P(\phi,t) \ \phi(\mathbf{x}_1)...\phi(\mathbf{x}_N). \tag{8}$$

Introduction	HWRG 00	Stochastic Quantization	Relating SQ and HWRG	Examples ০০০০০০০০০০০০০০০০	Conclusion
Basics					
Rasics					

The Langevin equation

 $P(\phi, t)$ is determined using the Langevin equation

$$\frac{\partial \phi(\mathbf{x},t)}{\partial t} = -\frac{1}{2} \frac{\delta S_c}{\delta \phi(\mathbf{x},t)} + \eta(\mathbf{x},t), \tag{9}$$

where $\eta(t)$ is the Gaussian white noise, with following properties

$$\langle \eta_{i,q}(t) \rangle = 0 \langle \eta_{i,q}(t) \eta_{j,q'}(t') \rangle = \delta_{ij} \delta^d(q-q') \delta(t-t'),$$
 (10)

with the Gaussian weight function

$$Z = \int D\eta(x,t) \exp(-\frac{1}{2} \int d^d x dt \ \eta^2(x,t)). \tag{11}$$

Introduction 0000	HWRG 00	Stochastic Quantization	Relating SQ and HWRG	Examples	Conclusion
The Fokker-Pla	nck Action				
Langevi	in to Fo	kker-Planck			

• The Fokker-Planck description is obtained by eliminating $\eta(\mathbf{x},t)$ in

$$Z = \int D\eta(x,t) \exp(-\frac{1}{2} \int d^d x dt \ \eta^2(x,t)), \qquad (12)$$

using the Langevin equation.

This gives

$$P(\phi, t) = \exp\left[-\frac{S_c(\phi(t))}{2} - \int_{t_0}^t d\tilde{t} \int d^d x \mathcal{L}_{FP}(\phi(\tilde{t}, x))\right], \quad (13)$$

where the Fokker-Planck Lagrangian density is

$$\mathcal{L}_{FP} = \frac{1}{2} \left(\frac{\partial \phi(x)}{\partial t} \right)^2 + \frac{1}{8} \left(\frac{\delta S_c}{\delta \phi(x)} \right)^2 - \frac{1}{4} \frac{\delta^2 S_c}{\delta \phi^2(x)}.$$
 (14)

Introduction	HWRG oo	Stochastic Quantization	Relating SQ and HWRG	Examples oooooooooooooooo	Conclusion
The Fokker-Plan	ck Action				

Probability distribution

 Equation satisfied by P(φ, t) can be put in a suggestive form by defining

$$\psi_{\mathcal{S}}(\phi, t) \equiv \mathcal{P}(\phi, t) \exp(\frac{S_c}{2}),$$
 (15)

and then equation for $P(\phi,t)$ becomes the Schrödinger type equation for $\psi_{\mathcal{S}}(\phi,t)$

$$\partial_t \psi_{\mathcal{S}}(\phi, t) = -\int d^d x \, \mathcal{H}_{FP}(\frac{\delta}{\delta \phi}, \phi) \, \psi_{\mathcal{S}}(\phi, t),$$
 (16)

where,

$$\mathcal{H}_{FP} = -\frac{1}{2} \frac{\delta^2}{\delta \phi^2(x)} + \frac{1}{8} \left(\frac{\delta S_c}{\delta \phi(x)} \right)^2 - \frac{1}{4} \frac{\delta^2 S_c}{\delta \phi^2(x)}, \qquad (17)$$

where \mathcal{H}_{FP} is the Fokker-Planck Hamiltonian.

Introduction	HWRG 00	Stochastic Quantization	Relating SQ and HWRG ●○○	Examples ০০০০০০০০০০০০০০০০	Conclusion
$SQ \Leftrightarrow HWRG$					
The Dict	ionary				

SQ \Leftrightarrow HWRG

• We can now state the relation between SQ and HWRG.

1
$$t = r$$

2 $\mathcal{H}_{FP}(t) = \mathcal{H}_{RG}(r)$
3 $\psi_S(\phi, t) \equiv P(\phi, t) \exp(\frac{S_c}{2}) = \psi_H(\phi, t) \equiv \exp(-S_B)$

Implied relation

The second equality also implies a relation between the classical action S_c in SQ and the effective action Γ in AdS/CFT, namely

$$S_c = 2 \Gamma$$
 (18)

Introduction	HWRG oo	Stochastic Quantization	Relating SQ and HWRG ○●○	Examples ০০০০০০০০০০০০০০০০	Conclusion
$SQ \Leftrightarrow HWRG$					
The Dict	tionary				

2-point functions in SQ

Langevin dynamics gives

$$\langle \phi_{q_1}(t_1)\phi_{q_2}(t_2)\rangle_S = \int D\phi e^{-S_P(t)}\phi_{q_1}(t_1)\phi_{q_2}(t_2),$$
 (19)

- $P(\phi, t) \equiv \exp(-S_P(t)) = \exp(-\frac{1}{2}\int \mathcal{K}_q(t)\phi_q(t)\phi_{-q}(t)d^dq)$ Latter expression is true only for a free theory.
- In a free theory

$$\langle \phi_{q_1}(t_1)\phi_{q_2}(t_2)\rangle_S = \frac{1}{\mathcal{K}_q(t)}\delta^d(q_1+q_2).$$
 (20)

2-point functions in AdS/CFT

• According to relation 3, $S_B = S_P - \frac{S_c}{2}$ and

$$\langle \phi_q(r)\phi_{q'}(r)\rangle_H^{-1} = \frac{\delta^2 \mathcal{S}_B}{\delta \phi_q(r)\delta \phi_{q'}(r)}.$$
 (21)

We thus have a relation

$$\langle \phi_{q_1}(t)\phi_{q_2}(t)\rangle_H^{-1} = \langle \phi_{q_1}(t)\phi_{q_2}(t)\rangle_S^{-1} - \frac{1}{2}\frac{\delta^2 S_c}{\delta\phi_q(t)\delta\phi_{-q}(t)}.$$
 (22)

Scalar field action

Action for massless scalar field in Euclidean AdS₂

$$S_{bulk} = rac{1}{2} \int dr d au \sqrt{g} g^{\mu
u} \partial_{\mu} \phi \partial_{
u} \phi,$$
 (23)

where
$$(g_{\tau\tau}, g_{rr}) = (r^{-2}, r^{-2}).$$

Notice,

The action is invariant under Weyl rescaling of metric,

- 2 AdS space is conformally flat.
- Therefore scalar field action can also be written as

$$S_{bulk} = \frac{1}{2} \int_{\mathbb{R}^2_+} dr d\tau \partial_\mu \phi \partial_\mu \phi.$$
 (24)

Introduction	HWRG oo	Stochastic Quantization	Relating SQ and HWRG	Examples ooooooooooooo	Conclusion
Massless Scala	r Field in AdS	2			
AdS/CF	Т				

Double trace terms

- $-\frac{d^2}{4} \le m^2 \le -\frac{d^2}{4} + 1$ implies massless scalar field admits alternate quantization in AdS₂.
- Assume the form of S_B

$$S_{B} = \Lambda(\epsilon) + \int \frac{d\omega}{2\pi} \sqrt{\gamma(\epsilon)} \mathcal{J}(\epsilon, \omega) \phi_{-\omega} - \frac{1}{2} \int \frac{d\omega}{2\pi} \sqrt{\gamma(\epsilon)} \mathcal{F}(\epsilon, \omega) \phi_{\omega} \phi_{-\omega}, \quad (25)$$

where $\Lambda(\epsilon)$, $\mathcal{J}(\epsilon, \omega)$ and $\mathcal{F}(\epsilon, \omega)$ are unknown functions of radial cut-off ϵ .

• $\mathcal{F}(\epsilon, \omega)$ is the double trace coupling.

Introduction	HWRG	Stochastic Quantization	Relating SQ and HWRG	Examples	Conclusion
				000000000000000000000000000000000000000	
Massless Scal	ar Field in Ads				

HWRG

• Holographic Hamilton-Jacobi equation is, Faulkner et al.

$$\partial_{\epsilon} S_{B} = -\frac{1}{2} \int_{r=\epsilon} d\omega \left(\left(\frac{\delta S_{B}}{\delta \phi_{\omega}} \right) \left(\frac{\delta S_{B}}{\delta \phi_{-\omega}} \right) - \omega^{2} \phi_{\omega} \phi_{-\omega} \right).$$
(26)

Substituting S_B into the holographic H-J equation

$$\partial_{\epsilon}\Lambda(\epsilon) = -\frac{1}{2}\int_{\epsilon}\frac{d\omega}{(2\pi)^2}J(\epsilon,\omega)J(\epsilon,-\omega),$$
 (27)

$$\partial_{\epsilon} J(\epsilon, -\omega) = \frac{1}{2\pi} J(\epsilon, \omega) f(\epsilon, -\omega),$$
 (28)

$$\partial_{\epsilon} f(\epsilon, \omega) = \frac{1}{2\pi} f(\epsilon, -\omega) f(\epsilon, \omega) - 2\pi \omega^2,$$
 (29)

where, $J(\epsilon, \omega) \equiv \sqrt{\gamma(\epsilon)} \mathcal{J}(\epsilon, \omega)$ and $f(\epsilon, \omega) \equiv \sqrt{\gamma(\epsilon)} \mathcal{F}(\epsilon, \omega)$

Introduction	HWRG 00	Stochastic Quantization	Relating SQ and HWRG	Examples 0000000000000	Conclusion
Massless Scalar	Field in AdS	n			

HWRG

• Solution to these equation is Faulkner et al.

$$f(\epsilon,\omega) = -2\pi \frac{\Pi_{\omega}(\epsilon)}{\phi_{-\omega}(\epsilon)}, \quad J(\epsilon,\omega) = -\frac{\beta_{\omega}}{\phi_{\omega}(\epsilon)}, \quad (30)$$

and $\partial_{\epsilon}\Lambda(\epsilon) = -\frac{1}{2} \int_{r=\epsilon} \frac{d\omega}{(2\pi)^2} \frac{\beta_{\omega}\beta_{-\omega}}{\phi_{\omega}(\epsilon)\phi_{-\omega}(\epsilon)},$

where Π_{ω} is momentum conjugate to ϕ_{ω} and β_{ω} is independent of ϵ .

• General solution to ϕ equation of motion is

$$\phi_{\omega}(\mathbf{r}) = \phi_{\omega}^{(0)} \cosh(|\omega|\mathbf{r}) + \frac{\phi_{\omega}^{(1)}}{|\omega|} \sinh(|\omega|\mathbf{r}).$$
(31)

Introduction	HWRG oo	Stochastic Quantization	Relating SQ and HWRG	Examples oooo●ooooooooo	Conclusion
Massless Scalar	Field in AdS ₂				

HWRG

• Consider only double trace coupling term, then

$$S_{B}(r) = \frac{1}{2} \int d\omega |\omega| \left(\frac{\sinh(|\omega|r) + \tilde{\phi}_{\omega} \cosh(|\omega|r)}{\cosh(|\omega|r) + \tilde{\phi}_{\omega} \sinh(|\omega|r)} \right) \phi_{\omega} \phi_{-\omega},$$
(32)
$$\mathcal{F}(r,\omega) = -2\pi |\omega| r \frac{\sinh(|\omega|r) + \tilde{\phi}_{\omega} \cosh(|\omega|r)}{\cosh(|\omega|r) + \tilde{\phi}_{\omega} \sinh(|\omega|r)}.$$
(33)

Flows

- As $r \to 0$ (UV), $\mathcal{F}(r, \omega) \to 0$ for $\tilde{\phi} = 0$ and $\mathcal{F}(r, \omega) \to -2\pi$ for $\tilde{\phi} = \infty$. (Two Fixed points in UV)
- As $r \to \infty$ (IR), $\mathcal{F}(r, \omega) \to -\infty$ unless $\tilde{\phi} = -1$, then $\mathcal{F}(r, \omega) \to \infty$. (Two different fixed points in IR)

Fokker-Planck action

Recall S_c = 2 Γ, and Γ is Legendre transform of on-shell action,

$$S_{cl} = \int_{-\infty}^{\infty} d\omega |\omega| \phi_{\omega} \phi_{-\omega}.$$
 (34)

The Fokker-Planck Lagrangian density is

$$\mathcal{L}_{FP} = \frac{1}{2} \dot{\phi}_{\omega} \dot{\phi}_{-\omega} + \frac{1}{2} \omega^2 \phi_{\omega} \phi_{-\omega}, \qquad (35)$$

where, dot indicates derivative w.r.to stochastic time t.

• General solution to eq. of motion derived from \mathcal{L}_{FP} is

$$\phi_{\omega}(t) = a_{1,\omega} \cosh(|\omega|t) + a_{2,\omega} \sinh(|\omega|t).$$
 (36)

Fokker-Planck action

• Consider a boundary condition that at time *t* we want the solution $\phi_{\omega}(\tilde{t} = t) = \phi_{\omega}(t)$ then

$$\phi_{\omega}(\tilde{t}) = \phi_{\omega}(t) \frac{\cosh(|\omega|\tilde{t}) + a_{\omega} \sinh(|\omega|\tilde{t})}{\cosh(|\omega|t) + a_{\omega} \sinh(|\omega|t)}.$$
 (37)

Substituting this in the Fokker-Planck action gives

$$S_{FP} = \frac{1}{2} \int d\omega |\omega| \phi_{\omega}(t) \phi_{-\omega}(t) \left(\frac{\sinh(|\omega|t) + a_{\omega} \cosh(|\omega|t)}{\cosh(|\omega|t) + a_{\omega} \sinh(|\omega|t)} \right)$$
(38)

- This action is identical to $S_B(r)$, with *t* replaced by *r*.
- It therefore has same fixed point structure.

Introduction	HWRG 00	Stochastic Quantization	Relating SQ and HWRG	Examples ○○○○○○●○○○○○○	Conclusion

U(1) gauge theory on AdS₄

U(1) gauge theory action on AdS₄

• The gauge field action in the Euclidean AdS₄ is

$$S_{bulk}[A] = \frac{1}{4} \int d^4 x \sqrt{g} F_{\mu\nu} F^{\mu\nu}, \qquad (39)$$

where, $\textit{F}_{\mu\nu}=\partial_{\mu}\textit{A}_{\nu}-\partial_{\nu}\textit{A}_{\mu}$ and the background metric is

$$ds^2 = \frac{dr^2 + \delta_{ij}dx^i dx^j}{r^2}.$$
 (40)

 This action also has Weyl invariance. By rescaling the metric ds² → r²ds², this action can be mapped to that on half of ℝ⁴. This example works out in a similar fashion as massless scalar field on AdS₂.

oooo Scalar field in A	oo AdS _{d+1}			0000000000000000	
Conform	nally co	oupled scalar fie	eld		

• Consider conformally coupled scalar field in AdS_{d+1},

$$S = \int_{r>\epsilon} dr d^{d} x \sqrt{g} \mathcal{L}(\phi, \partial \phi) + S_{B},$$
$$\mathcal{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \frac{1}{2} m^{2} \phi^{2} + \frac{\lambda}{4} \phi^{\frac{2(d+1)}{d-1}}, \quad (41)$$

where $m^2 = -(d^2 - 1)/4$, which is dictated by conformal coupling of scalar to gravity.

- We will ignore interaction term from now on, *i.e.*, $\lambda = 0$.
- This value of mass falls within the BF window $-d^2/4 \le m^2 \le -d^2/4 + 1$.
- It allows alternate quantization of the scalar.

Introduction	HWRG oo	Stochastic Quantization	Relating SQ and HWRG	Examples	Conclusion
Scalar field in Ac	dS _{d+1}				

HWRG flow equation

The flow equation for conformally coupled scalar takes the form

$$\partial_{\epsilon} S_{B} = -\int_{r=\epsilon} d^{d} \rho \left[\frac{1}{2\sqrt{g}g^{rr}} \left(\frac{\delta S_{B}}{\delta \phi_{p}} \right) \left(\frac{\delta S_{B}}{\delta \phi_{-p}} \right) - \frac{1}{2}\sqrt{g}g^{ij} \rho_{i} \rho_{j} \phi_{p} \phi_{-p} + \frac{d^{2}-1}{8}\sqrt{g} \phi_{p} \phi_{-p} \right], \quad (42)$$

To solve this we again make an ansatz

$$S_{B} = \Lambda(\epsilon) + \int \frac{d^{d}p}{(2\pi)^{d}} \sqrt{\gamma} \mathcal{J}(\epsilon, p) \phi_{-p} - \int \frac{d^{d}p}{2(2\pi)^{d}} \sqrt{\gamma} \mathcal{F}(\epsilon, p) \phi_{p} \phi_{-p}.$$
(43)

Introduction HWRG Stochastic Quantization Relating SQ and HWRG Examples Conclusion

Scalar field in AdS_{d+1}

Equation for Λ , \mathcal{J} and \mathcal{F} take similar form and the solution to double trace coupling is

$$egin{aligned} &\sqrt{\gamma}\mathcal{F}(\epsilon,m{p}) &= & -(2\pi)^drac{\Pi_\phi}{\phi}, \ & \Pi_\phi &= &\sqrt{g}g^{rr}\partial_r\phi = rac{\delta\mathcal{S}_B}{\delta\phi} \end{aligned}$$

Solution to the equation of motion is

$$\phi_{\boldsymbol{p}} = r^{\frac{d-1}{2}} \left[\phi_0(\boldsymbol{p}) \cosh(|\boldsymbol{p}|\boldsymbol{r}) + \phi_1(\boldsymbol{p}) \sinh(|\boldsymbol{p}|\boldsymbol{r}) \right], \quad (44)$$

using this $\mathcal{F}(r, p)$ and S_B evaluates to

$$\mathcal{F}(r,p) = -(2\pi)^{d} \left[\frac{d-1}{2} + |p|r \frac{\sinh(|p|r) + \tilde{\phi}(p)\cosh(|p|r)}{\cosh(|p|r) + \tilde{\phi}(p)\sinh(|p|r)} \right]$$
$$S_{B}^{DTD} = -\frac{1}{2} \int \frac{d^{d}p}{(2\pi)^{d}} \frac{\mathcal{F}(r,p)}{r^{d}} \phi_{p} \phi_{-p}.$$
(45)

Introduction	HWRG oo	Stochastic Quantization	Relating SQ and HWRG	Examples	Conclusion
Scalar field in Ad	S _{d+1}				

Stochastic Picture

- We are now faced with a problem of reproducing this result using stochastic quantization.
- Notice we have explicit time dependence in the Langevin equation (for AdS_{d+1} , $\Omega(t) = t^{(d-1)/2}$)

$$\frac{1}{\Omega(t)}\frac{d\phi_{p}(t)}{dt} = -\frac{1}{\Omega(t)}\left(|p| - \frac{\partial_{t}\Omega(t)}{\Omega(t)}\right)\phi_{p}(t) + \eta(t,p).$$
 (46)

• The general solution to this equation is

$$\phi_{p}(t) = \Omega(t) \int_{t_{0}}^{t} dt' e^{-|p|(t-t')} \eta(t', p) .$$
(47)

Introduction	HWRG 00	Stochastic Quantization	Relating SQ and HWRG	Examples	Conclusion
Scalar field in Ad	S _{d+1}				

• The two point correlation function is given by

$$\langle \phi_{p}(t)\phi_{p'}(t)\rangle_{S} = \Omega^{2}(t)\frac{\delta^{d}(p-p')}{2|p|}(1-e^{2|p|(t_{0}-t)}).$$
 (48)

Using this one can read off the double trace coupling.

 In spite of having explicit time dependence in the Langvin equation, Fokker-Planck formulation can be derived, provided Ω(t) satisfies

$$\frac{d^2\Omega^{-1}(t)}{dt^2} = (\frac{d^2 - 1}{4})\Omega^{-\frac{d+3}{d-1}}$$
(49)

• $\Omega(t) = t^{(d-1)/2}$ is a solution to this equation!

Introduction	HWRG oo	Stochastic Quantization	Relating SQ and HWRG	Examples ○○○○○○○○○○○	Conclusion
Scalar field in Ac	dS _{d+1}				

Field redefinition

• We can simplify the problem by doing the following field redefinition

$$\phi(t, \boldsymbol{p}) = \Omega(t) f_{\boldsymbol{p}}(t). \tag{50}$$

The Langevin equation then becomes

$$\frac{df_{\rho}(t)}{dt} = -|\rho|f_{\rho}(t) + \eta(t,\rho), \qquad (51)$$

which means in the new variables the classical action is

$$S_c = \int d^d p |p| f_p f_{-p}. \tag{52}$$

• We can carry out Stochastic quantization in new variables in the same manner as in the Weyl invariant case. This result matches with that obtained without doing the field redefinition.

Introduction	HWRG	Stochastic Quantization	Relating SQ and HWRG	Examples	Conclusion

Conclusion: SQ \Leftrightarrow HWRG

The Proposal

- (The stochastic time) t = r (the radial coordinate in AdS)
- (Classical action in SQ) S_c ≡ 2Γ(φ) (Classical effective action in AdS/CFT)
- (The Fokker-Planck Hamiltonian) $\mathcal{H}_{FP}(t) = \mathcal{H}_{RG}(r)$ (HWRG Hamiltonian in AdS/CFT).

Examples

- We have checked our proposal for Weyl invariant actions, e.g., free massless scalar field in AdS₂ and U(1) gauge theory on AdS₄ and conformally coupled scalar field in AdS_d.
- We have studied free theories in the bulk, but they do contain information about multi-trace operators of boundary theory.

Introduction	HWRG 00	Stochastic Quantization	Relating SQ and HWRG	Examples ০০০০০০০০০০০০০০০০	Conclusion
Outlook					

- It will be interesting to extend the stochastic quantization method to interacting Weyl invariant theories.
- It will also be interesting to see if this method can applied to more general geometries(*e.g.*, Lifshitz metric, hyperscaling violating metric, etc.). It may be possible to obtain different geometries by replacing white noise by correlated noise.
- It will be useful to find out how to accommodate finite temperature AdS/CFT systems in this prescription.

Introduction	HWRG oo	Stochastic Quantization	Relating SQ and HWRG	Examples ০০০০০০০০০০০০০০০০	Conclusion

THANK YOU!