EMERGENTTIME & THE M5-BRANE

EMERGENTTIME & SPACE

- Time and space may not be fundamental
- Cosmology: Time or Space might "emerge" from nongeometric phase e.g. matrix model
- Planck scale: physics may be discrete, with geometry emerging at larger "scales". Discrete theory may resolve singularities
- Holography: 4D SYM gains 6 dimensions: 10D string, AdS₅xS⁵

A LA RECHERCHE DU TEMPS PERDU

- Can a timeless Euclidean theory gain a "hidden" time dimension in the quantum theory?
- e.g. lose time by compactification on time dimension to Euclidean theory
- New insights into time and dynamics?
- Work with Neil Lambert, to appear at some time

DIMENSIONS EMERGENT AT STRONG COUPLING

- Some strong coupling limits (e.g. IIA string) give extra space dimension.
- Can some give extra time dimension?
- Can theory in Euclidean space R^d become a theory in d+1 dimensional Minkowski space at strong coupling?
- Controlled situation to study "emergent" time, giving insight into time and emergent theory?

SPACE DIMENSION FROM STRONG COUPLING

- Tower of 0-branes. BPS, so can extrapolate to strong coupling
- Infinite tower of 0-branes become massless at infinite coupling
- Interpret as decompactification of extra dimension, with 0branes as Kaluza-Klein modes
- Further checks: e.g. compare BPS spectra, seek evidence of higher dimensional Lorentz symmetry

M-THEORY FROM IIA STRING

- IIA string: D0 brane states $M \propto \frac{n}{g_s}$
- Interpret as KK states for circle $M \propto \frac{n}{R}$
- IIA string at strong coupling is M-theory on spatial circle $R \propto g_s$
- Problem: do not have intrinsic formulation of M-theory, or of IIA string at strong coupling

(2,0) THEORY FROM SYM Rozali, Witten

- Super Yang-Mills in 4+1 with 16 SUSY, SO(5) R-symmetry
- Soliton: (YM instanton in R⁴) × (time) $M = \frac{4\pi^2 |n|}{a^2}$
- Interpret as KK states for circle $M \propto \frac{n}{R}$
- SYM at strong coupling is (2,0) theory on spatial S¹ $R = \frac{g^2}{4\pi^2}$
- Problem: do not have intrinsic formulation of (2,0) theory, or of SYM at strong coupling

5D SYM

- SYM in 4+1 non-renormalisable, 6-loop divergence Bern et al
- Embed in UV complete theory, e.g. string theory.
- D4 brane world-volume theory $g^2 = (2\pi)^2 {\alpha'}^{1/2} g_s$
- At strong coupling: M5 brane wrapped on M-theory S¹
- (2,0) theory (decoupling limit of) M5-brane world-volume theory

(2,0) THEORY

- Superconformal theory in 5+1 dimensions, 16 SUSYs and SO(5) R-symmetry
- Abelian: self-dual tensor multiplet: 5 scalars X^I, H=*H, H=dB
- Non-abelian: no conventional field theory formulation(?)
- Construct from IIB on K3 at ADE singularity, or M5-brane world volume, or matrix model, or CFT dual to AdS₇xS⁴

SYM IN 5 EUCLIDEAN DIMENSIONS

- Super Yang-Mills in 5 Euclidean dimensions with 16 SUSY, SO(5) R-symmetry
- Seek evidence that at strong coupling an extra TIME $R=\frac{g^2}{4\pi^2}$ dimension opens up
- Euclidean SYM at strong coupling is (2,0) theory on timelike S¹
- Simple argument: This theory and usual 4+1 SYM defined by SAME Euclidean path integral, but with different continuations back to real section. If one gets extra dimension, both do.
 SUSY fixes signature.

Wednesday, 12 June 13

CONSTRUCTING EUCLIDEAN SYM

- Reduce SYM from 9+1 on d+1 dimensions gives ESYM in D=9-d with SO(d,1) R-symmetry. D=5: SO(4,1) R-symmetry
- Compactify (2,0) on time: 5+0 SYM with SO(5) R-symmetry. Want this Euclidean SYM, not one with SO(4,1) R symmetry
- Can get this theory from SYM in 5+5 dimensions by reducing on 5 time dimensions

EUCLIDEAN SYM

$$S = \frac{1}{4g^{2}} tr \int d^{5}x \Big[\frac{1}{4} F_{ij} F^{ij} - \frac{1}{2} D_{i} X^{I} D^{i} X^{I} + \frac{1}{4} [X^{I}, X^{J}]^{2} \\ - \frac{i}{2} \psi^{T} \Gamma_{0} \Gamma^{i} D_{i} \psi - \frac{1}{2} \psi^{T} \Gamma^{I} [X^{I}, \psi] \Big]$$

Space indices i,j=1,...,5
Internal indices I,J=6,7,...,10

Conserved currents T_{ij} $J = \frac{1}{8g^2} * tr(F \wedge F)$

EUCLIDEAN SYM

$$\begin{split} S &= \frac{1}{4g^2} tr \int d^5 x \Big[\frac{1}{4} F_{ij} F^{ij} - \frac{1}{2} D_i X^I D^i X^I + \frac{1}{4} [X^I, X^J]^2 \\ &- \frac{i}{2} \psi^T \Gamma_0 \Gamma^i D_i \psi - \frac{1}{2} \psi^T \Gamma^I [X^I, \psi] \Big] \\ \end{split}$$
Space indices i,j=1,...,5
Internal indices I,J=6,7,...,10

Conserved currents T_{ij} $J = \frac{1}{8g^2} * tr(F \wedge F)$ Analytic continuation to positive bosonic action $X^I \rightarrow iX^I$

Same Euclidean action as Wick rotation of 4+1 SYM

Wednesday, 12 June 13

$$ABELIAN (2,0) THEORY$$
$$S^{(abelian)} = -\int d^{6}x \Big[\frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} + \frac{1}{2} \partial_{\mu} X^{I} \partial^{\mu} X^{I} \Big]$$

Reduce on time

$$S = -\int d^5x \left[\frac{1}{12} H_{ijk} H^{ijk} + \frac{1}{2} \partial_i X^I \partial^i X^I \right]$$

Dualise

$$F = *H$$
$$S = \int d^5x \left[\frac{1}{4} F_{ij} F^{ij} - \frac{1}{2} \partial_i X^I \partial^i X^I \right]$$

$$ABELIAN (2,0) THEORY$$
$$S^{(abelian)} = -\int d^{6}x \Big[\frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} + \frac{1}{2} \partial_{\mu} X^{I} \partial^{\mu} X^{I} \Big]$$

Reduce on time

$$S = -\int d^5x \left[\frac{1}{12} H_{ijk} H^{ijk} + \frac{1}{2} \partial_i X^I \partial^i X^I \right]$$

Dualise F = *H $S = \int d^5x \left[\frac{1}{4} F_{ij} F^{ij} - \frac{1}{2} \partial_i X^I \partial^i X^I \right]$

5+1 EM tensor $\Theta_{\mu\nu}$ $\Theta_{ij} = T_{ij}, \qquad \Theta_{0i} = J_i$

SUSY, gauge inv.
$$\Rightarrow$$
 true for non-abelian theory too

$$\Theta_{00} = tr\left(\frac{1}{4g^4}F_{ij}F^{ij} + \frac{1}{2}D_iX^ID^iX^I - g^4[X^I, X^J]^2\right)$$

Wednesday, 12 June 13

4+1 SYM & NEW SPACE DIM.

Topological current $J = \frac{1}{2g^2} * tr(F \wedge F)$

Charge
$$K \equiv \int d^4x J_0 = \frac{4\pi^2 n}{g^2}$$

(YM instanton in R⁴) × (time): BPS soliton M = |K|

4+1 SYM & NEW SPACE DIM. Topological current $J = \frac{1}{2g^2} * tr(F \wedge F)$ Charge $K \equiv \int d^4x J_0 = \frac{4\pi^2 n}{g^2}$ (YM instanton in R⁴) × (time): BPS soliton M = |K|

Interpret as KK states for circle in x⁵ direction

$$P_5 = \frac{n}{R} \qquad M = |P_5| \qquad R = \frac{g^2}{4\pi^2}$$
$$P_5 = \int d^4x dx^5 \,\Theta_{05} \quad \text{so} \quad P_5 \sim K \quad \text{if} \quad \Theta_{05} \propto J_0$$

5+0 SYM & NEW TIME DIM? Topological current $J = \frac{1}{2q^2} * tr(F \wedge F)$ Charge $K = \int d^4x J_5 = \frac{4\pi^2 n}{a^2}$ (YM instanton in R^4) x (R^1): BPS solution extended in x^5 Interpret as KK states for circle in x⁰ direction $E = \frac{n}{R}$ $R = \frac{g^2}{4\pi^2}$ $|f \qquad \Theta_{05} \propto J_5 \qquad K \sim \int d^4 x \Theta_{05}$

Is this an energy E or a momentum P₅? What if n -ve?

QUANTISATION IN EUCLIDEAN SIGNATURE

- One way: choose a Euclidean "time" e.g. $\tau = x^5$
- Canonical formalism, Poisson brackets etc based on $\boldsymbol{\tau}$
- Path integral defined by slicing wrt Euclidean ''time'' τ
- Natural if τ is Wick rotated time, but not for intrinsically Euclidean theories, as it breaks rotation invariance
- Useful for subsector extended along τ direction.

ATIMELY RESOLUTION

- Treat x^5 as a Euclidean time, use canonical formalism for x^5
- Interchange roles of x^5 , x^0 in usual picture, get same story
- E is P^0 in x^5 formalism (has different meaning in x^0 picture)
- Null state in 5+1 with $x^0 = x^5$ gives world line along x^0 in 4+1, or E1-brane along x^5 in 5+0
- Ep-brane: extended along p spatial dimensions

EUCLIDEAN CHARGES

 $x^i = (\tau, x^a)$ a = 1, 2, 3, 4

Restrict to configurations that fall off sufficiently rapidly in transverse R⁴.

$$\hat{q} = \int d^4 x \, j_\tau$$

1

Integral over 4-surface of fixed τ . Conserved: $\partial_{\tau}\hat{q} = 0$

$$\hat{P}_i = \int d^4x \ T_{\tau i}$$

Generates translations through τ Poisson brackets

$$[\hat{P}_i,\psi] = \partial_i \psi$$

Charge for branes from instantons in transverse R⁴ $K = \frac{1}{8g^2} \int d^4x J_{\tau}$ Supercharges $\hat{Q} = \int d^4x S_{\tau}$

$$\{\hat{Q}_{\alpha},\hat{Q}_{\beta}\}=2(\Gamma^{i}C^{-1})_{\alpha\beta}\hat{P}_{i}-2\delta_{\alpha\beta}K+(\Gamma^{i}\Gamma^{I}C^{-1})_{\alpha\beta}\hat{Z}_{i}^{I}+\ldots$$

Use K as 0-component: $\hat{P}^{\mu} = (\hat{P}^0 = K, \hat{P}^i)$ Whole superalgebra can be written in a way

suggestive of 5+1 dimensions

$$\{\hat{Q}_{\alpha},\hat{Q}_{\beta}\} = 2(\Gamma^{\mu}C^{-1})_{\alpha\beta}\hat{P}_{\mu} + (\Gamma^{\mu}\Gamma^{I}C^{-1})_{\alpha\beta}\hat{Z}^{I}_{\mu} + (\Gamma^{\mu\nu\lambda}\Gamma^{IJ}C^{-1})_{\alpha\beta}\hat{Z}^{IJ}_{\mu\nu\lambda}$$

Wednesday, 12 June 13

$$\begin{split} \hat{P}_{a} &= tr \int d^{4}x D_{a} X^{I} D_{\tau} X^{I} - \frac{1}{g^{4}} F_{ab} F_{\tau}^{\ b} \\ \hat{P}_{\tau} &= tr \int d^{4}x \frac{1}{4g^{4}} F_{ab} F^{ab} - \frac{1}{2g^{4}} F_{\tau a} F_{\tau}^{\ a} - \frac{g^{2}}{4} [X^{I}, X^{J}] [X^{I}, X^{J} \\ &+ \frac{1}{2} D_{\tau} X^{I} D_{\tau} X^{I} - \frac{1}{2} D_{a} X^{I} D^{a} X^{I} \\ \hat{P}_{0} &= \frac{1}{8g^{4}} tr \int \varepsilon_{\tau bcde} F^{bc} F^{de} \\ \hat{Z}_{0}^{I} &= \frac{2}{g^{2}} tr \int d^{4}x F_{\tau a} D^{a} X^{I} - 4ig^{4} D_{\tau} X^{J} [X^{J}, X^{I}] \\ \hat{Z}_{a}^{I} &= \frac{1}{g^{2}} tr \int d^{4}x \varepsilon_{\tau a bcd} F^{cd} D^{b} X^{I} \\ \hat{Z}_{0a\tau}^{I} &= -ig^{2} \varepsilon^{IJKLM} tr \int d^{4}x \ [X^{K}, X^{L}] D_{a} X^{M} \\ \hat{Z}_{0ab}^{IJ} &= -\frac{i}{2} \varepsilon_{\tau a bcd} tr \int d^{4}x \ F^{cd} [X^{I}, X^{J}] \\ \hat{Z}_{ab\tau}^{IJ} &= itr \int d^{5}x \ F_{ab} [X^{I}, X^{J}] \end{split}$$

LIFTTO 5+1

 $x^i = (\tau, x^a)$ a = 1, 2, 3, 4

Restrict to configurations falling off rapidly in transverse R⁴ Expect to lift to configs in 5+1 falling off in transverse R⁴

$$x^{\mu} = (x^0 = t, x^a, x^5 = \tau)$$

Expect quantization based on time τ to lift to quantization in 5+1 based on τ instead of t. τ -independent charges $\hat{q} = \int d^4x dt j_{\tau}$

 $q = \int d^4x d\tau \, j_t$

instead of t-independent charges

$$\hat{P}_{\mu} = \int d^4x dt \ \Theta_{\mu\tau}$$
generates translations through au -Poisson brackets $\hat{P}_0 = \int d^4x dt \ \Theta_{0\tau}$

reduces to K-charge in 5+0 as $\Theta_{i0} \rightarrow J_i$

$$K = \frac{1}{8g^2} \int d^4x \, J_\tau \qquad \qquad J = \frac{1}{2g^2} * tr(F \wedge F)$$

As t periodic, charge is quantised

$$\hat{P}_0 = \frac{n}{R}$$

Suggests topological charge K identified with \hat{P}_0 for KK modes of 5+1 (2,0) theory compactified on time $R = \frac{g^2}{4\pi^2}$

$$\begin{aligned} & \mathsf{MOMENTA} \\ P_{\mu} = \int d^4 x d\tau \; \Theta_{\mu t} & \hat{P}_{\mu} = \int d^4 x dt \; \Theta_{\mu \tau} \end{aligned}$$

for configurations that only depend on

$$x^{a}, t + \tau \quad (a = 1, 2, 3, 4)$$

$$P_{\tau} = \int d^4x d\tau \ \Theta_{\tau 0} = \int d^4x dt \ \Theta_{\tau 0} = \hat{P}_0$$

so quantized charge arising from instantonic E1-branes is conventional momentum in τ direction but is momentum in time direction for τ formalism

TIMES AND QUANTIZATIONS

- t canonical quantization breaks SO(d,1) to SO(d), need to prove Lorentz covariance
- Well suited for states extended along time (world-lines), but perhaps issues for states (if any) localised in time?
- τ canonical quantization breaks SO(d, I) to SO(d-I, I), need to establish Lorentz covariance
- Good for states extended along τ , but issues for others?
- 5+0 SYM: all BPS states extended along at least one direction

MATCHING BPS STATES

Charged string of (2,0) in 5+1

In abelian phase, charged self-dual strings, Charge Z_i^{I} i=1,...,5 labels direction in space I=6,...,10 labels R-charge String with charge Z_5^6 matches with:

Charged EI-brane in ESYM

$$F_{a5} = D_a X^6$$

$$A_5 = X^6 = \langle X^6 \rangle - \frac{Q_E}{4\pi^2 r^2} , \qquad A_a = 0$$
1

Electrically charged, 1/2 BPS $Z_5^6 \rightarrow \hat{Z}_0^6$ $\hat{P}_5 = \frac{1}{2}|\hat{Z}_0^6|$

Boosted charged string of (2,0) in 5+1

String with charge Z_5^6 along x^5 , boosted in x^4 direction 1/2 BPS, charges P₀, P₄, Z_5^6

Charged Solution in ESYM

Expect version of charged E1-brane with momentum P₄ from K-charge of instantonic E1-brane along x^4 direction. Solution extended in x^4 , x^5 , depends only on x^1 , x^2 , x^3

$$F_{mn} = \varepsilon_{mnp} D^p \Phi$$
 $A_5 = \frac{1}{v} \Phi$ $X^6 = \frac{1}{v\gamma} \Phi$
rameters v, γ $F_{m5} = \frac{1}{\gamma g^2} D_m X^6$

If v=1, instanton in 1235-plane $F_{mn} = \varepsilon_{mnp} F_{p5}$

Pa

$$F_{mn} = \varepsilon_{mnp} D^p \Phi$$
 $A_5 = \frac{1}{v} \Phi$ $X^6 = \frac{1}{v\gamma} \Phi$

1/2 BPS if $\gamma^2 = 1/(1 - v^2)$

$$\Phi = v\gamma g^2 \langle X^6 \rangle - \frac{Q_M}{2r} + \mathcal{O}(1/r^2) , \quad r \to \infty$$

Identify with string in 5+1boosted to velocity v Spectrum covariant under SO(1,1) acting as boosts in x^4 direction

$$P_0^2 = P_4^2 + \frac{1}{4}(Z_5^6)^2$$

FROM (2,0) ATHEORY

Lambert+Papageorgakis

- A 5+1 field theory with (2,0) SUSY, non-abelian gauge symmetry, adjoint self-dual tensors Has vector field C that takes constant expectation value
- If C spacelike, get 4+1 SYM in orthogonal R^{4,1}
- If C timelike, get 5+0 SYM in orthogonal R⁵
- Gives suggestive setting of SYM in 5+1 formalism

TIME FOR M-THEORY

Hull

- Compactify D=11 sugra on time → IIA_E sugra in 10+0 dimensions
- Does M-theory on timelike circle give sensible quantum theory? If so, gives IIA_E string in 10+0, fundamental E2-brane
- At strong coupling, IIA_E string gives M-theory on time circle $R = {\alpha'}^{1/2} g_s$ RR EI-branes lift to M-theory KK modes on time circle

M-THEORY, BRANES AND TIME

- M5 branes wrap time circle to give E5 branes of IIA_E string
- At strong coupling, E5 branes of IIA_E string become M5-branes
- E5-brane world-volume theory is ESYM with SO(5) R-symm.
- So ESYM at strong coupling should give (2,0) theory on time circle

$$g^{2} = (2\pi)^{2} {\alpha'}^{1/2} g_{s} \qquad R = {\alpha'}^{1/2} g_{s}, \implies R = \frac{g^{2}}{4\pi^{2}}$$

CONCLUSIONS

- Evidence for conjecture that SYM in 5+0 gets an extra time dimension at strong coupling, giving (2,0) theory on time circle
- Similar to evidence for 4+1 SYM getting an extra space dim
- 5+0 and 4+1 SYM governed by same path integral, so both should grow a dimension if one does
- Detailed matching of BPS spectra in 5D and 6D
- BPS spectra SO(5,1) covariant

- Follows from strong coupling limits of IIA,IIAE giving M-theory
- Don't know what (2,0) theory or M-theory are, but these strong coupling limits give useful information
- Emergent time is a circle. There are issues in meaning of quantum theory with periodic time. (Probability? Measurement?)
- Intimate relation between time and quantum theory. How to quantise a theory without time (without resorting to a Euclidean time)? For SYM, use quantisation of (2,0) on time circle?