Thermalization on the Probe Brane

Hajar Ebrahim

Based on 1203.3425 \& 1211.1637 with M. Ali-Akari IPM
Crete - June 2013

Outtine:

- Introduction
* Relativistic Heavy Ion Collision
- What do we mean by Thermalization?
* Gauge/Gravity Correspondence
- Thermalization in Gauge/Gravity
* On the Probe Brane
- The Effect of Magnetic Field
- Future Directions

Relakivistic Heavy Ion Collision

- Collision of two heavy nuclei (Gold or Lead) in relativistic speeds:
Pancakes
- Center of Mass Energy:

RHIC $=200 \mathrm{Gev}$
$\mathrm{LHC}=2.7 \mathrm{TeV}$

- Non-zero impact parameter \Rightarrow Anisotropic QuarkGluon Plasma

- Strongly Coupled Quark-Gluon-Plasma with very low viscosity:

$$
0.08 \lesssim \frac{\eta}{s} \lesssim 0.4
$$

- By $1 \mathrm{fm} / \mathrm{c}$ after the collision the matter is flowing like a fluid,
 obeying Hydrodynamic Equations: $\partial_{\mu} T^{\mu \nu}=0$

v_{2} elliptic flow

$$
\frac{\mathrm{d} N}{\mathrm{~d}^{2} \mathbf{p}_{t} \mathrm{~d} y}=\frac{1}{2 \pi p_{T}} \frac{\mathrm{~d} N}{\mathrm{~d} p_{T} \mathrm{~d} y}\left[1+2 v_{1} \cos \left(\phi-\Phi_{R}\right)+2 v_{2} \cos 2\left(\phi-\Phi_{R}\right)+\cdots\right]
$$

- Hydrodynamization before Isotropization,

$$
\mathbf{p}=\left(p_{T} \cos \phi, p_{T} \sin \phi, \sqrt{p_{T}^{2}+m^{2}} \sinh y\right)
$$ viscous hydrodynamics

- Far From Equilibrium System

> Linear Response Theory
\rightarrow Hydrodynamics

perturbation away from equilibrium

Strongly Coupled Plasma

- Gauge/Gravily:
type IIB string theory on $A d S_{5} \times S^{5}$
$\mathrm{N}=4 \mathrm{su}(\mathrm{N})$
Conformal SYM

$$
\frac{L^{4}}{l_{s}^{4}} \sim g_{s} N \sim g^{2} N \gg 1 \quad \longrightarrow
$$

Strong/ Weak

Duality
Strongly Coupled CFT

Classical Gravity on Asymptotically AdS Space-time

- Different asymptotically AdS spacetimes manifest themselves by different states in the boundary field theory.

Vacuum State in FT

Thermal State in FT

- The dual gravitational description of a strongly coupled gauge theory provides an efficient way to study the thermodynamic properties of gauge theories.
- Thermalizalion

In QFT: Pure State at $\mathrm{T}=0 \longrightarrow$ Thermal State
In Gravity: Pure AdS Spacetime \Rightarrow AdS-Schwarzschild
Black Hole (Horizon) Formation
Question: Can we observe rapid thermalization in AdS/CFT Models?

Thermalization in Gauge/Gravily

- Horizon Formation in the Bulk
P. Chesler, L. Yaffe, 2008-10; S. Bhattacharyya, S. Minwalla, 2009;
- Horizon Formation on the Probe Brane Das, Nishioka, Takayanagi, 2010; Hashimoto, Iizuka, Oka, 2011

Meson Sector

$>$ Injecting Energy by time-dependent source
Producing out of equilibrium modes
Thermal state at equilibrium
>start from the ground state
Turn on time-dependent source term, non-normalizable modes, collapse of matter Analyze the subsequent evolution of the system

- Out of Equilibrium Initial Conditions

Horizon Formation on the

 Probe BraneDas, Nishioka, Takayanagi, 2010; Hashimoto, Iizuka, Oka, 2011

- Introducing fundamental matter into the gauge theory
- $\mathcal{N}=4$ SU(N) SYM coupled to $\mathcal{N}=2$

Fundamental matter

- Injection of energy by introducing a timedependent coupling \Rightarrow Non-trivial timedependent classical solutions
- Horizon formation on the probe brane \Rightarrow Dissipation of energy into the field theory

D3 - D7 system

$$
\begin{array}{lcccccccccc}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
D 3 & \times & \times & \times & \times & & & & & & \\
D 7 & \times & &
\end{array}
$$

- $N=2$ Fundamental Hypermultiplet: Flavour
Sector

A. Karch and E. Katz, 2002

- quarks : end points of the strings stretched between the D7 and D3-branes

- mesons : strings with both ends on the D7-brane

D7-Brane Embedding:

M. Kruczenski, D. Mateos, R. C. Myers and D. J. Winters, 2003

$$
\begin{aligned}
& g_{s} C_{(4)}=\frac{u^{4}}{R^{4}} d x^{0} \wedge d x^{1} \wedge d x^{2} \wedge d x^{3} \\
& d s^{2}=\left(\frac{u}{R}\right)^{2}\left(-d t^{2}+d \vec{x}^{2}\right)+\left(\frac{R}{u}\right)^{2}\left(d \rho^{2}+\rho^{2} d \Omega_{3}^{2}+d \sigma^{2}+\sigma^{2} d \varphi^{2}\right)
\end{aligned}
$$

$$
u^{2}=\rho^{2}+\sigma^{2}
$$

$$
\sigma(\rho)=m+\frac{c}{\rho^{2}}+\ldots
$$

$$
c=\left(2 \pi \alpha^{\prime}\right)^{3}\langle\bar{q} q\rangle
$$

Shape of the Probe Brane:

- DBI action:

$$
\begin{aligned}
& S_{\mathrm{DBI}}=-\mu_{7} \int d^{8} \xi e^{-\phi} \sqrt{-\operatorname{det}\left(g_{a b}+B_{a b}+2 \pi \alpha^{\prime} F_{a b}\right)} \\
& g_{a b}=G_{M N} \partial_{a} X^{M} \partial_{b} X^{N} \\
& B_{a b}=B_{M N} \partial_{a} X^{M} \partial_{b} X^{N}
\end{aligned}
$$

- $S_{c s}=0$
- Masstess Quarks: $\sigma=0+\delta \sigma(x)$
- Adding a timedependent source term to the action - Solving the e.o.m to obtain the timedependent gauge field solution
- Calculate the metric observed by the probe brane fluctuations

Baryon Injection:

- Adding the source term

$$
\begin{aligned}
& \delta S=\mu_{7} \operatorname{V} \operatorname{Vol}\left(\Omega_{3}\right) \int d t d \rho\left(A_{t} j^{t}+A_{\rho} j^{\rho}\right) \\
& x^{ \pm}=t \pm z=t \mp \int H^{\frac{1}{2}} d \rho \quad H=(R / u)^{4} \\
& j^{\rho}=-H^{\frac{-1}{2}} j^{t}=g^{\prime}\left(x^{-}\right) \quad: \quad \text { Massless Quarks }
\end{aligned}
$$

$$
\left(2 \pi \alpha^{\prime}\right) F_{t \rho}=\frac{g}{\sqrt{g^{2}+\left(2 \pi \alpha^{\prime}\right)^{2} \rho^{6}}}
$$

Meson Thermalization - Dissociation

- scalar mesons (scalar fluctuations)

$$
S=-\int d t d \rho d^{3} x^{i} d^{3} \theta^{\alpha} \sqrt{-\tilde{g}} \tilde{g}^{a b} \partial_{a} \delta \sigma \partial_{b} \delta \sigma
$$

- Apparent Horizon : A surface whose area variation vanishes along the null ray.

$$
\begin{aligned}
V_{\text {surface }} & =\int d^{3} x^{i} d^{3} \theta^{\alpha}\left(\prod_{i=1}^{3} \tilde{g}_{i i} \prod_{\alpha=1}^{3} \tilde{g}_{\alpha \alpha}\right)^{\frac{1}{2}} \\
& =V_{3} \operatorname{Vol}\left(S^{3}\right) \frac{\mu_{7}}{2 \pi \alpha^{\prime}} H^{\frac{1}{2}} \sqrt{g^{2}+\left(2 \pi \alpha^{\prime}\right)^{2} \rho^{6}} \\
\left.d V\right|_{d t=-d z} & =0
\end{aligned}
$$

Apparent horizon equation leads to :

$$
4 g g^{\prime} H^{\frac{1}{2}} \rho-4 g^{2}+2\left(2 \pi \alpha^{\prime}\right)^{2} \rho^{6}=0
$$

Thermalization time : The time the earliest null ray tangent to t-z graph reaches the boundary.

$$
t_{t h} \sim\left(\frac{\lambda}{n_{B}^{2} \omega^{2}}\right)^{\frac{1}{8}}
$$

- $q=p+4$

$$
\begin{aligned}
& 01 \cdots p p+1 p+2 p+3 p+4 p+5 \cdots 9 \\
& D p \times \times \cdots \times \\
& D(p+4)
\end{aligned}
$$

R. C. Myers, R. M. Thomson, 2006
D. Arean, A. V. Ramallo, 2006

Only Transverse Fluctuations:

$$
t_{t h} \sim\left(\frac{\lambda^{\frac{2(p-2)}{5-p}}}{n_{B}^{2} \omega^{2}}\right)^{\frac{5-p}{2(11-p)}}
$$

(2 $q=p+2$

$$
\begin{aligned}
& 01 \cdots p-1 p p+1 p+2 p+3 p+4 \cdots 9 \\
& D p \times \times \cdots \times \times \\
& D(p+2) \times \times \cdots \times \times
\end{aligned}
$$

Both Transverse and Parallel Fluctuations: $\quad t_{t h} \sim\left(\frac{\lambda^{\frac{2(p-3)}{5-p}}}{n_{B}^{2} \omega^{2}}\right)^{\frac{5-p}{2(9-p)}}$

- $q=p$

$$
0 \quad 1 \cdots p-2 p-1 p p+1 p+2 p+3 \cdots 9
$$

background $\times \times \cdots \times \times$
probe $\times \times \cdots \times \times \times$
Both Transverse and Parallel Fluctuations:

$$
t_{t h} \sim\left(\frac{\lambda^{\frac{2(p-4)}{5-p}}}{n_{B}^{2} \omega^{2}}\right)^{\frac{5-p}{2(7-p)}}
$$

+ 4-Dim N=4 SYM
$\uparrow(2+1)$-Dim Defect

No Dependence on SUSY or Conformal Symmetry

D2-D6
D3-D5 $\quad\left(\frac{1}{n_{B}^{2} \omega^{2}}\right)^{\frac{1}{6}}$
D4-D4

The Effect of the Magnetic Field on

Thermalization Time: AliAbrari, Ebrarim, 2012

- Presence of a magnetic field at the early stages of QGP production

Kharzeev, McLerran, Warringa, 2007

- Ansatz for the Magnetic field:

$$
B=F_{x y}
$$

- Existence of the Massless solution

$$
\sigma(\rho)=m+\frac{c}{\rho^{2}}+\ldots
$$

- Change in the shape of the brane
- The classical solution is non-zero $\begin{aligned} & \text { transverse direction : } x^{I}=x_{0}^{I}+y^{I} \\ & \text { classical solution }\end{aligned}$
- DBI Action:

$$
\begin{aligned}
& S_{D B I}=S_{0}+S_{1}+\ldots \\
&=S_{0}-\frac{\mu_{7}}{2} \int d^{8} \xi \sqrt{\gamma_{0}}\left(\gamma_{0}^{a b} M_{b a}+\gamma_{0}^{a b} N_{b a}\right. \\
&\left.\quad-\frac{1}{2} \gamma_{0}^{a b} M_{b c} \gamma_{0}^{c d} M_{d a}+\frac{1}{4}\left(\gamma_{0}^{a b} M_{b a}\right)^{2}+\ldots\right)
\end{aligned}
$$

$$
S_{0}=-\mu_{7} \int d^{8} \xi \sqrt{\gamma_{0}}
$$

$$
\begin{aligned}
& \gamma_{0 a b}=G_{a b}+G_{I J} \partial_{a} x_{0}^{I} \partial_{b} x_{0}^{J}+\left(2 \pi \alpha^{\prime}\right) F_{a b} \\
& M_{a b}=\partial_{I} G_{a b} y^{I}+G_{I J} \partial_{a} x_{0}^{I} \partial_{b} y^{J}+G_{I J} \partial_{a} y^{I} \partial_{b} x_{0}^{J}+\partial_{K} G_{I J} \partial_{a} x_{0}^{I} \partial_{b} x_{0}^{J} y^{K} \\
& N_{a b}=\frac{1}{2} \partial_{I} \partial_{J} G_{a b} y^{I} y^{J}+G_{I J} \partial_{a} y^{I} \partial_{b} y^{J}+\partial_{K} G_{I J} \partial_{a} x_{0}^{I} \partial_{b} y^{J} y^{K} \\
& \quad+\partial_{K} G_{I J} \partial_{a} y^{I} \partial_{b} x_{0}^{J} y^{K}+\frac{1}{2} \partial_{K} \partial_{L} G_{I J} \partial_{a} x_{0}^{I} \partial_{b} x_{0}^{J} y^{K} y^{L}
\end{aligned}
$$

- Weak magnetic field limit: $2 \pi \alpha^{\prime} B \ll 1$

$$
\begin{aligned}
& t_{t h}^{B}=\left(1-29 \times 10^{-6}\left(2 \pi \alpha^{\prime}\right)^{2} B^{2}\right) t_{t h}^{B=0} \\
& \delta t_{t h}=t_{t h}^{B}-t_{t h}^{B=0}
\end{aligned}
$$

- General values of the magnetic field

$$
t_{t h}^{B}=\left(1-4 \times 10^{-5}\left(2 \pi \alpha^{\prime}\right)^{2} B^{1.435}\right) t_{t h}^{B=0}
$$

Thermalization happens faster in the presence of magnetic field.

Conclusion and Future Directions:

- Meson thermalization time depends only on $\omega_{\text {, }}$
λ and n_{B}; Faster Thermalization in External Magnetic Field
- Generalizing the calculation to more general bulk metrics such as black hole or Lifshitz
- Trying to understand the field theory picture better
- away from large N or large t'Hooft coupling
- Developing numerical techniques to include more parameters,

Thank You

