Holographic R -symmetric flows and the τ_{U} conjecture

Lorenzo Di Pietro (SISSA)

Crete 17/06/2013

based on work with: M. Bertolini, F. Porri

Intro \& Motivations

- Monotonic quantities can be a useful constraint on the dynamics of RG flows;
- Via holography, they are expected to correspond to monotonic functions of the extra dimension in domain wall geometries;
- Buican conjectured the existence of a monotonic quantity τ_{U} in R-symmetric RG flows, whose validity would put a bound on emergent symmetries in the IR;
- Our aim is to explore the existence of a corresponding monotonic function in supergravity, both to test the conjecture \& to refine the holographic dictionary outside the conformal regime.

Holographic RG flows

+ SUSY (d=4)

1st order equations for the scalars
supersymmetric defs/VEVs

BPS domain wall in $\mathcal{N}=2,5 d$ gauged SUGRA

Renormalization group flow $S C F T^{U V} \rightarrow S C F T^{I R}$

A conjecture Biian

$\mathcal{N}=14 \mathrm{~d}$ RG flow which preserves a $U(1)_{R}$

$$
\begin{array}{rlrl}
\bar{D}^{\dot{\alpha}} \mathcal{R}_{\alpha \dot{\alpha}} & =\bar{D}^{2} D_{\alpha} U \quad \text { R-multiplet } \\
\mathcal{R}_{\alpha \dot{\alpha}} & \supset\left(T_{\mu \nu}, S_{\mu \alpha}, R_{\mu}\right) & & \partial^{\mu} R_{\mu}=0 \\
U & \supset U_{\mu} \quad+\text { anomalies } & & \partial^{\mu} U_{\mu} \neq 0
\end{array}
$$

At fixed points $\quad U_{\mu} \rightarrow \frac{3}{2}\left(R_{\mu}-\tilde{R}_{\mu}\right) \quad \partial^{\mu} U_{\mu} \rightarrow 0$

$$
\left\langle U_{\mu}(x) U_{\nu}(0)\right\rangle=\frac{\tau_{U}}{\left(2 \pi^{4}\right)}\left(\partial^{2} \eta_{\mu \nu}-\partial_{\mu} \partial_{\nu}\right) \frac{1}{x^{4}}
$$

Conjecture: $\quad \tau_{U}^{U V}>\tau_{U}^{I R}$

- works in many examples: SQCD with any gauge group/with extended susy, s-confining theories, Kutasov theory...
- interesting because it can be read as a bound on emergent symmetries: no emergent symmetry implies $\tau_{U}^{I R}=0$

An example of monotonicity in 4 d RG flows is the a-theorem:

$$
a_{U V}>a_{I R}
$$

In holographic RG flows, as a consequence of the NEC, one can define a monotonic function of the bulk coordinate $a(r)$ interpolating between the UV-IR Girardello-Petrini-Porrati-Zaffaroni; Friedmann-Gubser-Pilch-Warner; Henningson-Skenderis; Myers-Sinha
Does τ_{U} correspond to a monotonic function in $S U G R A$?

Dictionary

$\mathcal{N}=1,4 d$ SUSY $\mathbf{F T}$
Chiral Operators
Linear Operators
Space of couplings
Symmetries
Symmetry of the fixed point
Symmetry of the flow

$\mathcal{N}=2,5 d$ SUGRA

Hypermultiplets
Vector multiplets
Scalar Manifold
Isometries
Killing vector $=0$ at critical point
Killing vector $=0$ along the curve

Dual of an R-symmetry

R-symmetry $=U(1)$ under which $S_{\mu \alpha}$ is charged
 acts on gravitino
$A_{\mu}^{I}, I=0, \ldots, n_{V} \quad$ basis of abelian gauge bosons

$$
\left(\mathcal{D}_{\mu} \psi\right)^{i} \supset A_{\mu}^{I} P_{I}^{r}\left(\sigma^{r}\right)_{j}^{i} \psi^{j}
$$

$P_{I}^{r} \quad$ functions on the hyper-scalars
A_{μ}^{I} is dual to an R-current $P_{I}^{r} \neq 0$

Geometric meaning of $P_{I}^{r} \longrightarrow S U(2)$-triplet of moment maps on the hyper-scalar manifold

At susy critical points of the scalar potential

$$
\left.P_{I}^{r}\right|_{c . p .}=P^{r} h_{I}
$$

$$
P_{I}^{r} \equiv \mathcal{P}^{r} H_{I}
$$

$h_{I} A_{\mu}^{I} \quad$ combination giving the superconformal R -symm

Definition of $\tau_{U}(r)$

$v^{I} K_{I}=0 \quad \mathrm{R}$-symmetry preserved along the flow

$$
u^{I}=\frac{3}{2}\left(v^{I}-H^{I}\right) \longrightarrow \frac{3}{2}\left(v^{I}-h^{I}\right) \quad \text { that is } \frac{3}{2}(R-\tilde{R})
$$

Holographic two-point function $<J_{I \mu} J_{J \nu}>=\frac{\tau_{I J}}{(2 \pi)^{4}}\left(\partial^{2} \eta_{\mu \nu}-\partial_{\mu} \partial_{\nu}\right) \frac{1}{x^{4}}, \quad \tau_{I J}=\frac{8 \pi^{2} L}{\kappa_{5}^{2}} a_{I J} \downarrow$

Gauge kinetic function

Interpolates between

$$
\tau_{U}^{U V} / \tau_{U}^{I R}
$$

Test of monotonicity

Concrete "minimal" model: SUGRA coupled to 1 vector +1 hyper

$$
\text { Gauging of a } U(1) \times U(1) \begin{gathered}
\text { Ceresole-Dall'Agata } \\
\text {-Kallosh-Van Proeyen }
\end{gathered}
$$

1 hyper \longrightarrow susy deformation of the fixed point 1 vector \longrightarrow flavor symmetry mixing with \tilde{R}

Scalar manifold: $\quad \mathcal{M}_{\text {vec }}=O(1,1), \mathcal{M}_{\text {hyp }}=\frac{S U(2,1)}{S U(2) \times U(1)}$

DW Solutions

$$
\begin{aligned}
O_{1}: \quad q^{X} & =(1,0,0,0), \\
\rho & =1 \\
O_{2}: \quad q^{X} & =\left(1-\bar{\xi}^{2}, 0, \bar{\xi} \cos (\varphi), \bar{\xi} \sin (\varphi)\right) \\
\rho & =\bar{\rho}
\end{aligned}
$$

Results

2-parameters family of smooth DW solutions

Results

Gapped phases

Good IR

Bad IR

Conclusions

- We have explored the existence of a monotonic function in supersymmetric AdS-domain wall solutions of 5d supergravity, associated to a field theory conjecture in R-symmetric RG flows.
- We have found the general consequences of the existence of an Rsymmetry along the flow for the supergravity theory; this lead to a natural definition for the interpolating function.
- We tested our proposal in a simple setup, finding a monotonic behavior in smooth solutions as well as in well-behaved gapped flows.
- Future prospects: test in other flows; analysis of the sugra dual of the R/FZ-multiplets.

Thank you!

