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Conformal Invariance in d=2

* In Two dimensions Conformal
Invariance = all holomorphic
transformations of the plane

infinite
— ‘ dimensional
Z=X+1iy z f(z) symmetry

This treats both dimensions on the same footing ,
for a Galilean symmetry we need to set one of them
apart



Non-relativistic conformal
symmetries

* The standard conformal algebra is obtained by
adding scale mnvariance and special conformal
transformations to the Poincare group.

* We wish to do the same with “Galilean”
symmetry

* Except that we have different versions of
“Galilean” symmetries leading to different

NR-CFTs



Motivation

The AdS,, ,/CFT4duality can be modified to correspond to a

conformal theory on the boundary having non-relativistic
symmetry €.g. Schrodinger-Virasoro. In this case you go
from d+2 dimensions to d dimensions. This 1s done by
choosing a metric which has Schrodinger symmetry
asymptotically

Low energy, non-equilibrium phenomena, near critical
points 1s scale invariant and non-relativistic, perhaps also
conformally invariant.

eg Prof. Son’s talk in this meeting

D. T. Son, “Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry,” Phys. Rev. D
78, 046003 (2008) [arXiv:0804.3972 [hep-th]].

K. Balasubramanian and J. McGreevy, “Gravity duals for non-relativistic CFTs,” Phys.Rev. Lett. 101, 061601 (2008) [arXiv:
0804.4053 [hep-th]].



Motivation

* Use light cone coordinates and compactify in one
direction.

dxdx, +2dx dxT  dz" (dx7)’
B B 4

ds* +

2 2
Z Z Z

*Asymptotic symmetry of geometries with Schrodinger isometry
Mohsen Alishahiha, Reza Fareghbal, Amir E. Mosaffa, Shahin Rouhani Phys. Lett. B 675: 133-136,2009
*Asymptotic symmetries of Schrodinger spacetimes

Geoftfrey Compere, Sophie de Buyl, Stephane Detournay, and Kentaroh Yoshida, Journal of High Energy Physics, Issue 10, pp. 032
(2009).



Motivation

* The Schrodinger algebra is a sub-algebra of
the relativistic conformal algebra in one
higher space-time dimension

* To show this you have to use Bargmann
constructionwhich is how you get a non-

relativistic symmetry out of a totally
relativistic setting

Comments on Galilean conformalfield theories and their geometric realization
Dario Martelli and Yuji Tachikawa, arxiv 0903.5184



Galilean symmetries

1. Symmetries of Schrodinger equation: Sch(d)

2. Contraction of Poincare Algebra; or
contraction of O(d,2): Conformal Galilean

Algebra : CGA.

3. Construct consistent algebras, around the
known operators of Galilean symmetry:

[-Galile1 Algebras: /[=1/2 Sch(d), [=1 CGA



[-Galilei algebra

We ask for a few desirable properties:

1. Conformal symmetry in some sense

2. We would like Galilean causality so f(r)d, operator 1s
not permitted.

3. We would like global conformal transformation in time:

at+ 5

t >t =
rt+o6

ad — Py =1

We add up these operators and try to make a finite
closed algebra

We end up with the class of algebras: [ Galilei algebra
sometimes called spin-I/ Galilei algebra



I-Galilei algebra

* Action on space and time coordinates is
given by:

LN Rx+17¢, +L +1¢, +¢, @ b
(gt+ /) S g+ f
af -bg =1

* Scaling of time direction is anisotropic to
spa® ditectia® (5 /a setdll other
parameters to zero):



I-Galilei algebra

Infinitesimal operators are :

H = -9, D = —(td; + [x;0;)
K = t29, + 2lx;0; Jij = —(xi0; — x;0;)
P = (—t)"0; n=1.21
Commutators:
[D,H]=H [D,K]l=—-K  [H,P"]=-nP"!
[K,H] = 2D [D,P"] = (I —n)P]"
Uij Pe'l = —(P*6; — P"6y) UijrJi] = SO(A),

[K,P""] = (21 — n)P**™!

M. Henkel, Phys. Rev. Lett. 78, 1940 1997; e-print arXiv:cond-mat/9610174.
J. Negro, M. A. del Olmo, and A. Rodriguez-Marco, J. Math. Phys. 38, 3786 1997.



[-Galilei algebra

Due to the last commutation relation the algebra closes
if :

[ = — N € N

So, dynamical scaling takes special values for this class of
nonrelativistic conformal algebras. Scaling operator now
scales space and time as

. 1

[
1=1/2 gives Schrodinger algebra and 1= 1 gives CGA.



I=1/2

Sch(d)

Age(d)

I-Galilei

CGA(d)

d=2 Exotic central
charge

Other |

Unknown



Schrodinger Symmetry Sch(d)
I=1/2

The algebra of symmetries of

. IR
the Schrodinger equation: (l'at T . d; 0; ) p =0

It consists of Galilean
transformations:

H — —Bt Pi — dl
]U — —(de] — del) Bi = —tai —Mxl.

Continued......



Schrodinger symmetry Sch(d)

Special Schrodinger K =tx0 +1%9 _l_%rz +hi
i 71 ¢

transformation 2

which produces X; - —2 Pt
HrHe O (1+ut)

Dilation D=2t0, +x,0, +h

which scales space and time anisotropically

xi—>/1xi t—>/12t



Schrodinger symmetry Sch(d)

These operators together produce the following
coordinate transformations:

—_— T — s t+
f s RrHVitd t >t =26
yt+6

ad — Py =

And this algebra admits a central charge which 1s
related to the physical mass:

B;, | = M&;;




Schrodinger symmetry:
infinite extension

There exists a Virasoro like infinite extension to the
Schrodinger algebra called Schrodinger-Virasoro

algebra (SV) :
T = —t"*19, — = (n+ Dt"x;0; — zn(n + DMt x?
_ mas 1o . |
Pmi — —tml+26i_ — (m + E)tm l/le-_M
M" = —Mt" m +%,n S/

M. Henkel, “Schrodinger Invariance in Strongly Anisotropic Critical Systems,”
J. Stat. Phys. 75 (1994) 1023 [arXiv:hep-th/9310081].



Schrodinger symmetry:
infinite extension

Some of the commutators are:

[T™,M™] = —mM™™™ [P, P"] = (n— m)6;;M™*™

[P, M™] = [M",M™] =0



Schrodinger symmetry:
infinite extension

Schrodinger algebra 1s recovered as:



Conformal Galilean Algebra CGA
=1

Conformal Algebra upon contraction leads to a non-
relativistic algebra:

X — t >t C— &

o=

Barut 1972

Arjun Bagchi, Rajesh Gopakumar, Ipsita Mandal, Akitsugu
Miwa, “GCA in 2d ”, JHEP 1008:004,2010



Conformal Galilean Algebra CGA

Some familiar operators are recovered:
Po — Fo
1
Joi = tcd; — = x;0,

1
E]oi — B; = t0;



Conformal Galilean Algebra CGA

And we end up with CGA :
Pi = dz H = _at
B; = to, Jij = —(x;0; — x;0;)

D= —td, —x;0; K, =t20,
K=K, = —(thiai + tzat)

Note that scaling operator D, scales space and
time 1sotropically in this non-relativistic algebra.
Also there 1s no “mass’ central charge thus this

symmetry describes massless non-relativistic
particles !



Exotic Galilean algebra

CGA 1n 2+1 dimensions admits a central charge which 1s called
Exotic.

B;,B;| = O¢;;
P, K| = —20¢;

Physical interpretation of this charge has been of interest. For example
see:

Lukierski, J., Stichel, P. C., and Zakrzewski,W. J., “Exotic Galilean conformal symmetry and its
dynamical realisations,” 290 Phys. Lett. A 357, 1 (2006); e-print [arXiv:0511259 [hep-th]].

M. A. del Olmo and M. S. Plyushchay, “Electric Chern-Simons Term, Enlarged
Exotic Galilei Symmetry and Noncommutative Plane,” Annals Phys. 321 (2006)
2830 [arXiv:hep-th/0508020].

J.-M. L evy-Leblond, “Nonrelativistic Particles and Wave Equations,” Comm.
Math. Phys. 6, 4 (1967), 286-311.



Galilean Conformal Algebra:
Infinite Extension

Similar to Schrodinger algebra CGA does have
an infinite extension which is called Full CGA

_ N -y
Th = —(n + l)t"’xidi — " dt
M = t""o;

which 1n 1+1 dimensions simplifies to :
T™ M7l = (m—m)M™™ (M Mp] =0
[T'Tn’ Tn] — (Tn . n)T’m+n



Galilean Conformal Algebra:
Infinite Extension

CGA 1s recovered 1n terms of Full CGA generators:
T'=H T° =D Tl — K
M7l =p M; = B M} = K;

Similar to the Schrodinger symmetry this symmetry

can be also be realized within the AdS/CFT
correspondence:

A. Bagchi and R. Gopakumar, J. High Energy Phys. 07 (2009 )037; e-print
arXiv:hep-th/0902.1385. JHEP 0907:037,2009



CGA from contraction...(d=2)

we 1impose contraction limit on Virasoro operators
and observe:
" = ——(t+iD)"(0, — icd,)
— —tn+1(—icax + at + (n + 1)%01 + O(%)
[' = —t"(icd, + 9, + (n+ D20, + 00
" = " + Zn + 0(1)

Ln L FaL

M" = —i———+0()

by contraction the Full CGA 1s obtained from Virasoro
algebra



Other Non-relativistic conformal symmetries:

Other symmetries can be generated by letting go of
certain operators for example time translation

In Physical systems where you have aging you loose
time translation invariance; and obtain a different
symmetry algebra: Age(d)

Possible applications:
contact process,

spin glasses,

colloidal fluids

Malte Henkel, Nucl. Phys. B869 [FS], 282-302 (2013)arxiv:
1009.4139



Age(d)

Translations P =0,
Dilations D=2t +x0.+h
Boosts B, =13, -Mx,

; =

. M :
Special ConformalK, =¢x,0, +1°9, +7r2 +h't

In general the two conformal weights h
and h’
need not be the same.



Age(1)

Consider the Schrodinger operator:
S =2Md, —ai+(2M+h+h'—1)%
then solutions of the equation;
S =0

Are mapped into each other by elements
of Age(1).



Logarithmic Representations

LCFT’s arise out of representations which are
reducible but not decomposable:

L°¢(2)10) = hep (2)|0)
L%y, (2)|0) = hypy, (2)0) + ¢, (2)|0)

Reviews : M. Flohr, Bits and pieces in logarithmic conformal field theory, Int.
J. Mod. Phys. A 18 (2003) 4497 [arXiv:hep-th/0111228].

M.R. Gaberdiel, An algebraic approach to logarithmic conformal field
theory, Int. J. Mod. Phys. A 18 (2003) 4593 [arXiv:hep-th/0111260



Logarithmic Correlators

Take a nilpotent variable:

0% =0
and use this to derive the properties of the LCFT:

L[°|lh+6)=(h+06)|h+06)

Expansion in powers of 0 yields back the original
expressions

Logarithmic conformal field theory through nilpotent conformal

dimensions
S Moghimi-Araghi, S Rouhani, M Saadat

Nuclear Physics B 599 (3), 531-546



Schrodinger Symmetry:
Logarithmic Correlators

We ask 1f logarithmic representations exist for
Sch(d)?

Construct a “super field” using the nilpotent
variable 6 :

®(z,0) = ¢(2) + 6Y(2)
®(z,60)|0) = |h+6)

T°\h+8)= (h+0)|h+0)



Logarithmic Schrodinger-Virasoro (LSV):

We can impose symmetries via Ward 1dentity on
quasi-primary fields and obtain two-point functions:

(P1(x1,t1)P5(x2,t2)) =0
(1 (xg, t)Y; (X2, 85)) = bt ™M1 85p ar) exp(— le: )
(1 (x1, t1)P5 (x5, t2)) =

—2h
t~"16p, n,0n, 2, €XD (—

My x?
t

> )(c — 2b log(t))

A. Hosseiny and S. Rouhani, “Logarithmic correlators in nonrelativistic conformal
field theory” J. Math. Phys. 51, 102303 (2010);e-print arXiv:hep-th/1001.1036



Logarithmic CGA (LCGA):

We can obtain LCGA by contraction of
Logarithmic Virasoro Representation

Consider the most general logarithmic
representation in which both left and right scaling
weights have Jordan cell structure:

1°|h, h, 1) = h|h,h, 1) + h|h, K, O)

I°|h, h, 1) = h|h, R, 1) + h h,h,O0).

M°|4,&,1) = M°|h,h, 1) = —i% |, h, 1) + z§ |h, h, 0) — é_(l-'z — h|h, h,0)
= £14,&,1) +£14,¢,1)




Logarithmic CGA: LCGA

So, we have

- Z

- z - h—h

A= h+h § =

C

Now, we can follow on and find two point
functions



Logarithmic CGA (LCGA):

For yy two-point function where logarithmic term
appears we have:

< W1(21,21)Y5(25, 25) ==

(—2a|hylog(2) + hy log(@)] + b) 27272 8y, 5, 85, 5,



Logarithmic CGA: LCGA

If we follow contraction limit for logarithmic
CGA we obtain

(Y1 (x1, t1)Y2 (X2, t2))gca =

253X
t

) (—2allog(t) — 2aé % + b)

6A1.-L\2 5‘51:‘52 t—ZAl €xXp (

We could have followed the same approach as
used for LSV and we arrive at exactly the
same correlators.



Logarithmic Age

2pt correlation function for logarithmic
Age(1)

(/I (N 7} Ty
hO(y) - hO - l(?l + fl) Jo1,0 T (5_ + 62) glgy()‘ In ‘y = 1’ - ngl,o - (? T Eg) 912.0‘ In \y\

! / 2 o 2 ,
((1—21 +§{) Injy-1]+ %ln ]y\) - (l—; + {f,) In’ y—?lH (3.15)
ZL1

<1P (tl)lp(t2)>zho(y) y=Z

Malte Henkel, Nucl. Phys. B869 [FS], 282-302 (2013)arxiv: 1009.4139

|
+§fo




Contact process

Aging happens due to
formation of clusters of typic I/Z

at site x size i(t) =1

1® 0ratel
0® 1rateh N (y)

d(x)

For a given graph G, there exists a critical value of A\ for which
%Hgﬁo}]gsutlrm\e/ecfynamlcs of the critical

contact process which is brought suddenly

out of an uncorrelated initial state

undergoes ageing in close analogy with

quenched magnetic systems.

Jose J Ramasco , Malte Henkel, Maria Augusta Santos and

Constantino A da Silva Santos, J. Phys. A: Math. Gen. 37
(ONNA4A) 1NA407_10C1°D



Contact process

Order parameter ¢(Z, x)

Auto-correlator T(#,s) = (7, x)p (s, x))

Auto-response g, S)=5<¢(fax)>
function T dh(s,x) |,

Dynamic Scaling:T'(t,s)=s " f(¢t/s), R(t,s)=s""“g(t/s)

y=_
S



Scaling of the auto-response function of the 1D
critical contact process, as a function of y = t/s, for

several values of the waiting time s
(from Malte Henkel, Nucl. Phys. B869 [FS], 282-302 (2013)arxiv:

1009.4139

_II | IlIIIII| !\IIIIIII' | IIIIIIII | IIIIIII| | IIIIIII| | IIIIIIII I_
(\..l
S 04- —
I~ i s=4 i
S _ [N ——— 5=64 _
N . \ cmeem §=5]2 :
" L \ Y Py -
— s=65536
~03r, | ——— LSI
2 N —— LSIloga
o = -
DN
l\. - -
< 0.2 —
N— ~ -
; - /. -
%, i i
N
Q - ]
s 0.1 . <
,+, '.
T i .
:/: II 11 llllI lllll lllll 11 lllll lllll
-4 - 0
10 10 10 10



Kardar-Parisi-Zhang (KPZ)

oh
= = V2h+A(Vh)? +1

k height of a growing surface

1 white noise



Also there is evidence that in d=1 KPZ the
response function fits the loaarithmic

I IIIIIII| I IIIII]II I IIIIIII| I

W

~~ - =
S~ - i}
= 1.0 / -
~~ - _
= .
-~ .
090 -
2 N — 5=1000 .
T s =2000 -
“ - — 5=4000 -
Nt LSI -
§ : | | IIIIIII | | II[I]I| | | IIIIII| | I:

) -1 0 |

10 10 10 10

t/s-1

(Malte Henkel, Jae Dong Noh and Michel Pleimling, Phys. Rev. E85,
030102(R) (2012) arXiv:1109.5022



Representations of the Exotic
Algebra
We augment the fields with internal

degrees of freedom, in order t get the
central charge right:

P (4,X,E,v)

Comments on Galilean conformal field theories and their geometric
realization
Dario Martelli and Yuji Tachikawa, arxiv 0903.5184



Log Exotic

We can now go through a similar process
for a pair of quasi primaries in the case

of the Eygotig Algebra and find:
P9, ==0 = (v )
o - o .t - | ‘T_“n‘ ’,':"l e s ) |
1101 ¢2 = Ux1x2 0)'1}' Oz, += L.t ‘e foeh “Lc)i(.u’:' -+)
2 fo. 2
| _

Wy == 0,42 0y y,0z + ".Lt"ﬁe e PRl [0, (u:— _.___) (—2x*logt —

2y -u.:-)
+0, (u.:- --—‘—)]

Functions O, and O, are arbitrary

Henkel ,Hosseiny, Rouhani, in prep



Outlook:

 Representation Theory (SV, LSV, Full
CGA, LCGA, |-Galilei, AdS/Age...?

» Staggered Modules ..?
* More Physical applications...?



Thank you






Logarithmic CGA; an Algebraic

Approach

Recall that scaling fields in CGA are 1dentified by
their scaling weight and rapidity

[T° ¢l =29  [M° @] =&

Under infinitesimal changes , primary fields are
transformed as:

7", ¢] = (-D"
[(n+ Dt"x;0; + t"10, + (n+ 1) (t"A — nt" *xE)]¢

[M™, ¢] = (=D"[-t""0; + (n + Dt"E]¢



Logarithmic CGA; an Algebraic
Approach

As far as we are concerned with quasi-primary
fields 1t 1s easy to check that a Jordan form 1s
possible. We can utilize nilpotent variables and
observe:

®=y+0p A=A+40 Fot+ép

[T°, &) =Ad  [M°, @] =¢d



Logarithmic CGA; an Algebraic
Approach
Now, we can impose CGA symmetry on quasi-

primary fields and calculate two-point
functions Of “superfields”

(2€1+$’(61+62))x
< @(xq,t1,01)P(xy,t2,0,) >=e ‘

[at 7%%1(0; + 0,) — 2aA’logt t %41 0,0, + bt ~%410,0,]

651,52 5‘51:42



Logarithmic CGA; an Algebraic
Approach

Expanding in nilpotent variables, we obtain:

< P19, ==10

X
| _ —2817 . —2A
< ¢1 ¢2 == ae glt t 1651,52 6A1:Az

X
0 _ 25,7 . -2A
<Py, >=e Tt L0g, £,04, 4,

[—2aA"logt — 2a<f'§ + b]



Representations of
Schrodinger-Virasoro

To build representaitons of Schrodinger-Virasoro
algebra; inspired by relativistic CFT; we assume
existence of fields which are eigenstates of scaling
operator:

[T° ¢] = ho

Assuming a vacuum now gives rise to
eijenstates of TO

6[0)=|h)



Representations of
Schrodinger-Virasoro

Since M commutes with every thing each state 1s also
labeled by eigenvalue of M as well:

M°|h,M)=M|h,M)



Representations of
Schrodinger-Virasoro

Other operators now work as ladder operators:
[7°,[T", ¢]] = (h —n)[T™, @]
T " h) — |h+ n)
h + m)

P~™|h) —
M~ h) -

h -

- n)



Representations of
Schrodinger-Virasoro

Now, we define the vacuum state,
annihilated by

M™, P™, T™[0)=0  nm=0

As in CFT Null states exist and it is interesting to
note that the first null state which appears at the
second level 1s the Schrodinger equation.

X)) = ((P-%)2 — 2MT~)|h)

Higher Null states give rise to other differential
equations.



Full CGA:
Representations in 1+1dimensions

One observes that T° and M°? commute and
representations can be simultaneous eigenstates of

both:

T°1A,§) = AlA, §)
M°|A, &) =¢1A§)



Full CGA:
Representations in 1+1dimensions
Utilizing Contraction

*We observe that full CGA can be obtained
directly from contracting the conformal algebra

*While it is not necessarily the case that
contraction on Representations should work but
in this case we can derive the representation of
the full CGA by contraction,



Full CGA:
Representations in 1+1dimensions
Utilizing Contraction

Note that conformal symmetry in 2 dimensions
1s composed of two Virasoro algebras:

In = _Z‘n+laz

n -n+1
[* = —z"*10,



CGA From Contraction ...

Consider the usual eigensates of
the scaling operator

Ok =h|hky  °|hR) = k| R)
In the contraction limit we have

T°|h,h)y = (L° + L°)|h,h) = (h + h)|h, h)
M°|h k) = —=(L° = L) |k, h) =~ (h — h)|h, h)

In other words )
T°a,¢) = AlA,£) A=hth
MO|A, ) = £]A,¢) s=ch=h)




Nonrelativistic conformal algebras
in 2+1 dimensions

While relativistic conformal symmetry 1s infinite
dimensional only in d=2 we have Schrodinger-Virasoro
symmetry and full CGA in any d!

We notice that we can have this extension in any d in non-
relativistic symmetries since time decouples from space
and we can have Mobius transformations 1n the time
direction.

So 2+1 1s a special case | We can have a very large
algebra which has an infinite extent in space direction as
well as time !



Nonrelativistic conformal algebras
in 2+1 dimensions

We first notice that we have a conformal
symmetry 1n space

Ln — Z-n+1 az L-n — Z-n+1 az

We want Galilean causality i.e. no f(r)o;
Global conformal transformation in time

at—+

t >t =
rt+o

ad — By =1



Non-relativistic conformal

algebras in 2+1 dimensions
Consider the following operators (free index /)

Ln — ¢ m+la

Ln — an+16—

Th = —(t™19, + l(n+ 1t (z0, + 295))

Commutators:
(L, IL] = (m — n)LKTL, Lk IL] = (m —n)LKTL,
(L5, Lh] =0 [T™,T"] = (m —n)T™™

(L5, T"] = (k + mIn + mDLE ™ [LX,T"] = (k + mIn + ml)LE ™

A. Hosseiny, S. Rouhani, “Affine extension of Galilean conformal algebra in 2+1
dimensions”™, J. Math. Phys. 51, (2010) 052307 [hep-th/0909.1203]



Nonrelativistic conformal algebras
in 2+1 dimensions

This algebra admits different central charges
[T, T"] = (m —n)T™™™ + f—zm(m2 — 1)0m+no

m+n

1L, L’] = (m-n)l""7 + MCsOpm+nbis
o o1
[L]m’ Tl] = (] + mil + ml)Ll,:J + chsdm,06i+j

Representations of this algebra has not been worked out yet



Nonrelativistic conformal algebras
in 2+1 dimensions

Note that the class of 1-Galiler algebras in 2+1 dimensions
1s a subset of this class

K =—t%9, — 2lt(zd, + z0;) = T*
{P"} = {t"0,,t"d;} = {L",, L}
] =i(zd, — zd;) = —i(Ly — Ly)

H=-0,=T"1 D=—td, —1(zd, +z0;) =T"



