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Motivation

AdS/CFT provides a concrete relationship between gauge theories and gravity.

Using supergravity (practically), we describe quite well the spectrum of gauge
invariant operators in N = 4 SYM at strong coupling.

Higher-spin (space-time or internal) single-trace operators correspond to
string sigma-model configurations → the integrability of the spectrum of
superconformal gauge theories.

Strings and gauge fields

The above developments realise old ideas regarding the connection between
strings and gauge fields in the framework of HOLOGRAPHY.
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Motivation

If holography is a larger concept than AdS/CFT, it need not be tied to gauge fields
or strings.

To test the idea, study holographically conformal vector models that stand
alone without the need of gauge fields ⇒ are not embedded in string theory.

The best understood models are the O(N) bosonic and fermionic
(Gross-Neveu) vector models.

Such theories have been extensively studied in using the 1/N expansion
combined with CFT techniques. [e.g. Zinn-Justin (89)]

There is a rather good understanding of the spectrum of anomalous
dimensions of all of their operators i.e. the elementary scalar, O(N)-singlets
and non-singlet composites.
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Motivation

An example:

The 1/N anomalous dimensions of the O(N)-singlet higher-spin currents are:

J(s) ∼ φa∂{µ1
....∂µs}φ

a , a = 1, 2, .., N

∆s = s+ 1 + 4γφ
s− 2

2s− 1
+ · · · , s = 2k , k = 1, 2, .. , γφ ∼ O(1/N)

For s→∞ these tend to

∆s → 2

(
1

2
+ γφ

)
+ s

i.e. the sum of the anomalous dimensions of the elementary fields φa.

They are all determined by γφ, i.e. the anomalous dimension of the
elementary field φa : → contrast with N = 4 SYM.

They do not exhibit the lnS growth of the corresponding higher-spin currents
in gauge theories ⇒ the model is not a gauge theory.

Impossible to arise from some stringy sigma model i.e. rotating string in AdS.
But can arise from rotating particles in AdS.
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Motivation

The conjectures:

The bosonic vector model/HS conjecture

The holographic duality between the O(N) singlet sector of the bosonic vector
model and the simplest higher-spin gauge theory on AdS4 was proposed in
[Klebanov and Polyakov (02)].

The fermonic vector model/HS conjecture

The analogous conjecture regarding the O(N) fermionic vector model -
complicated due to parity - was made in [Leigh and T. P. (03)]

The bosonic conjecture has been tested up to 3-pt couplings: the bulk scalar
cubic vertex vanishes [T. P. (03)], and most higher-spin cubic couplings give
correctly the corresponding boundary 3-pt functions [e.g. Giombi and Yin (09)].

Important progress has also been made in the study of the Vasiliev
higher-spin theories [Vasiliev et. al., Sundell, Sezgin, Sagnotti et.al, Boulanger,

Bekaert, et. al.]. This is a rather technical subject.
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Motivation

On the other hand:
Vector models exhibit the field theoretic manifestations of global and discrete sym-
metry breaking.

The bosonic model exhibits the O(N)→ O(N − 1) global symmetry
breaking pattern.

The fermionic model exhibits parity symmetry breaking.

Holography without gauge fields?

What is the bulk counterpart of the global O(N) boundary symmetry. i.e.
are there are non-perturbative objects (analogues of D3-branes) in
higher-spin gauge theory on AdS4 that give rise to the global O(N)
symmetry in the boundary?

It is not known if only the O(N) singlet sector can be described
holographically: ⇒ the vector theories possess nontrivial and well-understood
non-singlet sectors.

T. Petkou (AUTH) Singletons in O(N)/HS Correspondence Kolymbari, 21/6/2013 7 / 50



Motivation

On the other hand:
Vector models exhibit the field theoretic manifestations of global and discrete sym-
metry breaking.

The bosonic model exhibits the O(N)→ O(N − 1) global symmetry
breaking pattern.

The fermionic model exhibits parity symmetry breaking.

Holography without gauge fields?

What is the bulk counterpart of the global O(N) boundary symmetry. i.e.
are there are non-perturbative objects (analogues of D3-branes) in
higher-spin gauge theory on AdS4 that give rise to the global O(N)
symmetry in the boundary?

It is not known if only the O(N) singlet sector can be described
holographically: ⇒ the vector theories possess nontrivial and well-understood
non-singlet sectors.

T. Petkou (AUTH) Singletons in O(N)/HS Correspondence Kolymbari, 21/6/2013 7 / 50



Motivation

On the other hand:
Vector models exhibit the field theoretic manifestations of global and discrete sym-
metry breaking.

The bosonic model exhibits the O(N)→ O(N − 1) global symmetry
breaking pattern.

The fermionic model exhibits parity symmetry breaking.

Holography without gauge fields?

What is the bulk counterpart of the global O(N) boundary symmetry. i.e.
are there are non-perturbative objects (analogues of D3-branes) in
higher-spin gauge theory on AdS4 that give rise to the global O(N)
symmetry in the boundary?

It is not known if only the O(N) singlet sector can be described
holographically: ⇒ the vector theories possess nontrivial and well-understood
non-singlet sectors.

T. Petkou (AUTH) Singletons in O(N)/HS Correspondence Kolymbari, 21/6/2013 7 / 50



Motivation

On the other hand:
Vector models exhibit the field theoretic manifestations of global and discrete sym-
metry breaking.

The bosonic model exhibits the O(N)→ O(N − 1) global symmetry
breaking pattern.

The fermionic model exhibits parity symmetry breaking.

Holography without gauge fields?

What is the bulk counterpart of the global O(N) boundary symmetry. i.e.
are there are non-perturbative objects (analogues of D3-branes) in
higher-spin gauge theory on AdS4 that give rise to the global O(N)
symmetry in the boundary?

It is not known if only the O(N) singlet sector can be described
holographically: ⇒ the vector theories possess nontrivial and well-understood
non-singlet sectors.

T. Petkou (AUTH) Singletons in O(N)/HS Correspondence Kolymbari, 21/6/2013 7 / 50



Motivation

On the other hand:
Vector models exhibit the field theoretic manifestations of global and discrete sym-
metry breaking.

The bosonic model exhibits the O(N)→ O(N − 1) global symmetry
breaking pattern.

The fermionic model exhibits parity symmetry breaking.

Holography without gauge fields?

What is the bulk counterpart of the global O(N) boundary symmetry. i.e.
are there are non-perturbative objects (analogues of D3-branes) in
higher-spin gauge theory on AdS4 that give rise to the global O(N)
symmetry in the boundary?

It is not known if only the O(N) singlet sector can be described
holographically: ⇒ the vector theories possess nontrivial and well-understood
non-singlet sectors.

T. Petkou (AUTH) Singletons in O(N)/HS Correspondence Kolymbari, 21/6/2013 7 / 50



Motivation

On the other hand:
Vector models exhibit the field theoretic manifestations of global and discrete sym-
metry breaking.

The bosonic model exhibits the O(N)→ O(N − 1) global symmetry
breaking pattern.

The fermionic model exhibits parity symmetry breaking.

Holography without gauge fields?

What is the bulk counterpart of the global O(N) boundary symmetry. i.e.
are there are non-perturbative objects (analogues of D3-branes) in
higher-spin gauge theory on AdS4 that give rise to the global O(N)
symmetry in the boundary?

It is not known if only the O(N) singlet sector can be described
holographically: ⇒ the vector theories possess nontrivial and well-understood
non-singlet sectors.

T. Petkou (AUTH) Singletons in O(N)/HS Correspondence Kolymbari, 21/6/2013 7 / 50



Motivation

In this talk:

The Vasiliev HS theory is incomplete:

I will argue that the bulk HS theory needs to be deformed by of by singletons to
account for the O(N)→ O(N − 1) symmetry breaking pattern of the vector
model.

Specifically:

Using the singleton deformation I will reproduce the boundary gap equation.

Using the singleton deformation I will reproduce the known anomalous
dimension of the elementary scalars ⇒ this raises the issue whether O(N)
symmetry breaking is related to higher-spin symmetry breaking.
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The O(N) Vector Model

N elementary (Euclidean) scalar fields φa(x), a = 1, 2, .., N with Lagrangian

L =
1

2

∫
d3x ∂µφ

a∂µφ
a ,

subject to the constraint

φaφa =
1

G

We introduce a Lagrange multiplier scalar field ρ as

Z =

∫
(Dφa)(Dρ)e−I(φ

a,ρ)

I(φa, ρ) =
1

2

∫
d3xφa(−∂2)φa +

1

2

∫
d3x ρ

(
φaφa − N

g

)
, g = GN

The dimensionful coupling 1/G sets the physical mass scale of the theory:
G→ 0 is the free field theory limit which lies in the UV.
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The O(N) Vector Model

The partition function Z and the effective action Seff (ρ) are given by

Z =

∫
(Dρ)e−NSeff (ρ) , Seff (ρ) =

1

2
Tr ln(−∂2 + ρ)−

∫
d3x

ρ

2g

The saddle point at large-N , with constant ρ0 = m2, yields the
gap equation

∂Seff (ρ)

∂ρ

∣∣∣
ρ0

= 0⇒ 1

g
=

∫
d3p

(2π)3

1

p2 + ρ0

The large-N expansion is obtained setting

ρ(x) = ρ0 +
1√
N
σ(x) ,
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The O(N) Vector Model

The effective action SNeff (σ, ρ0) for the real fluctuations σ is

Seff (ρ) = Veff (ρ0, g) +
1

N
SNeff (σ, ρ0)

Veff (ρ0, g) =
1

2
Tr ln(−∂2 + ρ0)− ρ0

2g
(V ol)3

SNeff (σ, ρ0) =
1

2

∫
σ(x)∆(x, y; ρ0)σ(y)

+
1

3!
√
N

∫
σ(x)σ(y)σ(z)P (x, y, z; ρ0) + ..

The generating functional W [η] for connected correlation functions of σ is

eW [η] ≡
∫

(Dσ)e−S
N
eff (σ,ρ0)+

∫
ησ
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The O(N) Vector Model

The gap equation determines the vacuum structure:
With a UV cutoff Λ for the momentum integral, it is rewritten as

1

g
=

∫ Λ d3p

(2π)3

1

p2
−
∫ Λ d3p

(2π)3

ρ0

p2(p2 + ρ0)

=
Λ

2π2
−
√
|ρ0|

2π2
arctan

Λ√
|ρ0|

We define a critical coupling g∗ as

1

g∗
=

Λ

2π2
,

The gap equation takes the suggestive form(
1

g∗
− 1

g

)
=

√
|ρ0|

2π2
arctan

Λ√
|ρ0|

=

√
|ρ0|

4π
+O(ρ0/Λ)
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The O(N) Vector Model

The vacuum structure is found comparing g to g∗:

For g > g∗; we find m =
√
|ρ0| 6= 0 and the theory is massive.

For g = g∗; there is no mass scale left in the theory → the generating
functional of connected correlation functions of a scalar operator σ with
dimension ∆ = 2 +O(1/N) in a three-dimensional CFT - the
critical O(N) vector model.

For g < g∗; the only solution of the gap equation is ρ0 = 0. However an
arbitrary mass scale remains - the subtraction point of renormalisation - even
after sending the cutoff to infinity.
This is an indication that the theory enters a symmetry broken phase.
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The O(N) Vector Model

The clearer way to see the O(N) → O(N − 1) symmetry breaking pattern is to
separate out the N ’th component of φa’s, which we denote as φ.

Integrating over the remaining N − 1 elementary scalars we obtain

Z =

∫
[Dφ][Dρ] e−(N−1)Seff (ρ,φ)

The effective action is now defined as

Seff (φ, ρ) = SN−1
eff (ρ) +

1

2(N − 1)

∫
d3xφ(−∂2 + ρ)φ

SN−1
eff (ρ) =

1

2
Tr ln(−∂2 + ρ)− N

(N − 1)

∫
d3x

ρ

2g

Apart from the different N scaling of the coupling constant g:

the effective action SN−1
eff (ρ) is essentially the same as Seff (ρ).
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The O(N) Vector Model

The large-N expansion is now performed around the constant saddle points
ρ0 and φ0 defined as

ρ(x) = ρ0 +
1√
N − 1

σ(x) , φ(x) = φ0 + ϕ(x) .

ρ0, φ0 are determined by the

modified gap equations

∂Seff
∂ρ

∣∣∣
(φ0,ρ0)

= 0 ⇒ φ2
0

N − 1
=

N

(N − 1)

1

g
−
∫

d3p

(2π)3

1

p2 + ρ0

∂Seff
∂φ

∣∣∣
(φ0,ρ0)

= 0 ⇒ ρ0φ0 = 0
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The O(N) Vector Model

The resulting effective action is then written as

Seff (φ, ρ) = Veff (φ0, ρ0) +
1

N − 1
SN−1
eff (ϕ, σ)

SN−1
eff (ϕ, σ) = SN−1

eff (σ, ρ0) +
1

2

∫
ϕ(x)D0(x, y; ρ0)ϕ(y)

+
1

2
√
N − 1

∫
σ(x)ϕ2(x) +

φ0√
N − 1

∫
σ(x)ϕ(x)

O(N)→ O(N − 1) symmetry breaking pattern

The effective action for the O(N) model ← the effective action of the
O(N − 1) model by integrating in ϕ with a marginal deformation

∫
σϕ2 and

linear interaction
∫
ϕσ.

At the critical point ρ0 = φ0 = 0, one integrates in a massless elementary
scalar ϕ(x) with marginal interaction.

The O(N − 1) model “eats” elementary scalars with O(1/
√
N) marginal

interactions by enlarging its symmetry, i.e. shifting N − 1→ N .
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The O(N) Vector Model

The modified gap equation is written

φ2
0

N − 1
=

(
N

N − 1

1

g
− 1

g∗

)
+
|m|
4π

+ · · ·

and differs from the previous gap equation in two ways:

Firstly, we notice the presence of an extra term on the left-hand side.

Secondly, there is an extra N/(N − 1) factor in front of the coupling
constant 1/g.

These two differences are intimately related as we will see later..
We have an explicit manifestation of the Goldstone mechanism.

Away from the critical point φ0 and |m| cannot be nonzero simultaneously,
and |m| < Λ.

When g < Ng∗/(N − 1) we are in the UV, the mass vanishes but we always
have φ0 6= 0 ⇒ away from the UV fixed point, the O(N) symmetry is always
broken to O(N − 1) . As usual we also have N − 1 Goldstone bosons which
are seen here as the massless elementary scalars that were integrated out.
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The O(N) Vector Model

When the coupling is tuned to

g =
N

N − 1
g∗

we have φ0 = m = 0 and we arrive at the critical O(N) vector model.

The above critical point differs from the old critical point which required
tuning the bare coupling constant exactly to g = g∗.

By writing as

N

N − 1

1

g
− 1

g∗
=

1

g
− 1

g∗
+

1

N − 1

1

g

we learn that the modified critical point is shifted away from being exactly
1/g∗ by a quantity of order 1/(N − 1) ⇒ exactly what is needed to
renormalize to zero the square of the condensate φ2

0.

Both gap equations lead to the same nontrivial critical theory in the IR.

We have reached this IR theory through a path where the O(N) symmetry is
always broken except at the two end points.
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The O(N) Vector Model

As the coupling increases to g > Ng∗/(N − 1) the only way to satisfy the
gap equation is to have φ0 = 0, but then we must also have m 6= 0.

In this regime, the theory enters an O(N)-symmetric massive phase.

The common mass for the elementary fields

m =
2Λ

π

(
1− N

N − 1

g∗
g

)
,

smaller than the cutoff as expected.
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Figure : The phase diagram of the vector models. Stars denote the CFTs. The solid
arrows denote marginal deformations towards the IR fixed point after the absorption of
an elementary scalar ϕ. The dotted arrows denote irrelevant double-trace deformations
leading to the UV fixed point of the symmetry enhanced theory.
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The O(N) Vector Model

We note that the value of the critical coupling g∗ is independent of N .

Starting then from an O(N − 1) model, the absorption of the elementary
scalar φ is done once we enter the massive phase of the theory, namely when
g = Ng∗/(N − 1) > g∗.

Then it is possible to deform the theory by a marginal coupling and return to
the universal fixed point at g∗, having however enlarged the symmetry to
O(N).

Starting deeper in the massive phase with g > Ng∗/(N − 1) the model
absorbs the elementary scalar and flows to the massive phase of the O(N)
model under the marginal deformation.

Finally, when g < Ng∗/(N − 1) we assign the difference

N

N − 1

1

g
− 1

g∗
=

φ2
0

N − 1
6= 0

to an expectation value of φ0. Then the linear interaction term φ0

∫
σϕ is

nontrivial.
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The O(N) Vector Model

To unveil the meaning of this term we can shift the scalar fluctuation as

ϕ = ϕ̂+
φ0√
N − 1

1

−∂2
σ ,

A short calculation then gives

Z ∼
∫
e
−
[
SN−1
eff (σ,0)+ 1

2

∫
ϕ̂D0ϕ̂+ 1

2
√
N−1

∫
σϕ̂2− φ20

2(N−1)

∫
1
−∂2

σ2+..

]
.

The last term in the exponent is a nonlocal version of the irrelevant
double-trace deformation

∫
σ2 which drives the theory in the UV where we

expect to find the free O(N) model.

If we shift N → N + k, k ∈ Z we are describing the generic symmetry
breaking pattern O(N + k)→ O(N + k − 1).
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The O(N) Vector Model

To calculate correlation functions of φa and σ we couple the partition
function to sources Ja and η as

Z → Z[Ja, η] =

∫
[Dφa][Dρ] e−I(φ

a,ρ)+
∫
φaJa+

∫
ηρ .

At g = g∗ this gives the generating functional for the critical O(N) model

Z[Ja, η] = e−NVeff (0,g∗)

∫
[Dσ] e

−SNeff (σ,0)+
∫
ησ+ 1

2

∫
JaD0( i√

N
σ)Ja

.

Using the above, one can perform a systematic 1/N expansion for all
correlation functions of φa and σ. Using conformal ”uniqueness” techniques,
the anomalous dimensions of φa and σ up to O(1/N3) were calculated long
time ago [A. Vasiliev et. al. (81-81)]. Similar results have been obtained in the
fermionic and supersymmetric O(N) cases [Gracey (91-92)].

Soon afterwards [Rühl et. al. (92-93)] initiated the study of the operator
spectrum of the bosonic O(N) vector model.

Finally, in [T. P. (94-96)] the conformal bootstrap of the bosonic and fermionic
models was formulated, and it was argued that all the dynamical information
is based on the cancellation of shadow singularities.
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Using the above, one can perform a systematic 1/N expansion for all
correlation functions of φa and σ. Using conformal ”uniqueness” techniques,
the anomalous dimensions of φa and σ up to O(1/N3) were calculated long
time ago [A. Vasiliev et. al. (81-81)]. Similar results have been obtained in the
fermionic and supersymmetric O(N) cases [Gracey (91-92)].

Soon afterwards [Rühl et. al. (92-93)] initiated the study of the operator
spectrum of the bosonic O(N) vector model.

Finally, in [T. P. (94-96)] the conformal bootstrap of the bosonic and fermionic
models was formulated, and it was argued that all the dynamical information
is based on the cancellation of shadow singularities.
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The O(N) Vector Model

The systematic 1/N expansion is easily obtained. From conformal invariance
we have

〈φa(x)φb(0)〉 =
Cφ
x2∆φ

δab , 〈σ(x)σ(0)〉 =
Cσ
x2∆σ

We fix d = 3 and define three critical indices γφ, κ and z of order O(1/N) as

∆φ =
1

2
+ γφ , ∆σ = 2− 2γφ − 2κ , C2

φCσ =
1

π4
+ z

The two-point function of φa is given by σ-exchange. One finds

〈φa(x)φb(0)〉 =
1

4π

1

|x|

[
1− 1

N

4

3π2
ln |x|2 + ...

]
δab

From the logarithmic term we read the anomalous dimension of φa as

γφ =
4

3π2

1

N

For the calculations of κ and ζ one needs to consider the 2-pt function of σ
and also the renormalisation of the vertex σφ2. The most updated results are
already a few decades old [A. Vasiliev et. al. (82)].
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O(N)/HS holography

The conserved higher-spin currents of a 3d CFT form unitary irreducible
representations (UIR) of SO(3, 2), D(∆, s), with dimensions ∆ = s+ 1.

When s is even, these arise in the parity-even

tensor product of two singleton UIRs D(1/2, 0) as (Flato-Fronsdal theorem).

[D(1/2, 0)⊗D(1/2, 0)]S = D(1, 0)⊕
∞∑
s=1

D(2s+ 1, 2s) .

The ”spin-zero” current D(1, 0) is a scalar of dimension ∆ = 1.

The fermionic singleton UIR D(1, 1/2) gives rise to a different series of HS
currents

[D(1, 1/2)⊗D(1, 1/2)]A = D(2, 0)A ⊕
∞∑
s=1

D(2s+ 1, 2s)A .

Here D(2, 0)A is a pseudoscalar.

The above are the conserved currents (including the scalar operator : ψ̄ψ :) in
a free fermionic 3d CFT → all currents are parity-odd.
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O(N)/HS holography

The UIRs D(1, 0) and D(2, 0) are shadow symmetric i.e. the have the same
Casimir and are related by Weyl reflection.

The even parity ones appear in the UV and IR (non-trivial) fixed points of the
O(N) model. The odd-parity ones in the IR and UV (non-trivial) fixed point
of the fermionic O(N) model → hence the bosonic and fermionic models are
related by a UV↔IR map plus parity [Leigh and T. P. (03)].

The same is true for the pair of IRs D(s+ 1, s) and D(2− s, s). However,
here D(s− 2, a) is non-unitary.
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O(N)/HS holography

The suggested O(N)/HS correspondence proceeds by considering a bulk
action, (although the full Lagrangian of HS theory is still elusive), with the
schematic form

IHS =

∞∑
s=0,2,4,..

∫
d4x
√−g 1

2
Φ(s)

[
�s −

1

L2
(s2 − 2s− 2)

]
Φ(s) +O(

1√
N

)

Φ(s) denote symmetrized and double-traceless rank-s tensors, �s are
generalized Pauli-Fierz operators on the fixed AdS4 background metric gµν ,
and (s2 − 2s− 2)/L2 is a mass term that is necessary to maintain higher-spin
gauge invariance on AdS4.

The quadratic part of IHS yields the two-point functions of all free
higher-spin currents normalized to O(1).

More precisely, since Φ(0) is a conformally coupled scalar, in order to obtain
the two-point function of D(1, 0) in the boundary one needs to quantize
using the so-called alternative quantization AQ.
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O(N)/HS holography

The cubic interaction terms in IHS would then give rise to the three-point
functions of the O(N) model which scale as 1/

√
N . Higher order interaction

terms would give rise to higher-point correlation functions in the boundary.

Upon introduction of interactions, the free O(N) theory flows down to the IR
critical point in which a dimension ∆ = 2 operator, namely the UIR D(2, 0),
is present in the spectrum.

There, higher-spin symmetry is broken since the HS currents acquire nonzero
anomalous dimensions of order 1/N . Nevertheless, higher-spin symmetry is
restored at least at N →∞.

The flow to the IR is holographically implemented by the relevant
‘double-trace’ deformation (φaφa)2.

The latter has the same effect as the Legendre transformation that switches
the quantizations of the bulk conformally coupled scalar field.
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O(N)/HS holography

Holography → W [J ]: J source for an operator O in the dual field theory.

This on-shell action is in general supplemented by boundary terms that a)
renormalize the theory, and b) modify the boundary conditions of the bulk
fields

If we know W [J ] we can Legendre transform it to get the quantum effective
action Γ[〈O〉] whose extrema determine the vacuum structure of the theory.

A Lagrangian deformation of the boundary field theory action by a functional
f(O) of an operator O, corresponds - at least at large N - to a simple
deformation of the quantum effective action

Γf [σ] = Γ0[σ] + f(σ) , σ = 〈O〉 .

Thus, given such a deformation, the gap equation will be obtained as

δΓf
δσ

∣∣∣
σ=σ∗

= 0
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A Lagrangian deformation of the boundary field theory action by a functional
f(O) of an operator O, corresponds - at least at large N - to a simple
deformation of the quantum effective action

Γf [σ] = Γ0[σ] + f(σ) , σ = 〈O〉 .

Thus, given such a deformation, the gap equation will be obtained as

δΓf
δσ

∣∣∣
σ=σ∗

= 0
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O(N)/HS holography

The induced change in the generating functional will be generically rather
complicated, except in the ‘double trace’ case, where we take f to be
quadratic – then the Legendre transform back to W [J ] is linear and easily
performed. For higher order polynomials, it is non-linear and a ‘Maxwell
construction’ is generally required.

The higher spin theory action on AdS4 includes the bulk scalar field
Φ(0) ≡ Φ of mass m2L2 = −2 with asymptotic behaviour

Φ ∼ αz + βz2

In this particular case, we have a choice: standard quantization (SQ) assigns
α as the source for a ∆ = 2 operator with vev β. Alternative quantization
(AQ) instead interprets β as the source for a ∆ = 1 operator with vev α.

It is the AQ that gives rise to the free UV fixed point, with its ∆ = 1 scalar
operator, φaφa.
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O(N)/HS holography

To mimic the field theory analysis, we propose extending the bulk theory to
contain two fields with m2L2 = −2, namely

IextHS = IHS +

∫
d4x
√−g 1

2
Σ

[
� +

2

L2

]
Σ .

We take Φ in AQ, and Σ in SQ. Asymptotically, we have

Φ ∼ αz + βz2

Σ ∼ ηz + σz2

so that Φ gives rise to a ∆ = 1 operator with vev α, while Σ gives rise to a
∆ = 2 operator with vev σ.

We assume that these fields do not mix in the bulk. This means that the
regularity conditions of the bulk equations yield α = α(β) and σ = σ(η), and
determine the boundary generating functional as

IextHS →W [β, η] =

∫
α(β)β −

∫
σ(η)η .
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O(N)/HS holography

The different relative signs in which arise because of the opposite
quantizations used for the bulk fields ⇐ the on-shell bulk action equals minus
the boundary generating functional if one uses SQ.

Also note that starting from the two-point functions of both the operators
with ∆ = 1 and ∆ = 2 are normalized to O(1). This means, for example,
that in terms of the elementary fields α ∼ (φaφa)/

√
N .

If this were the full story, constructing Γ[α, σ] would give no sign of a gap equation
for the O(N) model, as Σ is decoupled from Φ (as well as the rest of the higher
spin fields).

To rectify that, we introduce boundary terms that couple the two fields
together i.e. a Lagrangian deformation of the form

f(α, σ) =

∫ (
ασ + V (σ)− 1

3
λ(α− h)3

)
, V (σ) = −λ

′

g
σ .

with λ and λ′ dimensionless and h is a parameter with dimensions of mass.
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O(N)/HS holography

Then we have

Γ[α, σ] =

∫ (
1

2
αK1α−

1

2
σK−1

1 σ + σ(α− λ′

g
)− 1

3
λ(α− h)3

)
where K1 is an appropriate kernel.

The different signs arising from the different quantizations ensure the
positivity of the quadratic kernels.

For constant α and σ, we obtain the gap equations

α =
λ′

g

σ = λ(α− h)2

The first equation above is what we expect for the 1-point function of the
σ-model and corresponds to the model’s constraint. This gives eventually
λ′ =

√
N .
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O(N)/HS holography

The second equation can be rewritten as
√
N

g
= h±

√
1

λ

√
σ

Comparing to the σ-model gap equation we see that we should keep the
minus sign and further interpret

λ =
16π2

N
, h =

√
N

g∗
.

The introduction of both Φ and Σ breaks higher spin symmetry. However, we
expect that it is recovered at the critical points. The free UV fixed point is
reached taking g, λ→ 0 and the cutoff to infinity, whereby σ decouples.
Therefore only the ∆ = 1 operator survives at the UV fixed point.
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O(N)/HS holography

On the other hand, the nontrivial IR fixed point arises when g → g∗. In this
case, the introduction of the operator α is equivalent to a finite shift of the
operator σ ⇒ the operator α becomes redundant.

The (α− h)3 term has an interpretation in terms of the classically marginal
term (φaφa)3.

h introduces relevant terms in order that the non-trivial fixed point is
properly described and appears at a finite value of g. This is equivalent to
the well-known property that any relevant deformation of the UV free fixed
point will lead to the nontrivial IR theory.
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O(N)/HS holography

Next, we deform the higher-spin action by a singleton field S as

IdHS = IextHS +

∫
d4x
√−g 1

2
S

[
� +

5

4L2

]
S ,

The singleton is a scalar field with bulk mass m2L2 = − 5
4 with asymptotic

behaviour

S ∼ ξz1/2 + φz5/2.

For such a field, the only unitary quantisation possibility is to do AQ
[Andrande and Marolf (11)] giving an operator of ∆ = 1/2. This is a free field
that consequently decouples from the rest of the CFT.

However, it can be forced to have a non-trivial effect by coupling it to the
other fields through an explicit boundary interaction, namely
f(φ, α, σ) = λ̃σφ2.
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O(N)/HS holography

That this interaction is needed could have been anticipated from our
calculatations of the effective action of the O(N) model ⇒ a σϕ2 term was
crucial for the symmetry breaking structure of the theory.

Explicitly, we add to the deformed action the following boundary term

fd(α, σ, φ) =

∫ [
ασ − Ṽ (σ)− λ1

3
(α− h)

3
+ λ̃σφ2

]
, Ṽ (σ) =

λ̃′

g
σ ,

where using the results of the previous section we have set h =
√
N
g∗

and

λ = 16π2

N .

Other than the presence of the marginal term, a crucial difference between the
above and the previous gap equation is in the linear deformation Ṽ (σ) where
λ′ → λ̃′ = N+1√

N
, as it is required to to be able to absorb the singleton field φ

by suitably adjusting the coupling 1/g in the massive phase of the theory.
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O(N)/HS holography

The gap equations are then

α+ λ̃φ2 =
N + 1√
N

1

g

σ =
16π2

N

(
α−
√
N

g∗

)2

λ̃φσ = 0 (1)

The third equation is familiar from the σ-model: there are two phases, one in
which φ = 0 (massive phase) and the other in which σ = 0 (broken phase).

The first equation has an O(N + 1)-invariant form if we interpret
α ∼ 〈φaφa〉 and φ ∼ 〈φN+1〉. Substituting then α we find

λ̃φ2 =
N + 1√
N

1

g
−
√
N

g∗
+

√
N

4π2

√
σ .

Setting λ̃ = 1/
√
N this coincides exactly with field theory gap equation.
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O(N)/HS holography

The two solutions are

1 : φ = 0, α =
N + 1√
N

1

g
, σ = 16π2

(
N + 1

N

1

g
− 1

g∗

)2

2 : σ = 0, α =

√
N

g∗
,

1

N
φ2 =

(
N + 1

N

1

g
− 1

g∗

)

α 6= 0 does not signal O(N) since it is properly interpreted as the vev of an
O(N)-invariant operator. Rather φ 6= 0 implies O(N + 1)→ O(N).

As before, there is a critical point when g/g∗ = (N + 1)/N . We can have
O(N + 1) breaking only when g/g∗ < (N + 1)/N . For g/g∗ > (N + 1)/N ,
the only solution to the gap equations is of the first type, namely the massive
phase.
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O(N)/HS holography

At the critical point the operator α becomes redundant and the boundary
term becomes

fd(σ, φ
2) =

1√
N

∫
σφ2 .

This is a simple marginal deformation of the extended higher-spin action and
leads to a 1/N expansion for the boundary two-point functions of φ and σ.
For example, we obtain

〈φ(x1)φ(x2)〉def = 〈φ(x1)φ(x2)〉0
+

1

2N

∫
〈φ(x1)φ(x2)σ(x)φ2(x)σ(y)φ2(y)〉0 + · · ·

where we have dropped the O(1/
√
N) term whose contribution vanishes, as

do all other fractional powers of 1/N .
The above gives the same expansion as in the field theory analysis, at least
to leading order in 1/N . Hence, the singleton deformation gives for the
boundary singleton field φ the same anomalous dimension as those for the
UV dimensions of the elementary fields φa

T. Petkou (AUTH) Singletons in O(N)/HS Correspondence Kolymbari, 21/6/2013 46 / 50



O(N)/HS holography

At the critical point the operator α becomes redundant and the boundary
term becomes

fd(σ, φ
2) =

1√
N

∫
σφ2 .

This is a simple marginal deformation of the extended higher-spin action and
leads to a 1/N expansion for the boundary two-point functions of φ and σ.
For example, we obtain

〈φ(x1)φ(x2)〉def = 〈φ(x1)φ(x2)〉0
+

1

2N

∫
〈φ(x1)φ(x2)σ(x)φ2(x)σ(y)φ2(y)〉0 + · · ·

where we have dropped the O(1/
√
N) term whose contribution vanishes, as

do all other fractional powers of 1/N .
The above gives the same expansion as in the field theory analysis, at least
to leading order in 1/N . Hence, the singleton deformation gives for the
boundary singleton field φ the same anomalous dimension as those for the
UV dimensions of the elementary fields φa

T. Petkou (AUTH) Singletons in O(N)/HS Correspondence Kolymbari, 21/6/2013 46 / 50



O(N)/HS holography

At the critical point the operator α becomes redundant and the boundary
term becomes

fd(σ, φ
2) =

1√
N

∫
σφ2 .

This is a simple marginal deformation of the extended higher-spin action and
leads to a 1/N expansion for the boundary two-point functions of φ and σ.
For example, we obtain

〈φ(x1)φ(x2)〉def = 〈φ(x1)φ(x2)〉0
+

1

2N

∫
〈φ(x1)φ(x2)σ(x)φ2(x)σ(y)φ2(y)〉0 + · · ·

where we have dropped the O(1/
√
N) term whose contribution vanishes, as

do all other fractional powers of 1/N .
The above gives the same expansion as in the field theory analysis, at least
to leading order in 1/N . Hence, the singleton deformation gives for the
boundary singleton field φ the same anomalous dimension as those for the
UV dimensions of the elementary fields φa

T. Petkou (AUTH) Singletons in O(N)/HS Correspondence Kolymbari, 21/6/2013 46 / 50



O(N)/HS holography

This is despite the fact that the deformation may be regarded as a marginal
deformation of the IR O(N) fixed point in the presence of an additional
scalar φ.

Generally, the graphical expansion for φ and σ generated by the deformation
above is the same as the graphical expansion for φa and σ generated by the
boundary field theory → hence yields the same anomalous dimensions.

T. Petkou (AUTH) Singletons in O(N)/HS Correspondence Kolymbari, 21/6/2013 47 / 50



O(N)/HS holography

This is despite the fact that the deformation may be regarded as a marginal
deformation of the IR O(N) fixed point in the presence of an additional
scalar φ.

Generally, the graphical expansion for φ and σ generated by the deformation
above is the same as the graphical expansion for φa and σ generated by the
boundary field theory → hence yields the same anomalous dimensions.

T. Petkou (AUTH) Singletons in O(N)/HS Correspondence Kolymbari, 21/6/2013 47 / 50



Summary and outlook

A complete holographic description of the O(N) vector model should
account for its rich vacuum structure and in particular for its
O(N)→ O(N − 1) symmetry breaking pattern.

We have shown that this is possible if one deforms the AdS4 higher-spin
theory by a singleton field coupled to higher-spin multiplet only through a
boundary marginal coupling. Then, designing the appropriate boundary
conditions for the extended bulk action we were able to exactly reproduce the
gap equations of the O(N) vector model.

We have argued that the bulk higher-spin theory absorbs the singleton field
by shifting its parameter N → N + 1. This is the bulk dual of the global
symmetry breaking/enhancement mechanism in the boundary.

The boundary singleton interaction generates the same 1/N graphical
expansion for the elementary scalar and ”spin-zero current” as in the
standard field theoretic treatment of the O(N) model. Hence, the singleton
deformation breaks higher-spin symmetry and yields the well-known
anomalous dimensions for the elementary and ”spin-zero” scalars of the
O(N) model, at least to leading order in 1/N .
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Summary and outlook

Is it important to understand better the boundary marginal coupling of the
singleton to higher-spin currents. For example, given the singleton field φ,
one may consider boundary couplings of the form

SHS ∼ λ′
∫
tµ1...µsφ∂µ1

...∂µsφ ,

where tµ1..µs is the leading coefficient in the asymptotic behaviour of a bulk
spin-s gauge field → higher-spin dressing of the O(N) model.

For s ≥ 2 there are more than one possible terms. Generally, this has no
effect on the vacuum structure, if that is determined by space-time constant
configurations.

It is expected that such couplings would lead to a graphical expansion for the
2-pt functions of the boundary higher-spin currents which would enable one
to calculate their 1/N anomalous dimensions. Reproducing the result would
then be a crucial test for our proposal.
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Summary and outlook

Our results can also be applied to the holographic description of
three-dimensional fermionic and supersymmetric models with higher-spin
duals. Notice that such models describe parity symmetry breaking, and it
would be interesting to understand the bulk counterpart of it.

In AdS5/CFT4 correspondence adding a probe D3-brane to IIB sugra on
AdS5 × S5 shifts by one unit N → N + 1 the fiveform flux. The singleton
deformation is the analog process of the above in higher-spin gauge theory
and its study might lead to a better geometric description for the
dimensionless parameter N .

The singleton deformation could also play an important role in the study of
possible black-hole solutions for higher-spin theory on AdS4. For example,
since a continuous symmetry cannot be broken at finite temperature in 2+1
dimensions, we expect that bosonic singleton absorption would not be
possible for higher-spin theories in black-hole backgrounds, while fermionic
singleton absorption would be allowed.
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