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Outline of the Talk

N Neutrino Data

N Basic ingredients of F-theory model building

N Mechanisms for fermion mass hierarchy

N Spectral cover description

N Classification of related discrete symmetries

N Examples of SU(5) constructions

N Applications to neutrino physics
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N Neutrino data
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N → Theory Invariant under Finite Symmetries S4, A4 · · ·
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N ∼2010 data suggest: TB-mixing not exact!

θ23 6= π

4
θ13 ≈ π

20
6= 0

N Discrete Anatomy of the Neutrino Mass Textures: N

→ Expressing mν in terms of Finite Group Elements:

mν =
∑

i

ciUi

→ unique solution compatible with experimental data:

(... N.D. Vlachos)
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with s = sin θ13.
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F F-theory (C.Vafa hep-th/9602022)

N Defined on a background R3,1 ×X
N X elliptically fibered CY 4-fold over B3

N B3 complex 3-fold base.

CY 4-fold: Points of B3 represented by torus τ = C0 + ı/gs. Red

points: 7-branes, ⊥ to B3
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Fibration is described by the Weierstraß Equation (WE)

y2 = x3 + f(z)x+ g(z) (2)

x, y parameters of the fibration

f(z), g(z) → 8&12 degree polynomials in z.

For each point of B3, eq(2) describes a torus labeled by z

The fiber degenerates at the zeros of the discriminant

∆ = 4 f3 + 27 g2 (3)

⇓

∆ = 0 ⇒ singularity of internal manifold
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Interpretation of geometric singularities

(Witten, hep-th/9507121, Bershadsky et al, hep-th/9510225; )

• Singularities of Internal Manifold � gauge symmetries

... encoded in the structure of f(z), g(z)

• Types of singularities : ADE (Kodaira classif.)

... they determine:

A) gauge symmetries

→







SU(n)

SO(m)

En

B) matter content
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ord(f(z)) ordg(z)) ord(∆(z)) fiber type Singularity

0 0 n In An−1

≥ 1 1 2 II none

1 ≥ 2 3 III A1

≥ 2 2 4 IV A2

2 ≥ 3 n+ 6 I∗n Dn+4

≥ 2 3 n+ 6 I∗n Dn+4

≥ 3 4 8 IV ∗ E6
3 ≥ 5 9 III∗ E7
≥ 4 5 10 II∗ E8

Table 1: Kodaira’s classification of Elliptic Singularities with respect

to the vanishing order of f, g,∆.
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Useful algorithm for local description: Tate’s form

Procedure: (see Katz et al 1106:3854) Expand f, g

f(z) =
∑

n

fnz
n, g(z) =

∑

m

gmz
m

Then

∆ = 4 [f0 + f1z + · · ·)]3 + 27 [g0 + g1z + · · ·]2

Demand z/∆ ⇒
f0 = −1

3
t2, g0 =

2

27
t3

while WE obtains Tate’s I1 form:

y2 = x3 + t x2 + (f1 + f2z + · · ·)z x+ (g̃1 + g̃2z + · · ·)z
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Tate’s Form

y2 + a1x y + a3y = x3 + a2 x
2 + a4x+ a6

The algorithm (Partial results)

Group a1 a2 a3 a4 a6 ∆

SU(2n) 0 1 n n 2n 2n

SU(2n+ 1) 0 1 n n+ 1 2n+ 1 2n+ 1

SO(10) 1 1 2 3 5 7

E6 1 2 3 3 5 8

E7 1 2 3 3 5 9

E8 1 2 3 4 5 10
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F-theory: Model Building

GUTs associated to 7-branes wrapping certain class of ‘internal’

2-complex dim. surface S
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N The precise gauge group is determined by the singular fibers over

the surface S.

N Elliptic Fibration: Highest singularity is E8

N Gauge symmetry: any E8 subgroup:

E8 → GGUT × Cspectral cover

F Spectral Cover ⇒ useful local properties of GGUT

N Sensible choice: GGUT = SU(5)

(a single condition c1(L) · c1(L) = −2 ensures absence of exotics )
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Matter is localised along intersections with other 7-branes...

Along a matter curve Σ gauge symmetry is enhanced...
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Yukawa couplings are formed at triple intersections...

where gauge symmetry is further enhanced:

λb 10 · 5̄ · 5̄ ∈ SO(12)

λt 10 · 10 · 5 ∈ E6
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Symmetry enhancements for SU(5).
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GS = SU(5): Singularity enhancement:

NH Matter curves accommodating 5̄ are associated with SU(6)

Σ5̄ = S ∩ S5̄ ⇒ SU(5) → SU(6)

adSU6
= 35 → 240 + 10 + 56 + 5̄−6

NH Matter curves accommodating 10 are associated with SO(10)

Σ10 = S ∩ S10 ⇒ SU(5) → SO(10)

adSO10
= 45 → 240 + 10 + 104 + 10−4

NH Further enhancement in triple intersections→ Yukawas:

SO(10) ≡ E5 V E6 → 10 · 10 · 5

SU(6) V SO(12) → 10 · 5̄ · 5̄
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NH Matter fields are represented by wavefunctions ψi, φ on the

intersections of 7-branes with S.
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Matter Wavefunctions fall off rapidly away from the curves

-2

-1

0

1

2

Re@z1D

-2

-1

0

1

2

Re@z2D

0.0

0.1

0.2

ΨHz1,z2L

Yukawa coupling ∝ integral of overlapping wavefunctions

at the intersection

λij ∼
∫

S

ψj
Uψ

i
QψH

Integral’s main dependence is on local details near the intersection

⇒ reliable λij-estimation without knowing global geometry!
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Mechanisms for Fermion mass hierarchy

H If all three families are on the same matter curve, masses to

lighter families can be generated by:

i) non-commutative fluxes Cecotti et al, 0910.0477

ii) non-perturbative effects, Aparicio et al, 1104.2609

H If families are distributed on different matter curves:

Implementation of Froggatt-Nielsen mechanism,

Dudas and Palti, 0912.0853

GKL and G.G. Ross, 1009.6000

NN Combined mechanism:

Only two families on the same matter curve
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F Origin and Nature of Family Symmetries F

In F-theory all matter descends from the E8-adjoint decomposition

We already assumed

E8 → SU(5)GUT × SU(5)⊥

therefore

248 = (24, 1) + (1, 24⊥) + (10, 5⊥) + (5̄, 10⊥) + (5, 10⊥) + (10, 5̄)⊥

Interpretation from geometric point of view:

SU(5)GUT fields reside on matter curves:

Σ10ti
: n10 × 10ti + n̄1̄0 × 10−ti (4)

Σ5ti+tj
: n5 × 5̄ti+tj + n̄5̄ × 5−ti−tj (5)

Families on different curves distinguished by roots ti, tj ∈ SU(5)⊥
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F Monodromies reduce SU(5)⊥ symmetry F

Geometric equivalent description useful to local F-theory:

Spectral Cover Description:

F local patch around GUT singularity described by

C5 =
5∏

i=1

(s− ti) = b0s
5 + b2s

3 + b3s
2 + b4s+ b5 = 0, b1 = 0

coefficients bk (∈ F) carry information of geometry...

F SU(5)⊥ breaking corresponds to any of the possible spittings of

the Spectral Cover:

C5 → C4 × C1

C5 → C3 × C2

· · · · · ·
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F Examples F

N Application: The C4 × C1 case

N Motivation: The neutrino sector

N C4 × C1 implies the splitting of the polynomial in two factors
∑

bks
5−k = (a1 + a2s+ a3s

2 + a4s
3 + a5s

4

︸ ︷︷ ︸

C4

)(a6 + a7s
︸ ︷︷ ︸

C1

)

Topological properties of ai are fixed in terms of those of bk, by

equating coefficients of same powers of s

b0 = a5a7, b5 = a1a6, etc...

Moreover:

N C1 : associated to a U(1)
N C4 : reduction to (i) continuous SU(4) subgroup, or

(ii) to Galois group ∈ S4 (see also Marsano et al 0906.4672)
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Properties and Residual Spectral Cover Symmetry

N If H ∈ S4 the Galois group, final symmetry of the model is:

SU(5)GUT × H× U(1)
︸ ︷︷ ︸

family symmetry

N The final subgroup H ∈ S4 is linked to specific topological

properties of the polynomial coefficients ai.

N ai coefficients determine useful properties of the model, such as

i) Geometric symmetries → R-parity

ii) Flux restrictions on the matter curves

N Fluxes determine useful properties on the matter curves

including :

Multiplicities and Chirality of matter/Higgs representations
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Determining the Galois group in C4-spectral cover
In order to find out which is the Galois group, we examine

partially symmetric functions of roots ti (Lagrange method)

1.) The Discriminant ∆

∆ = δ2 where δ =
∏

i<j

(ti − tj)

δ is invariant under S4-even permutations ⇒ A4

∆ symmetric → can be expressed in terms of coefficients ai ∈ F

∆(ti) → ∆(ai)

If ∆ = δ2, such that δ(ai) ∈ F , then

H ⊆ A4 orV4 (= Klein group)

If ∆ 6= δ2, (i.e. δ(ai) /∈ F), then

H ⊆ S4 orD4
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2.) To study possible reductions of S4, A4 to their subgroups,

another partially symmetric function should be examined:

f(x) = (x− x1)(x− x2)(x− x3)

x1 = t1t2 + t3t4, x2 = t1t3 + t2t4, x3 = t2t3 + t1t4

x1,2,3 are invariant under the three Dihedral groups D4 ∈ S4.

Combined results of ∆ and f(x) :

∆ 6= δ2 ∆ = δ2

f(x) irreducible S4 A4

f(x) reducible D4, Z4 V4
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The induced restrictions on the coefficients ai

1. Tracelessness condition b1 = 0 demands

a4 = a0a6, a5 = −a0a7

2. The requirement that the discriminant is a square ∆ = δ2

imposes the following relations among ai:

a1 = e1
2, a2

2 = µa1 a3, a23 → λa0a1a7

3. Reducibility of the function f(x) is achieved if

f(0) = 4a5a3a1 − a1a4
2 − a5a2

2 = 0
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N 1stExample : A4

Gauge Symmetry: SU(5)GUT ×A4 ×U(1)

F = (10, 3) ta F = (Q, uc, ec)

Fx = (10, 1) ts Fx = (Q, uc, ec)

F̄y = (10, 1)−t5 −t5 F̄ = (Q̄, ūc, ēc)

H = (̄5, 3) ts ± ta hu

f̄ = (5̄, 3)+t5
1
4 (ts − ta) + t5 f̄i = (`, dc)i

H̄ = (5̄, 1)+t5
1
4 (ts + 3ta) + t5 h̄d

θa = (1, 3) 0 θij

θb = (1, 3) ta θi4

θc = (1, 3)−t5
1
4 (ts − ta)− t5 θi5

θ′ = (1, 1′)−t5 θ45

θ′′ = (1, 1′′)+t5 θ54
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Yukawa terms

1st choice: 3× (Q, uc, ec) ∈ F = (10, 3) → tree-level coupling:

Wu ⊃ (10, 3)ti (10, 3)ti (5, 3)−2ti

→ Wrong quark mass relations!

2nd choice: 3× (Q, uc, ec) ∈ Fx = (10, 1) → fourth-order coupling:

1

Λ
(10, 1) (10, 1) (5, 3) (1, 3) ↔ λt FxFxHθb

In this case, lighter generations receive masses from

non-commutative fluxes and/or non-perturbative effects

Neutrinos

Wν ⊃ 1

Λ3
(5̄, 3)ti+t5 (5̄, 3)ti+t5 (5, 3)−2ti (5, 3)−2tiθi5θi5
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F −A4 has a rich neutrino sector

Example

Take the vevs: 〈θ(1,3)〉 ∼ ai, 〈h(5,3)〉 ∼ vi

{a1 → 1, a2 → 0, a3 → 0, v1 → 0, v3 → v2}

mν ∝







2 1 c 1 c

1 c 13 −4 c

1 c −4 c 13







with c accounting for corrections (charged leptons, etc).

For c = 2 we get the right mixing, and the mass ratio

∆m2
23/∆m

2
13 ∼ 10 close to the expected value.
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N 2ndExample : SU(5)GUT × Z2 × Z2 × U(1)

Spectral cover equation and field content:

C5(s) =
(
a3s

2 + a2s+ a1
) (
a6s

2 + a5s+ a4
)
(a7 + a8s)

SU(5) U(1)Y -flux U(1)X SM spectrum

10
(1)
t1,2

0 2 2× (Q, uc, ec)

10
(2)
t3

1 1 (1×Q,−, 2× ec)

10
(3)
t5

−1 0 (−, 1× uc, 1× ēc)

5
(0)
−t1−t2

0 1 1× (d, hu)

5
(1)
−t1,2−t3

0 −1 1× (dc, `)

5
(2)
−t1,2−t5

0 −1 1× (dc, `)

5
(3)
−t3,4−t5

−1 0 1× (hd,−)

5
(4)
−t3−t4

1 −2 (2× dc, 1× `)
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The Neutrino Sector

Left handed neutrinos are in the following fiveplets

ν1 ∈ 5̄t3+t4 , ν2 ∈ 5̄t1+t5 , ν3 ∈ 5̄t1+t3

Their Right Handed partners can be sought among KK-modes of

the singlet fields θKK
ij (Antoniadis et al hep-th/0210263)

In F − SU(5) however,

θKK
ij → νc; θKK

ji → ν̄c,⇒ νc 6= ν̄c

Remarkably, due to the monodromies (Vafa et al 0904.1419)

θKK
12 ≡ θKK

21 → νca = ν̄ca, θ
KK
34 ≡ θKK

43 → ν̄cb = νcb

A convenient arrangement on matter curves:

νc1 = νca, ν
c
2 = νcb , ν

c
3 = νcb
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F The effective neutrino mass matrix

meff
ν = mνD

M−1
R mT

νD

Assumptions:

N Kaluza-Klein scale ∼ GUT scale, MKK ∼MX

N Singlet vevs
〈θij〉
MX

→ a, b, c, such that r = b
a
< a, c < 1

meff
ν ≈







2a2 a(c+ r) a

a(c+ r) c2 + r2 r

a r 1







m2
0

MX

• To leading order, Mixing effects are linked to singlet vevs a, b, c

N Consistency check: mixing (Vν)ij should be derived for a, b, c < 1
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(a, c) restricted region, from all Vij elements

V11 =.79V11 =.85 V11 =.79V11 =.85 V11 =.79V11 =.85

V12 =.59

V12 =.51

V11 =.79V11 =.85 V11 =.79V11 =.85 V11 =.79V11 =.85

V12 =.59

V12 =.51V13 =.12

V13 =.18

0.1 0.2 0.3 0.4 0.5

0.2

0.3

0.4

0.5

0.6

a

c
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A few remarks

F Current F-Theory Models provide a dictionary between:

Manifold Singularity � Gauge Symmetry GGUT

E8 → GGUT × Cspectral cover

Spectral Cover provides Additional Structure beyond GUTs

⇓

F Cspectral cover → Finite Groups such as A4, D4, V4 = Z2 × Z2

⇓

F A natural way to interpret the peculiar Neutrino properties

This way, the neutrino physics is linked directly to the

topological properties of the internal manifold
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Additional Material...
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Matter Parity from Geometry?

topological properties are encoded in bk coefficients

Consider the phase transformation (Hayashi et al, 0910:2762)

s→ s eiφ, bk → bk e
i(ξ−(6−k)φ)

Let’s apply to SU(5) case:

...spectral cover equation picks up an overall phase

C5 :
∑

k

bks
5−k → ei(ξ−φ)

∑

k

bks
5−k

F Z2-parity: φ = π:

s→ −s, bk → (−1)keiξbk
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F Communicating Matter Parity to Matter Curves F

Example: Consider relations in Z2 monodromy:

bk =
∑

alaman, l +m+ n = N − k, N = 17 (6)

Choose an to transform as

an → an e
i(ζ−nφ)

→ bk ∝ alaman → alaman e
3ζ−(N−k)φ (7)

(6) & (7) consistent for ξ = φ = π, ζ = 0,

an → (−1)n an

F Implications on matter curves:

5(0) ∼ a6a7 → (−1)(6+7) = (−)

... associate this to matter parity!
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





2a4 a2(b+ ac) a3

a2(b+ ac) −2bcMXa3+c2Ma2+b2M
M−a2MX

abM−a4cMX

M−a2MX

a3 abM−a4cMX

M−a2MX

a2M
M−a2MX






mν0
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roots
∑

i si = 0 identified with SU(5)⊥ Cartan subalgebra:

Qt = diag{t1, t2, t3, t4, t5}
F Matter curves characterised by ti’s

Polynomial coefficients depend on ti

bk = bk(ti)

Inversion implies branchcuts! ⇒ ..Simplest monodromy Z2 : :

a1 + a2s+ a3s
2 = 0 → s1,2 =

−a2 ±
√
w

2a3

Under θ → θ + 2π → √
w → −√

w branes interchange locations

s1 ↔ s2 or t1 ↔ t2

2 U(1)’s related by monodromies ... gauge symmetry reduces to:

SU(5)× U(1)4 → SU(5)×U(1)3
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Weierstrass’ equation for the SU(5) singularity

y2 = x3 + b0z
5 + b2xz

3 + b3yz
2 + b4x

2z + b5xy

→ spectral cover obtained by defining homogeneous coordinates

z → U, x→ V 2, y → V 3, s = U/V

so Weierstrass becomes

0 = b0s
5 + b2s

3 + b3s
2 + b4s+ b5


