Neutrino mass textures from String symmetries

George Leontaris
Ioannina University
GREECE

based on:
I. Antoniadis \& GKL, 1205.6930
and work in progress...

Outline of the Talk

- Neutrino Data
- Basic ingredients of F-theory model building
© Mechanisms for fermion mass hierarchy
- Spectral cover description
- Classification of related discrete symmetries
- Examples of $S U(5)$ constructions
- Applications to neutrino physics

Δ Neutrino data

$$
\left.\begin{array}{lc}
V_{\ell}: & V_{\ell}^{\dagger} m_{\ell} V_{\ell}=m_{\ell}^{\text {diag. }} \tag{1}\\
V_{\nu}: & V_{\nu}^{\dagger} m_{\nu} V_{\nu}=m_{\nu}^{\text {diag. }}
\end{array}\right\} \Rightarrow V=V_{\ell}^{\dagger} V_{\nu}
$$

A circa 2000: Tri-Bi maximal mixing:

$$
\begin{gathered}
\sin ^{2} \theta_{12}=\frac{1}{3}, \sin ^{2} \theta_{23}=\frac{1}{2}, \theta_{13}=0 \\
V_{T B}=V_{l}^{\dagger} V_{\nu}=\left(\begin{array}{lll}
-\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
\end{gathered}
$$

\rightarrow Theory Invariant under Finite Symmetries $\mathcal{S}_{4}, \mathcal{A}_{4} \cdots$
~2010 data suggest: TB-mixing not exact!

$$
\theta_{23} \neq \frac{\pi}{4} \quad \theta_{13} \approx \frac{\pi}{20} \neq 0
$$

- Discrete Anatomy of the Neutrino Mass Textures:
\rightarrow Expressing m_{ν} in terms of Finite Group Elements:

$$
m_{\nu}=\sum_{i} c_{i} U_{i}
$$

\rightarrow unique solution compatible with experimental data:
(... N.D. Vlachos)

$$
V=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}-s^{2}} & -\frac{1}{\sqrt{3}} & s \\
\sqrt{\frac{1}{6}-\frac{s^{4}}{2}}+\frac{\sqrt{3} s}{2} & \frac{1}{\sqrt{3}} & -\frac{\sqrt{1-\frac{3 s^{2}}{2}}-\frac{s}{\sqrt{2}}}{\sqrt{2}} \\
\sqrt{\frac{1}{6}-\frac{s^{4}}{2}}-\frac{\sqrt{3} s}{2} & \frac{1}{\sqrt{3}} & \frac{\sqrt{1-\frac{3 s^{2}}{2}}+\frac{s}{\sqrt{2}}}{\sqrt{2}}
\end{array}\right)
$$

with $s=\sin \theta_{13}$.

* F-theory (C. Vafa hep-th/9602022)

\triangle Defined on a background $\mathcal{R}^{3,1} \times \mathcal{X}$
$\triangle \mathcal{X}$ elliptically fibered $\mathbf{C Y} 4$-fold over B_{3}
$\triangle B_{3}$ complex 3 -fold base.

CY 4-fold: Points of B_{3} represented by torus $\tau=C_{0}+\imath / g_{s}$. Red points: 7 -branes, \perp to B_{3}

Fibration is described by the \mathcal{W} eierstraß \mathcal{E} quation $(\mathcal{W E})$

$$
\begin{equation*}
y^{2}=x^{3}+f(z) x+g(z) \tag{2}
\end{equation*}
$$

x, y parameters of the fibration
$f(z), g(z) \rightarrow 8 \& 12$ degree polynomials in z.
For each point of B_{3}, eq(2) describes a torus labeled by z
The fiber degenerates at the zeros of the discriminant

$$
\begin{gathered}
\Delta=4 f^{3}+27 g^{2} \\
\Downarrow \\
\Delta=0 \Rightarrow \text { singularity of internal manifold }
\end{gathered}
$$

Interpretation of geometric singularities
(Witten, hep-th/9507121, Bershadsky et al, hep-th/9510225;)

- Singularities of Internal Manifold \rightleftarrows gauge symmetries
... encoded in the structure of $f(z), g(z)$
- Types of singularities : $\mathcal{A D E}$ (Kodaira classif.)
... they determine:
A) gauge symmetries

$$
\rightarrow\left\{\begin{array}{c}
S U(n) \\
S O(m) \\
\mathcal{E}_{n}
\end{array}\right.
$$

B) matter content

$\operatorname{ord}(f(z))$	$\operatorname{ord} g(z))$	$\operatorname{ord}(\Delta(z))$	fiber type	Singularity
0	0	n	I_{n}	A_{n-1}
≥ 1	1	2	$I I$	none
1	≥ 2	3	$I I I$	A_{1}
≥ 2	2	4	$I V$	A_{2}
2	≥ 3	$n+6$	I_{n}^{*}	D_{n+4}
≥ 2	3	$n+6$	I_{n}^{*}	D_{n+4}
≥ 3	4	8	$I V^{*}$	\mathcal{E}_{6}
3	≥ 5	9	$I I I^{*}$	\mathcal{E}_{7}
≥ 4	5	10	$I I^{*}$	\mathcal{E}_{8}

Table 1: Kodaira's classification of Elliptic Singularities with respect to the vanishing order of f, g, Δ.

Useful algorithm for local description: Tate's form
Procedure: (see Katz et al 1106:3854) Expand f, g

$$
f(z)=\sum_{n} f_{n} z^{n}, g(z)=\sum_{m} g_{m} z^{m}
$$

Then

$$
\left.\Delta=4\left[f_{0}+f_{1} z+\cdots\right)\right]^{3}+27\left[g_{0}+g_{1} z+\cdots\right]^{2}
$$

Demand $z / \Delta \Rightarrow$

$$
f_{0}=-\frac{1}{3} t^{2}, \quad g_{0}=\frac{2}{27} t^{3}
$$

while $\mathcal{W E}$ obtains Tate's $\mathbf{I}_{\mathbf{1}}$ form:

$$
y^{2}=x^{3}+t x^{2}+\left(f_{1}+f_{2} z+\cdots\right) z x+\left(\tilde{g}_{1}+\tilde{g}_{2} z+\cdots\right) z
$$

Tate's Form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

The algorithm (Partial results)

Group	a_{1}	a_{2}	a_{3}	a_{4}	a_{6}	Δ
$S U(2 n)$	0	1	n	n	$2 n$	$2 n$
$S U(2 n+1)$	0	1	n	$n+1$	$2 n+1$	$2 n+1$
$S O(10)$	1	1	2	3	5	7
\mathcal{E}_{6}	1	2	3	3	5	8
\mathcal{E}_{7}	1	2	3	3	5	9
\mathcal{E}_{8}	1	2	3	4	5	10

F-theory: Model Building

GUTs associated to 7 -branes wrapping certain class of 'internal' 2-complex dim. surface S

© The precise gauge group is determined by the singular fibers over the surface \mathbf{S}.
© Elliptic Fibration: Highest singularity is E_{8}
Δ Gauge symmetry: any E_{8} subgroup:

$$
\mathcal{E}_{8} \rightarrow \mathbf{G}_{\text {GUT }} \times \mathcal{C}_{\text {spectral cover }}
$$

\star Spectral Cover \rightrightarrows useful local properties of $G_{G U T}$
Δ Sensible choice: $G_{G U T}=S U(5)$
(a single condition $c_{1}(\mathcal{L}) \cdot c_{1}(\mathcal{L})=-2$ ensures absence of exotics)

Matter is localised along intersections with other 7-branes...

Along a matter curve Σ gauge symmetry is enhanced...

Yukawa couplings are formed at triple intersections...

where gauge symmetry is further enhanced:

$$
\begin{gathered}
\lambda_{b} 10 \cdot \overline{5} \cdot \overline{5} \in S O(12) \\
\lambda_{t} 10 \cdot 10 \cdot 5 \in E_{6}
\end{gathered}
$$

Symmetry enhancements for $S U(5)$.

$G_{S}=S U(5): \quad$ Singularity enhancement:
\triangle Matter curves accommodating $\overline{\mathbf{5}}$ are associated with $S U(6)$

$$
\begin{aligned}
\Sigma_{\overline{5}}=S \cap S_{\overline{5}} & \Rightarrow S U(5) \rightarrow S U(6) \\
\operatorname{ad}_{S U_{6}}=35 & \rightarrow 24_{0}+1_{0}+5_{6}+\overline{5}_{-6}
\end{aligned}
$$

Δ Matter curves accommodating 10 are associated with $S O(10)$

$$
\begin{aligned}
\Sigma_{10}=S \cap S_{10} & \Rightarrow S U(5) \rightarrow S O(10) \\
\operatorname{ad}_{S O_{10}}=45 & \rightarrow 24_{0}+1_{0}+10_{4}+\overline{10}_{-4}
\end{aligned}
$$

Δ Further enhancement in triple intersections \rightarrow Yukawas:

$$
\begin{aligned}
S O(10) \equiv E_{5} & \Rightarrow \quad E_{6} \rightarrow 10 \cdot 10 \cdot 5 \\
S U(6) & \Rightarrow S O(12) \rightarrow 10 \cdot \overline{5} \cdot \overline{5}
\end{aligned}
$$

Δ Matter fields are represented by wavefunctions ψ_{i}, ϕ on the intersections of 7-branes with \mathbf{S}.

Matter Wavefunctions fall off rapidly away from the curves

Yukawa coupling \propto integral of overlapping wavefunctions at the intersection

$$
\lambda_{i j} \sim \int_{S} \psi_{U}^{j} \psi_{Q}^{i} \psi_{H}
$$

Integral's main dependence is on local details near the intersection \Rightarrow reliable $\lambda_{i j}$-estimation without knowing global geometry!

Mechanisms for Fermion mass hierarchy
∇ If all three families are on the same matter curve, masses to lighter families can be generated by:
$i)$ non-commutative fluxes Cecotti et al, 0910.0477
ii) non-perturbative effects, Aparicio et al, 1104.2609
$\boldsymbol{\nabla}$ If families are distributed on different matter curves:
Implementation of Froggatt-Nielsen mechanism,
Dudas and Palti, 0912.0853
GKL and G.G. Ross, 1009.6000
$\Delta \Delta$ Combined mechanism:
Only two families on the same matter curve

Origin and Nature of Family Symmetries

In F-theory all matter descends from the E_{8}-adjoint decomposition We already assumed

$$
E_{8} \rightarrow S U(5)_{G U T} \times S U(5)_{\perp}
$$

therefore

$$
248=(24,1)+\left(1,24_{\perp}\right)+\left(10,5_{\perp}\right)+\left(\overline{5}, 10_{\perp}\right)+\left(5, \overline{10}_{\perp}\right)+(\overline{10}, \overline{5})_{\perp}
$$

Interpretation from geometric point of view: $S U(5)_{G U T}$ fields reside on matter curves:

$$
\begin{align*}
\Sigma_{10_{t_{i}}} & : n_{10} \times 10_{t_{i}}+\bar{n}_{\overline{10}} \times \overline{10}_{-t_{i}} \tag{4}\\
\Sigma_{5_{t_{i}+t_{j}}} & : n_{5} \times \overline{5}_{t_{i}+t_{j}}+\bar{n}_{\overline{5}} \times 5_{-t_{i}-t_{j}} \tag{5}
\end{align*}
$$

Families on different curves distinguished by roots $t_{i}, t_{j} \in S U(5)_{\perp}$

* Monodromies reduce $S U(5)_{\perp}$ symmetry

Geometric equivalent description useful to local F-theory:

Spectral Cover Description:

* local patch around GUT singularity described by

$$
\mathcal{C}_{5}=\prod_{i=1}^{5}\left(s-t_{i}\right)=b_{0} s^{5}+b_{2} s^{3}+b_{3} s^{2}+b_{4} s+b_{5}=0, \quad b_{1}=0
$$

coefficients $b_{k}(\in \mathcal{F})$ carry information of geometry...

* $S U(5)_{\perp}$ breaking corresponds to any of the possible spittings of the Spectral Cover:

$$
\begin{aligned}
& \mathcal{C}_{5} \rightarrow \mathcal{C}_{4} \times \mathcal{C}_{1} \\
& \mathcal{C}_{5} \rightarrow \mathcal{C}_{3} \times \mathcal{C}_{2}
\end{aligned}
$$

* Examples

Δ Application: The $\mathcal{C}_{4} \times \mathcal{C}_{1}$ case
Δ Motivation: The neutrino sector
$\Delta \mathcal{C}_{4} \times \mathcal{C}_{1}$ implies the splitting of the polynomial in two factors

$$
\sum b_{k} s^{5-k}=(\underbrace{a_{1}+a_{2} s+a_{3} s^{2}+a_{4} s^{3}+a_{5} s^{4}}_{\mathcal{C}_{4}})(\underbrace{a_{6}+a_{7} s}_{\mathcal{C}_{1}})
$$

Topological properties of a_{i} are fixed in terms of those of b_{k}, by equating coefficients of same powers of s

$$
b_{0}=a_{5} a_{7}, b_{5}=a_{1} a_{6}, \text { etc } \ldots
$$

Moreover:
$\Delta \mathcal{C}_{1}$: associated to a $\mathcal{U}(1)$
$\Delta \mathcal{C}_{4}$: reduction to (i) continuous $S U(4)$ subgroup, or (ii) to Galois group $\in S_{4}$ (see also Marsano et al 0906.4672)

Properties and Residual Spectral Cover Symmetry

Δ If $\mathcal{H} \in S_{4}$ the Galois group, final symmetry of the model is:

$$
S U(5)_{G U T} \times \underbrace{\mathcal{H} \times \mathcal{U}(1)}_{\text {family symmetry }}
$$

\triangle The final subgroup $\mathcal{H} \in S_{4}$ is linked to specific topological properties of the polynomial coefficients a_{i}.
Δa_{i} coefficients determine useful properties of the model, such as
i) Geometric symmetries $\rightarrow \mathcal{R}$-parity
ii) Flux restrictions on the matter curves
Δ Fluxes determine useful properties on the matter curves including :

Multiplicities and Chirality of matter/Higgs representations

Determining the Galois group in \mathcal{C}_{4}-spectral cover
In order to find out which is the Galois group, we examine partially symmetric functions of roots t_{i} (Lagrange method)
1.) The Discriminant Δ

$$
\Delta=\delta^{2} \text { where } \delta=\prod_{i<j}\left(t_{i}-t_{j}\right)
$$

δ is invariant under S_{4}-even permutations $\Rightarrow \mathcal{A}_{4}$
Δ symmetric \rightarrow can be expressed in terms of coefficients $a_{i} \in \mathcal{F}$

$$
\Delta\left(t_{i}\right) \rightarrow \Delta\left(a_{i}\right)
$$

If $\Delta=\delta^{2}$, such that $\delta\left(a_{i}\right) \in \mathcal{F}$, then

$$
\mathcal{H} \subseteq \mathcal{A}_{4} \text { or } V_{4} \quad(=\text { Klein group })
$$

If $\Delta \neq \delta^{2}$, (i.e. $\delta\left(a_{i}\right) \notin \mathcal{F}$), then

$$
\mathcal{H} \subseteq \mathcal{S}_{4} \text { or } \mathcal{D}_{4}
$$

2.) To study possible reductions of S_{4}, A_{4} to their subgroups, another partially symmetric function should be examined:

$$
\begin{gathered}
f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \\
x_{1}=t_{1} t_{2}+t_{3} t_{4}, \quad x_{2}=t_{1} t_{3}+t_{2} t_{4}, \quad x_{3}=t_{2} t_{3}+t_{1} t_{4}
\end{gathered}
$$

$x_{1,2,3}$ are invariant under the three Dihedral groups $D_{4} \in S_{4}$.
Combined results of Δ and $f(x)$:

	$\Delta \neq \delta^{2}$	$\Delta=\delta^{2}$
$f(x)$ irreducible	S_{4}	A_{4}
$f(x)$ reducible	D_{4}, Z_{4}	V_{4}

The induced restrictions on the coefficients a_{i}

1. Tracelessness condition $b_{1}=0$ demands

$$
a_{4}=a_{0} a_{6}, \quad a_{5}=-a_{0} a_{7}
$$

2. The requirement that the discriminant is a square $\Delta=\delta^{2}$ imposes the following relations among a_{i} :

$$
a_{1}=e_{1}^{2}, a_{2}^{2}=\mu a_{1} a_{3}, \quad a_{3}^{2} \rightarrow \lambda a_{0} a_{1} a_{7}
$$

3. Reducibility of the function $f(x)$ is achieved if

$$
f(0)=4 a_{5} a_{3} a_{1}-a_{1} a_{4}^{2}-a_{5} a_{2}^{2}=0
$$

$1^{\text {st }}$ Example: \mathcal{A}_{4}
Gauge Symmetry: $\mathbf{S U (5)} \mathbf{G U T} \times \mathbf{A}_{\mathbf{4}} \times \mathbf{U}(\mathbf{1})$

$F=(10,3)$	t_{a}	$F=\left(Q, u^{c}, e^{c}\right)$
$F_{x}=(10,1)$	t_{s}	$F_{x}=\left(Q, u^{c}, e^{c}\right)$
$\bar{F}_{y}=(\overline{10}, 1)_{-t_{5}}$	$-t_{5}$	$\bar{F}=\left(\bar{Q}, \bar{u}^{c}, \bar{e}^{c}\right)$
$H=\overline{(5,3)}$	$t_{s} \pm t_{a}$	h_{u}
$\bar{f}=(\overline{5}, 3)_{+t_{5}}$	$\frac{1}{4}\left(t_{s}-t_{a}\right)+t_{5}$	$\bar{f}_{i}=\left(\ell, d^{c}\right)_{i}$
$\bar{H}=(\overline{5}, 1)_{+t_{5}}$	$\frac{1}{4}\left(t_{s}+3 t_{a}\right)+t_{5}$	\bar{h}_{d}
$\theta_{a}=(1,3)$	0	$\theta_{i j}$
$\theta_{b}=(1,3)$	t_{a}	$\theta_{i 4}$
$\theta_{c}=(1,3)_{-t_{5}}$	$\frac{1}{4}\left(t_{s}-t_{a}\right)-t_{5}$	$\theta_{i 5}$
$\theta^{\prime}=\left(1,1^{\prime}\right)_{-t_{5}}$		θ_{45}
$\theta^{\prime \prime}=\left(1,1^{\prime \prime}\right)_{+t_{5}}$		θ_{54}

Yukawa terms

$1^{\text {st }}$ choice: $3 \times\left(Q, u^{c}, e^{c}\right) \in F=(10,3) \rightarrow$ tree-level coupling:

$$
\mathcal{W}_{u} \supset(10,3)_{t_{i}}(10,3)_{t_{i}}(5,3)_{-2 t_{i}}
$$

\rightarrow Wrong quark mass relations!
$2^{n d}$ choice: $3 \times\left(Q, u^{c}, e^{c}\right) \in F_{x}=(10,1) \rightarrow$ fourth-order coupling:

$$
\frac{1}{\Lambda}(10,1)(10,1)(5,3)(1,3) \leftrightarrow \lambda_{t} F_{x} F_{x} H \theta_{b}
$$

In this case, lighter generations receive masses from non-commutative fluxes and/or non-perturbative effects
Neutrinos

$$
\mathcal{W}_{\nu} \supset \frac{1}{\Lambda^{3}}(\overline{5}, 3)_{t_{i}+t_{5}}(\overline{5}, 3)_{t_{i}+t_{5}}(5,3)_{-2 t_{i}}(5,3)_{-2 t_{i}} \theta_{i 5} \theta_{i 5}
$$

$\mathcal{F}-\mathcal{A}_{4}$ has a rich neutrino sector Example

Take the vevs: $\left\langle\theta_{(1,3)}\right\rangle \sim a_{i},\left\langle h_{(5,3)}\right\rangle \sim v_{i}$

$$
\begin{aligned}
\left\{a_{1} \rightarrow 1, a_{2}\right. & \left.\rightarrow 0, a_{3} \rightarrow 0, v_{1} \rightarrow 0, v_{3} \rightarrow v_{2}\right\} \\
m_{\nu} & \propto\left(\begin{array}{lll}
2 & 1 c & 1 c \\
1 c & 13 & -4 c \\
1 c & -4 c & 13
\end{array}\right)
\end{aligned}
$$

with c accounting for corrections (charged leptons, etc).
For $c=2$ we get the right mixing, and the mass ratio $\Delta m_{23}^{2} / \Delta m_{13}^{2} \sim 10$ close to the expected value.
$\triangle 2^{\text {nd }}$ Example : $S U(5)_{G U T} \times Z_{2} \times Z_{2} \times U(1)$
Spectral cover equation and field content:

$$
\mathcal{C}_{5}(s)=\left(a_{3} s^{2}+a_{2} s+a_{1}\right)\left(a_{6} s^{2}+a_{5} s+a_{4}\right)\left(a_{7}+a_{8} s\right)
$$

$S U(5)$	$U(1)_{Y}$-flux	$U(1)_{X}$	SM spectrum
$10_{t_{1,2}}^{(1)}$	0	2	$2 \times\left(Q, u^{c}, e^{c}\right)$
$10_{t_{3}}^{(2)}$	1	1	$\left(1 \times Q,-, 2 \times e^{c}\right)$
$10_{t_{5}}^{(3)}$	-1	0	$\left(-, 1 \times u^{c}, 1 \times \bar{e}^{c}\right)$
$5_{-t_{1}-t_{2}}^{(0)}$	0	1	$1 \times\left(d, h_{u}\right)$
$5_{-t_{1,2}-t_{3}}^{(1)}$	0	-1	$1 \times\left(d^{c}, \ell\right)$
$5_{-t_{1,2}-t_{5}}^{(2)}$	0	-1	$1 \times\left(d^{c}, \ell\right)$
$5_{-t_{3,4}-t_{5}}^{(3)}$	-1	0	$1 \times\left(h_{d},-\right)$
$5_{-t_{3}-t_{4}}^{(4)}$	1	-2	$\left(2 \times d^{c}, 1 \times \ell\right)$

The Neutrino Sector

Left handed neutrinos are in the following fiveplets

$$
\nu_{1} \in \overline{5}_{t_{3}+t_{4}}, \nu_{2} \in \overline{5}_{t_{1}+t_{5}}, \nu_{3} \in \overline{5}_{t_{1}+t_{3}}
$$

Their Right Handed partners can be sought among KK-modes of the singlet fields $\theta_{i j}^{K K}$ (Antoniadis et al hep-th/0210263) In $F-S U(5)$ however,

$$
\theta_{i j}^{K K} \rightarrow \nu^{c} ; \theta_{j i}^{K K} \rightarrow \bar{\nu}^{c}, \Rightarrow \nu^{c} \neq \bar{\nu}^{c}
$$

Remarkably, due to the monodromies (Vafa et al 0904.1419)

$$
\theta_{12}^{K K} \equiv \theta_{21}^{K K} \rightarrow \nu_{a}^{c}=\bar{\nu}_{a}^{c}, \theta_{34}^{K K} \equiv \theta_{43}^{K K} \rightarrow \bar{\nu}_{b}^{c}=\nu_{b}^{c}
$$

A convenient arrangement on matter curves:

$$
\nu_{1}^{c}=\nu_{a}^{c}, \nu_{2}^{c}=\nu_{b}^{c}, \nu_{3}^{c}=\nu_{b}^{c}
$$

* The effective neutrino mass matrix

$$
m_{\nu}^{e f f}=m_{\nu_{D}} M_{R}^{-1} m_{\nu_{D}}^{T}
$$

Assumptions:
Δ Kaluza-Klein scale \sim GUT scale, $M_{K K} \sim M_{X}$
Δ Singlet vevs $\frac{\left\langle\theta_{i j}\right\rangle}{M_{X}} \rightarrow a, b, c$, such that $r=\frac{b}{a}<a, c<1$

$$
m_{\nu}^{e f f} \approx\left(\begin{array}{ccc}
2 a^{2} & a(c+r) & a \\
a(c+r) & c^{2}+r^{2} & r \\
a & r & 1
\end{array}\right) \frac{m_{0}^{2}}{M_{X}}
$$

- To leading order, Mixing effects are linked to singlet vevs a, b, c
Δ Consistency check: mixing $\left(V_{\nu}\right)_{i j}$ should be derived for $a, b, c<1$
(a, c) restricted region, from all $V_{i j}$ elements

A few remarks

* Current F-Theory Models provide a dictionary between: Manifold Singularity \leftrightarrows Gauge Symmetry $G_{G U T}$ $\mathcal{E}_{8} \rightarrow \mathbf{G}_{\text {GUT }} \times \mathcal{C}_{\text {spectral cover }}$ Spectral Cover provides Additional Structure beyond GUTs
$\mathcal{C}_{\text {spectral cover }} \rightarrow$ Finite Groups such as $A_{4}, D_{4}, V_{4}=Z_{2} \times Z_{2}$
* A natural way to interpret the peculiar Neutrino properties

This way, the neutrino physics is linked directly to the topological properties of the internal manifold

Additional Material...

Matter Parity from Geometry?

topological properties are encoded in b_{k} coefficients
Consider the phase transformation (Hayashi et al, 0910:2762)

$$
s \rightarrow s e^{i \phi}, b_{k} \rightarrow b_{k} e^{i(\xi-(6-k) \phi)}
$$

Let's apply to $S U(5)$ case:
...spectral cover equation picks up an overall phase

$$
\mathcal{C}_{5}: \sum_{k} b_{k} s^{5-k} \rightarrow e^{i(\xi-\phi)} \sum_{k} b_{k} s^{5-k}
$$

Z_{2}-parity: $\phi=\pi$:

$$
s \rightarrow-s, b_{k} \rightarrow(-1)^{k} e^{i \xi} b_{k}
$$

Communicating Matter Parity to Matter Curves

Example: Consider relations in \mathcal{Z}_{2} monodromy:

$$
\begin{equation*}
b_{k}=\sum a_{l} a_{m} a_{n}, \quad l+m+n=N-k, N=17 \tag{6}
\end{equation*}
$$

Choose a_{n} to transform as

$$
\begin{align*}
a_{n} & \rightarrow a_{n} e^{i(\zeta-n \phi)} \\
\rightarrow b_{k} \propto a_{l} a_{m} a_{n} & \rightarrow a_{l} a_{m} a_{n} e^{3 \zeta-(N-k) \phi} \tag{7}
\end{align*}
$$

(6) \& (7) consistent for $\xi=\phi=\pi, \zeta=0$,

$$
a_{n} \rightarrow(-1)^{n} a_{n}
$$

Implications on matter curves:

$$
5^{(0)} \sim a_{6} a_{7} \rightarrow(-1)^{(6+7)}=(-)
$$

... associate this to matter parity!

$$
\left(\begin{array}{ccc}
2 a^{4} & a^{2}(b+a c) & a^{3} \\
a^{2}(b+a c) & \frac{-2 b c M_{X} a^{3}+c^{2} M a^{2}+b^{2} M}{M-a^{2} M_{X}} & \frac{a b M-a^{4} c M_{X}}{M-a^{2} M_{X}} \\
a^{3} & \frac{a b M-a^{4} c M_{X}}{M-a^{2} M_{X}} & \frac{a^{2} M}{M-a^{2} M_{X}}
\end{array}\right) m_{\nu_{0}}
$$

roots $\sum_{i} s_{i}=0$ identified with $S U(5)_{\perp}$ Cartan subalgebra:

$$
Q_{t}=\operatorname{diag}\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\}
$$

* Matter curves characterised by t_{i} 's

Polynomial coefficients depend on t_{i}

$$
b_{k}=b_{k}\left(t_{i}\right)
$$

Inversion implies branchcuts! \Rightarrow..Simplest monodromy Z_{2} : :

$$
a_{1}+a_{2} s+a_{3} s^{2}=0 \rightarrow s_{1,2}=\frac{-a_{2} \pm \sqrt{w}}{2 a_{3}}
$$

Under $\theta \rightarrow \theta+2 \pi \rightarrow \sqrt{w} \rightarrow-\sqrt{w}$ branes interchange locations

$$
s_{1} \leftrightarrow s_{2} \text { or } t_{1} \leftrightarrow t_{2}
$$

$2 \mathrm{U}(1)$'s related by monodromies ... gauge symmetry reduces to:

$$
S U(5) \times U(1)^{4} \rightarrow \mathbf{S U}(\mathbf{5}) \times \mathbf{U}(\mathbf{1})^{3}
$$

Weierstrass' equation for the $S U(5)$ singularity

$$
y^{2}=x^{3}+b_{0} z^{5}+b_{2} x z^{3}+b_{3} y z^{2}+b_{4} x^{2} z+b_{5} x y
$$

\rightarrow spectral cover obtained by defining homogeneous coordinates

$$
z \rightarrow U, x \rightarrow V^{2}, y \rightarrow V^{3}, s=U / V
$$

so Weierstrass becomes

$$
0=b_{0} s^{5}+b_{2} s^{3}+b_{3} s^{2}+b_{4} s+b_{5}
$$

