Crete June 2013

Neutrino mass textures from String symmetries

George Leontaris

Ioannina University GREECE

based on:

I. Antoniadis & GKL, 1205.6930 and work in progress...

Outline of the Talk

- ▲ Neutrino Data
- ▲ Basic ingredients of F-theory model building
- ▲ Mechanisms for fermion mass hierarchy
- \blacktriangle Spectral cover description
- ▲ Classification of related discrete symmetries
- \blacktriangle Examples of SU(5) constructions
- ▲ Applications to neutrino physics

▲ Neutrino data

$$\begin{cases} V_{\ell} : & V_{\ell}^{\dagger} m_{\ell} V_{\ell} = m_{\ell}^{diag.} \\ V_{\nu} : & V_{\nu}^{\dagger} m_{\nu} V_{\nu} = m_{\nu}^{diag.} \end{cases} \Rightarrow V = V_{\ell}^{\dagger} V_{\nu}$$
(1)

▲ circa 2000: Tri-Bi maximal mixing:

$$\sin^2 \theta_{12} = \frac{1}{3}, \ \sin^2 \theta_{23} = \frac{1}{2}, \ \theta_{13} = 0$$

$$V_{TB} = V_l^{\dagger} V_{m{
u}} = egin{pmatrix} -\sqrt{2 \over 3} & rac{1}{\sqrt{3}} & 0 \ rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & -rac{1}{\sqrt{2}} \ rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} \ rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} \end{pmatrix}$$

 $\land \rightarrow Theory Invariant under Finite Symmetries S_4, A_4 \cdots$

 $\sim 2010 \ data \ suggest: \ TB$ -mixing not exact!

$$\theta_{23} \neq \frac{\pi}{4} \quad \theta_{13} \approx \frac{\pi}{20} \neq 0$$

▲ Discrete Anatomy of the Neutrino Mass Textures: ▲ → Expressing m_{ν} in terms of Finite Group Elements:

$$m_{\nu} = \sum_{i} c_i U_i$$

 \rightarrow unique solution compatible with experimental data: (... N.D. Vlachos)

$$V = \begin{pmatrix} \sqrt{\frac{2}{3}} - \frac{s^2}{2} & -\frac{1}{\sqrt{3}} & s \\ \sqrt{\frac{1}{6}} - \frac{s^4}{2} + \frac{\sqrt{3s}}{2} & \frac{1}{\sqrt{3}} & -\frac{\sqrt{1 - \frac{3s^2}{2}} - \frac{s}{\sqrt{2}}}{\sqrt{2}} \\ \sqrt{\frac{1}{6}} - \frac{s^4}{2} - \frac{\sqrt{3s}}{2} & \frac{1}{\sqrt{3}} & \frac{\sqrt{1 - \frac{3s^2}{2}} + \frac{s}{\sqrt{2}}}{\sqrt{2}} \end{pmatrix}$$

with $s = \sin \theta_{13}$.

 \star F-theory (C. Vafa hep-th/9602022)

- ▲ Defined on a background $\mathcal{R}^{3,1} \times \mathcal{X}$
- $\land \mathcal{X}$ elliptically fibered **CY** 4-fold over B_3
- $\land B_3$ complex 3-fold base.

CY 4-fold: Points of B_3 represented by torus $\tau = C_0 + i/g_s$. Red points: 7-branes, \perp to B_3

Fibration is described by the \mathcal{W} eierstraß \mathcal{E} quation ($\mathcal{W}\mathcal{E}$)

$$y^2 = x^3 + f(z)x + g(z)$$
 (2)

x, y parameters of the fibration $f(z), g(z) \rightarrow 8 \& 12$ degree polynomials in z.

For each point of B_3 , eq(2) describes a torus labeled by z

The fiber degenerates at the zeros of the discriminant

$$\Delta = 4 f^3 + 27 g^2 \tag{3}$$

 $\Delta = 0 \Rightarrow$ singularity of internal manifold

 \Downarrow

Interpretation of geometric singularities

(Witten, hep-th/9507121, Bershadsky et al, hep-th/9510225;)

• Singularities of Internal Manifold \rightleftharpoons gauge symmetries

... encoded in the structure of f(z), g(z)

- Types of **singularities** : ADE (Kodaira classif.) ... they determine:
 - A) gauge symmetries

$$\rightarrow \begin{cases} SU(n) \\ SO(m) \\ \mathcal{E}_n \end{cases}$$

B) matter content

$\operatorname{ord}(f(z))$	$\operatorname{ord} g(z))$	$\operatorname{ord}(\Delta(z))$	fiber type	Singularity
0	0	n	I_n	A_{n-1}
≥ 1	1	2	II	none
1	≥ 2	3	III	A_1
≥ 2	2	4	IV	A_2
2	≥ 3	n+6	I_n^*	D_{n+4}
≥ 2	3	n+6	I_n^*	D_{n+4}
≥ 3	4	8	IV^*	\mathcal{E}_6
3	≥ 5	9	III^*	\mathcal{E}_7
≥ 4	5	10	II^*	\mathcal{E}_8

Table 1: Kodaira's classification of Elliptic Singularities with respect to the vanishing order of f, g, Δ .

Useful algorithm for local description: Tate's form **Procedure:** (see Katz et al 1106:3854) Expand f, g

$$f(z) = \sum_{n} f_n z^n, \ g(z) = \sum_{m} g_m z^m$$

Then

$$\Delta = 4 \left[f_0 + f_1 z + \cdots \right]^3 + 27 \left[g_0 + g_1 z + \cdots \right]^2$$

Demand $z/\Delta \Rightarrow$

$$f_0 = -rac{1}{3} t^2, \ \ g_0 = rac{2}{27} t^3$$

while \mathcal{WE} obtains Tate's $\mathbf{I_1}$ form:

$$y^2 = x^3 + t x^2 + (f_1 + f_2 z + \cdots) z x + (\tilde{g}_1 + \tilde{g}_2 z + \cdots) z$$

Tate's Form

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}$$

The algorithm (*Partial results*)

Group	a_1	a_2	a_3	a_4	a_6	Δ
SU(2n)	0	1	n	n	2n	2n
SU(2n+1)	0	1	n	n+1	2n + 1	2n + 1
SO(10)	1	1	2	3	5	7
\mathcal{E}_6	1	2	3	3	5	8
\mathcal{E}_7	1	2	3	3	5	9
\mathcal{E}_8	1	2	3	4	5	10

F-theory: Model Building GUTs associated to 7-branes wrapping certain class of 'internal' 2-complex dim. surface S $\rightarrow Z_1$ Z_2 SU5 S

▲ The precise gauge group is determined by the singular fibers over the surface S.

- \blacktriangle Elliptic Fibration: Highest singularity is E_8
- \blacktriangle Gauge symmetry: any E_8 subgroup:

 $\mathcal{E}_8 \to \mathbf{G_{GUT}} \times \mathcal{C}_{\mathrm{spectral\,cover}}$

★ Spectral Cover \Rightarrow useful local properties of G_{GUT}

▲ Sensible choice: $G_{GUT} = SU(5)$ (a single condition $c_1(\mathcal{L}) \cdot c_1(\mathcal{L}) = -2$ ensures absence of exotics)

$$\lambda_b \, 10 \cdot \bar{5} \cdot \bar{5} \, \in SO(12)$$
$$\lambda_t \, 10 \cdot 10 \cdot 5 \in E_6$$

 $G_S = SU(5)$: Singularity enhancement: \checkmark Matter curves accommodating $\overline{5}$ are associated with SU(6) $\Sigma_{\overline{5}} = S \cap S_{\overline{5}} \Rightarrow SU(5) \rightarrow SU(6)$ $\mathrm{ad}_{SU_6} = 35 \Rightarrow 24_0 + 1_0 + 5_6 + \overline{5}_{-6}$ \checkmark Matter curves accommodating 10 are associated with SO(10)

$$\Sigma_{10} = S \cap S_{10} \quad \Rightarrow \quad SU(5) \to SO(10)$$
$$\operatorname{ad}_{SO_{10}} = 45 \quad \to \quad 24_0 + 1_0 + 10_4 + \overline{10}_{-4}$$

 \checkmark Further enhancement in triple intersections \rightarrow **Yukawas**:

$$SO(10) \equiv E_5 \implies E_6 \rightarrow \mathbf{10} \cdot \mathbf{10} \cdot \mathbf{5}$$

 $SU(6) \implies SO(12) \rightarrow \mathbf{10} \cdot \mathbf{\overline{5}} \cdot \mathbf{\overline{5}}$

▲ Matter fields are represented by wavefunctions ψ_i , ϕ on the intersections of 7-branes with **S**.

Integral's main dependence is on local details near the intersection \Rightarrow reliable λ_{ij} -estimation without knowing global geometry!

Mechanisms for Fermion mass hierarchy

▼ If all three families are on the same matter curve, masses to lighter families can be generated by:

i) non-commutative fluxes Cecotti et al, 0910.0477

ii) non-perturbative effects, Aparicio et al, 1104.2609

▼ If families are distributed on different matter curves: Implementation of Froggatt-Nielsen mechanism, Dudas and Palti, 0912.0853 GKL and G.G. Ross, 1009.6000

▲▲ Combined mechanism:

Only two families on the same matter curve

\star Origin and Nature of Family Symmetries \star

In F-theory all matter descends from the E_8 -adjoint decomposition We already assumed

 $E_8 \rightarrow SU(5)_{GUT} \times SU(5)_{\perp}$

therefore

 $248 = (24,1) + (1,24_{\perp}) + (10,5_{\perp}) + (\overline{5},10_{\perp}) + (\overline{5},\overline{10}_{\perp}) + (\overline{10},\overline{5})_{\perp}$

Interpretation from geometric point of view: $SU(5)_{GUT}$ fields reside on matter curves:

$$\Sigma_{10_{t_i}} : n_{10} \times 10_{t_i} + \bar{n}_{\bar{10}} \times \overline{10}_{-t_i}$$
(4)

$$\Sigma_{\mathbf{5}_{t_i+t_j}} : n_5 \times \overline{\mathbf{5}}_{t_i+t_j} + \bar{n}_{\bar{5}} \times \mathbf{5}_{-t_i-t_j}$$
(5)

Families on different curves distinguished by roots $t_i, t_j \in SU(5)_{\perp}$

 \star Monodromies reduce $SU(5)_{\perp}$ symmetry \star

Geometric equivalent description useful to local F-theory:

Spectral Cover Description:

 \star local patch around GUT singularity described by

$$\mathcal{C}_5 = \prod_{i=1}^5 (s - t_i) = b_0 s^5 + b_2 s^3 + b_3 s^2 + b_4 s + b_5 = 0, \quad b_1 = 0$$

coefficients $b_k \ (\in \mathcal{F})$ carry information of geometry...

★ $SU(5)_{\perp}$ breaking corresponds to any of the possible spittings of the *Spectral Cover*:

$$\begin{array}{rcl} \mathcal{C}_5 & \to & \mathcal{C}_4 \times \mathcal{C}_1 \\ \\ \mathcal{C}_5 & \to & \mathcal{C}_3 \times \mathcal{C}_2 \end{array}$$

\leftarrow Examples \bigstar

- ▲ Application: The $C_4 \times C_1$ case
- ▲ Motivation: The neutrino sector
- $\land \mathcal{C}_4 \times \mathcal{C}_1$ implies the splitting of the polynomial in two factors

$$\sum b_k s^{5-k} = (\underbrace{a_1 + a_2 s + a_3 s^2 + a_4 s^3 + a_5 s^4}_{\mathcal{C}_4})(\underbrace{a_6 + a_7 s}_{\mathcal{C}_1})$$

Topological properties of a_i are fixed in terms of those of b_k , by equating coefficients of same powers of s

$$b_0 = a_5 a_7, \ b_5 = a_1 a_6, \ etc...$$

Moreover:

- $\wedge \mathcal{C}_1$: associated to a $\mathcal{U}(1)$
- $\land C_4$: reduction to (i) continuous SU(4) subgroup, or
- (*ii*) to Galois group $\in S_4$ (see also Marsano et al 0906.4672)

Properties and Residual Spectral Cover Symmetry

▲ If $\mathcal{H} \in S_4$ the **Galois** group, final symmetry of the model is:

 $SU(5)_{GUT} \times \mathcal{H} \times \mathcal{U}(1)$

family symmetry

▲ The final subgroup $\mathcal{H} \in S_4$ is linked to specific topological properties of the polynomial coefficients a_i .

 \land a_i coefficients determine useful properties of the model, such as

i) Geometric symmetries $\rightarrow \mathcal{R}$ -parity

ii) **Flux** restrictions on the matter curves

▲ Fluxes determine useful properties on the matter curves including :

Multiplicities and Chirality of matter/Higgs representations

Determining the Galois group in C_4 -spectral cover In order to find out which is the Galois group, we examine *partially symmetric* functions of roots t_i (Lagrange method)

1.) The Discriminant Δ

$$\Delta = \delta^2$$
 where $\delta = \prod_{i < j} (t_i - t_j)$

 δ is invariant under S_4 -even permutations $\Rightarrow \mathcal{A}_4$ Δ symmetric \rightarrow can be expressed in terms of coefficients $a_i \in \mathcal{F}$

 $\Delta(t_i) \rightarrow \Delta(a_i)$

If $\Delta = \delta^2$, such that $\delta(a_i) \in \mathcal{F}$, then

 $\mathcal{H} \subseteq \mathcal{A}_4 \text{ or } V_4 \ (= Klein \ group)$

If $\Delta \neq \delta^2$, (i.e. $\delta(a_i) \notin \mathcal{F}$), then

 $\mathcal{H} \subseteq \mathcal{S}_4 \text{ or } \mathcal{D}_4$

2.) To study possible reductions of S_4 , A_4 to their subgroups, another partially symmetric function should be examined:

 $f(x) = (x - x_1)(x - x_2)(x - x_3)$

 $x_1 = t_1 t_2 + t_3 t_4, \ x_2 = t_1 t_3 + t_2 t_4, \ x_3 = t_2 t_3 + t_1 t_4$

 $x_{1,2,3}$ are invariant under the three *Dihedral groups* $D_4 \in S_4$.

Combined results of Δ and f(x):

	$\Delta eq \delta^2$	$\Delta = \delta^2$
f(x) irreducible	S_4	A_4
f(x) reducible	D_4, Z_4	V_4

The induced restrictions on the coefficients a_i

1. Tracelessness condition $b_1 = 0$ demands

$$a_4 = a_0 a_6, \quad a_5 = -a_0 a_7$$

2. The requirement that the discriminant is a square $\Delta = \delta^2$ imposes the following relations among a_i :

$$a_1 = e_1^2, \ a_2^2 = \mu a_1 a_3, \ a_3^2 \to \lambda a_0 a_1 a_7$$

3. Reducibility of the function f(x) is achieved if

$$f(0) = 4a_5a_3a_1 - a_1a_4^2 - a_5a_2^2 = 0$$

▲ 1^{st} Example : \mathcal{A}_4 Gauge Symmetry: $\mathbf{SU}(5)_{\mathbf{GUT}} \times \mathbf{A}_4 \times \mathbf{U}(1)$				
F = (10, 3)	t_a	$F = (Q, u^c, e^c)$		
$F_x = (10, 1)$	t_s	$F_x = (Q, u^c, e^c)$		
$\bar{F}_y = (\overline{10}, 1)_{-t_5}$	$-t_{5}$	$\bar{F} = (\bar{Q}, \bar{u}^c, \bar{e}^c)$		
$H = \overline{(5,3)}$	$t_s \pm t_a$	h_u		
$\bar{f} = (\bar{5}, 3)_{+t_5}$	$\frac{1}{4}(t_s - t_a) + t_5$	$\bar{f}_i = (\ell, d^c)_i$		
$\bar{H} = (\bar{5}, 1)_{+t_5}$	$\frac{1}{4}(t_s+3t_a)+t_5$	\overline{h}_d		
$\theta_a = (1,3)$	0	$ heta_{ij}$		
$\theta_b = (1,3)$	t_a	$ heta_{i4}$		
$\theta_c = (1,3)_{-t_5}$	$\frac{1}{4}(t_s - t_a) - t_5$	$ heta_{i5}$		
$\theta' = (1, 1')_{-t_5}$		$ heta_{45}$		
$\theta'' = (1, 1'')_{+t_5}$		$ heta_{54}$		

Yukawa terms

 1^{st} choice: $3 \times (Q, u^c, e^c) \in F = (10, 3) \rightarrow$ tree-level coupling:

 $\mathcal{W}_u \supset (10,3)_{t_i} (10,3)_{t_i} (5,3)_{-2t_i}$

 \rightarrow Wrong quark mass relations! 2^{nd} choice: $3 \times (Q, u^c, e^c) \in F_x = (10, 1) \rightarrow$ fourth-order coupling:

$$\frac{1}{\Lambda} (10,1) (10,1) (5,3) (1,3) \leftrightarrow \lambda_t F_x F_x H \theta_b$$

In this case, lighter generations receive masses from non-commutative fluxes and/or non-perturbative effects Neutrinos

$$\mathcal{W}_{\nu} \supset \frac{1}{\Lambda^{3}} (\bar{5}, 3)_{t_{i}+t_{5}} (\bar{5}, 3)_{t_{i}+t_{5}} (5, 3)_{-2t_{i}} (5, 3)_{-2t_{i}} \theta_{i5} \theta_{i5}$$

$\mathcal{F} - \mathcal{A}_4$ has a rich neutrino sector Example

Take the vevs: $\langle \theta_{(1,3)} \rangle \sim a_i, \langle h_{(5,3)} \rangle \sim v_i$

$$\{a_1 \to 1, a_2 \to 0, a_3 \to 0, v_1 \to 0, v_3 \to v_2\}$$

$$m_{\nu} \propto \left(\begin{array}{ccc} 2 & 1 \, c & 1 \, c \\ 1 \, c & 13 & -4 \, c \\ 1 \, c & -4 \, c & 13 \end{array}\right)$$

with c accounting for corrections (charged leptons, etc). For c = 2 we get the right mixing, and the mass ratio $\Delta m_{23}^2 / \Delta m_{13}^2 \sim 10$ close to the expected value. ▲ $2^{nd}Example : SU(5)_{GUT} \times Z_2 \times Z_2 \times U(1)$ Spectral cover equation and field content:

$$\mathcal{C}_5(s) = \left(a_3s^2 + a_2s + a_1\right)\left(a_6s^2 + a_5s + a_4\right)\left(a_7 + a_8s\right)$$

SU(5)	$U(1)_Y$ -flux	$U(1)_X$	SM spectrum
$10^{(1)}_{t_{1,2}}$	0	2	$2 \times (Q, u^c, e^c)$
$10_{t_3}^{(2)}$	1	1	$(1 \times Q, -, 2 \times e^c)$
$10_{t_5}^{(3)}$	-1	0	$(-, 1 \times u^c, 1 \times \overline{e}^c)$
$5^{(0)}_{-t_1-t_2}$	0	1	$1 \times (d, h_u)$
$5^{(1)}_{-t_{1,2}-t_3}$	0	-1	$1 imes (d^c, \ell)$
$5^{(2)}_{-t_{1,2}-t_5}$	0	-1	$1 imes (d^c, \ell)$
$5^{(3)}_{-t_{3,4}-t_5}$	-1	0	$1 \times (h_d, -)$
$5^{(4)}_{-t_3-t_4}$	1	-2	$(2 \times d^c, 1 \times \ell)$

The Neutrino Sector

Left handed neutrinos are in the following fiveplets

$$\nu_1 \in \bar{5}_{t_3+t_4}, \ \nu_2 \in \bar{5}_{t_1+t_5}, \ \nu_3 \in \bar{5}_{t_1+t_3}$$

Their Right Handed partners can be sought among KK-modes of the singlet fields θ_{ij}^{KK} (Antoniadis et al hep-th/0210263) In F - SU(5) however,

$$\theta_{ij}^{KK} \to \nu^c; \; \theta_{ji}^{KK} \to \bar{\nu}^c, \Rightarrow \nu^c \neq \bar{\nu}^c$$

Remarkably, due to the monodromies (Vafa et al 0904.1419)

$$\theta_{12}^{KK} \equiv \theta_{21}^{KK} \rightarrow \nu_a^c = \bar{\nu}_a^c, \ \theta_{34}^{KK} \equiv \theta_{43}^{KK} \rightarrow \bar{\nu}_b^c = \nu_b^c$$

A convenient arrangement on matter curves:

$$\nu_1^c = \nu_a^c, \ \nu_2^c = \nu_b^c, \ \nu_3^c = \nu_b^c$$

 \star The effective neutrino mass matrix

$$m_{\nu}^{eff} = m_{\nu_D} \, M_R^{-1} m_{\nu_D}^T$$

Assumptions:

- ▲ Kaluza-Klein scale ~ GUT scale, $M_{KK} \sim M_X$
- ▲ Singlet vevs $\frac{\langle \theta_{ij} \rangle}{M_X} \to a, b, c$, such that $r = \frac{b}{a} < a, c < 1$

$$m_{\nu}^{eff} \approx \begin{pmatrix} 2a^2 & a(c+r) & a \\ a(c+r) & c^2+r^2 & r \\ a & r & 1 \end{pmatrix} \frac{m_0^2}{M_X}$$

To leading order, Mixing effects are linked to singlet vevs a, b, c
 ▲ Consistency check: mixing (V_ν)_{ij} should be derived for a, b, c < 1

A few remarks

★ Current **F-Theory** Models provide a dictionary between: **Manifold Singularity** \subseteq **Gauge Symmetry** G_{GUT}

 $\mathcal{E}_8 \to \mathbf{G}_{\mathbf{GUT}} \times \mathcal{C}_{\mathrm{spectral cover}}$

Spectral Cover provides Additional Structure beyond GUTs

\downarrow

 $\star \mathcal{C}_{\text{spectral cover}} \rightarrow Finite \ Groups \ such \ as \ A_4, D_4, V_4 = Z_2 \times Z_2$

\downarrow

 ★ A natural way to interpret the peculiar Neutrino properties
 This way, the neutrino physics is linked directly to the topological properties of the internal manifold

Additional Material...

Matter Parity from Geometry?

topological properties are encoded in b_k coefficients

Consider the phase transformation (Hayashi et al, 0910:2762)

 $s \to s e^{i\phi}, \ b_k \to b_k e^{i(\xi - (6-k)\phi)}$

Let's apply to SU(5) case:

...spectral cover equation picks up an overall phase

$$\mathcal{C}_5: \sum_k b_k s^{5-k} \to e^{i(\xi - \phi)} \sum_k b_k s^{5-k}$$

 $\star Z_2$ -parity: $\phi = \pi$:

$$s \to -s, \ b_k \to (-1)^k e^{i\xi} b_k$$

★ Communicating Matter Parity to Matter Curves ★ **Example**: Consider relations in \mathbb{Z}_2 monodromy:

$$b_k = \sum a_l a_m a_n, \quad l + m + n = N - k, \ N = 17$$
 (6)

Choose a_n to transform as

 $a_n \to a_n \, e^{i(\zeta - n \, \phi)}$

$$\rightarrow b_k \propto a_l a_m a_n \rightarrow a_l a_m a_n e^{3\zeta - (N-k)\phi} \tag{7}$$

(6) & (7) consistent for $\xi = \phi = \pi, \zeta = 0$,

$$a_n \to (-1)^n a_n$$

 \star Implications on matter curves:

$$5^{(0)} \sim a_6 a_7 \to (-1)^{(6+7)} = (-)$$

... associate this to matter parity!

$$\begin{pmatrix} 2a^{4} & a^{2}(b+ac) & a^{3} \\ a^{2}(b+ac) & \frac{-2bcM_{X}a^{3}+c^{2}Ma^{2}+b^{2}M}{M-a^{2}M_{X}} & \frac{abM-a^{4}cM_{X}}{M-a^{2}M_{X}} \\ a^{3} & \frac{abM-a^{4}cM_{X}}{M-a^{2}M_{X}} & \frac{a^{2}M}{M-a^{2}M_{X}} \end{pmatrix} m_{\nu_{0}}$$

roots $\sum_{i} s_{i} = 0$ identified with $SU(5)_{\perp}$ Cartan subalgebra:

 $Q_t = \text{diag}\{t_1, t_2, t_3, t_4, t_5\}$

★ Matter curves characterised by t_i 's Polynomial coefficients depend on t_i

 $b_k = b_k(\mathbf{t_i})$

Inversion implies **branchcuts**! \Rightarrow ...Simplest monodromy Z_2 : :

$$a_1 + a_2 s + a_3 s^2 = 0 \rightarrow s_{1,2} = \frac{-a_2 \pm \sqrt{w}}{2a_3}$$

Under $\theta \to \theta + 2\pi \to \sqrt{w} \to -\sqrt{w}$ branes interchange locations

 $s_1 \leftrightarrow s_2 \text{ or } t_1 \leftrightarrow t_2$

2 U(1)'s related by monodromies ... gauge symmetry reduces to:

 $SU(5) \times U(1)^4 \to \mathbf{SU(5)} \times \mathbf{U(1)^3}$

Weierstrass' equation for the SU(5) singularity

$$y^{2} = x^{3} + b_{0}z^{5} + b_{2}xz^{3} + b_{3}yz^{2} + b_{4}x^{2}z + b_{5}xy$$

 \rightarrow spectral cover obtained by defining homogeneous coordinates

$$z \to U, x \to V^2, y \to V^3, s = U/V$$

so Weierstrass becomes

$$0 = b_0 s^5 + b_2 s^3 + b_3 s^2 + b_4 s + b_5$$