Minimal Model Holography (From Large N to Large \mathcal{N})

Rajesh Gopakumar

Harish-Chandra Research Institute Allahabad, India

7th Crete Regional Meeting Kolymbari, 21st Jun., 2013

프 (프)

< 67 ▶

Plan of the Talk

• Quick Overview of Vector Coset Holography

The things we have learnt. Novel features and the need for a string embedding.

• The large $\mathcal{N} = 4$ SUSY case

Motivation - why focus on this case? The HS theory and the dual coset.

• Relation to String Theory on $AdS_3 \times S^3 \times S^3 \times S^1$

Described by a non-abelian Vasiliev theory? Evidence.

3 🖌 🖌 3

Boundary 2d CFT

- ^G/_H WZW theories are solvable. There is an intricate spectrum (for any N) and correlators computable. As a bonus, in many cases, genuinely non-supersymmetric.
- Presence of a large unbroken higher spin symmetry (W_N or often much larger) in an interacting theory.
- A 'tHooft like large N limit appears to be sensible.

< 回 > < 三 > < 三 >

Boundary 2d CFT

- ^G/_H WZW theories are solvable. There is an intricate spectrum (for any N) and correlators computable. As a bonus, in many cases, genuinely non-supersymmetric.
- Presence of a large unbroken higher spin symmetry (W_N or often much larger) in an interacting theory.
- A 'tHooft like large N limit appears to be sensible.

Boundary 2d CFT

- ^G/_H WZW theories are solvable. There is an intricate spectrum (for any N) and correlators computable. As a bonus, in many cases, genuinely non-supersymmetric.
- Presence of a large unbroken higher spin symmetry (W_N or often much larger) in an interacting theory.
- A 'tHooft like large N limit appears to be sensible.

Bulk AdS₃

- Higher spin gauge fields (*s* = 2, 3...) in *AdS*₃ are non-propagating (though can have propagating scalars/fermions).
- Classical Vasiliev theories describing them are relatively tractable "string-field-theory-lite". Many non-trivial classical solutions.
- Can already see novel string-like generalizations of geometry.
- Perhaps these Vasiliev theories are related to conventional AdS₃ string theories (in a tensionless limit).

Bulk AdS₃

- Higher spin gauge fields (s = 2, 3...) in AdS_3 are non-propagating (though can have propagating scalars/fermions).
- Classical Vasiliev theories describing them are relatively tractable -"string-field-theory-lite". Many non-trivial classical solutions.
- Can already see novel string-like generalizations of geometry.
- Perhaps these Vasiliev theories are related to conventional AdS₃ string theories (in a tensionless limit).

Bulk AdS₃

- Higher spin gauge fields (s = 2, 3...) in AdS_3 are non-propagating (though can have propagating scalars/fermions).
- Classical Vasiliev theories describing them are relatively tractable -"string-field-theory-lite". Many non-trivial classical solutions.
- Can already see novel string-like generalizations of geometry.
- Perhaps these Vasiliev theories are related to conventional AdS₃ string theories (in a tensionless limit).

Bulk AdS₃

- Higher spin gauge fields (s = 2, 3...) in AdS_3 are non-propagating (though can have propagating scalars/fermions).
- Classical Vasiliev theories describing them are relatively tractable -"string-field-theory-lite". Many non-trivial classical solutions.
- Can already see novel string-like generalizations of geometry.
- Perhaps these Vasiliev theories are related to conventional AdS₃ string theories (in a tensionless limit).

Bulk AdS₃

- Higher spin gauge fields (s = 2, 3...) in AdS_3 are non-propagating (though can have propagating scalars/fermions).
- Classical Vasiliev theories describing them are relatively tractable -"string-field-theory-lite". Many non-trivial classical solutions.
- Can already see novel string-like generalizations of geometry.
- Perhaps these Vasiliev theories are related to conventional AdS₃ string theories (in a tensionless limit).

Two kinds of Coset Dualities

Vector-Like Cosets: Central charge $c \propto N$. For example W_N minimal models

 $\frac{SU(N)_k \times SU(N)_1}{SU(N)_{k+1}}.$

Take $k, N \rightarrow \infty$ with ratio fixed. (Gaberdiel and R. G.)

(人間) トイヨト イヨト

Two kinds of Coset Dualities

Matrix-Like Cosets: Central charge $c \propto N^2$. For example, extended W_N models

 $\frac{SU(N)_k \times SU(N)_\ell}{SU(N)_{k+\ell}}.$

Take $k, \ell, N \to \infty$ with ratios fixed. E.g. when $k = \ell = N$ (R. G., Hashimoto, Klebanov, Schoutens, Sachdev). Also other examples Niarchos, Kiritsis; Creutzig-Hikida-Ronne. Presumably dual to a full fledged AdS_3 string theory. Background not yet

identified.

イロト 不得下 イヨト イヨト 二日

Vector Coset Holography

The CFT: Minimal W_N series (generalising the Virasoro unitary series for N = 2)

 $\frac{SU(N)_k \times SU(N)_1}{SU(N)_{k+1}}.$

A line of fixed points when $k, N \to \infty$ (labelled by 'tHooft coupling $0 \le \lambda = \frac{N}{N+k} \le 1$) with $c_N(\lambda) = N(1 - \lambda^2)$.

The Bulk: Vasiliev higher spin theory in AdS_3 with (infinite dimensional) gauge group $hs[\lambda]$ coupled to one complex scalar of mass

$$M^2 = -1 + \lambda^2.$$

Central charge $c = \frac{3R_{AdS}}{2G_N}$ (Campoleoni et.al., Henneaux-Rey) i.e. $G_N \propto \frac{1}{N}$.

イロト 不得下 イヨト イヨト 二日

Vector Coset Holography

The CFT: Minimal W_N series (generalising the Virasoro unitary series for N = 2)

 $\frac{SU(N)_k \times SU(N)_1}{SU(N)_{k+1}}.$

A line of fixed points when $k, N \to \infty$ (labelled by 'tHooft coupling $0 \le \lambda = \frac{N}{N+k} \le 1$) with $c_N(\lambda) = N(1-\lambda^2)$.

The Bulk: Vasiliev higher spin theory in AdS_3 with (infinite dimensional) gauge group $hs[\lambda]$ coupled to one complex scalar of mass

$$M^2 = -1 + \lambda^2.$$

Central charge $c = \frac{3R_{AdS}}{2G_N}$ (Campoleoni et.al., Henneaux-Rey) i.e. $G_N \propto \frac{1}{N}$.

イロト 不得下 イヨト イヨト 二日

Matching symmetries

- Underlying $\mathcal{W}_{\infty}[\lambda]$ symmetry.
- At finite N, (i.e. finite c) both sides have W_N symmetry due to a nontrivial equivalence of the quantum W_∞[λ] symmetry algebra (Gaberdiel-R.G.).
- Powerful non-linear symmetry which largely constrains the structure of the theory.

Matching Spectrum

- Perturbative excitations. (Gaberdiel-R.G.-Hartman-Raju) quanta of gravitons, scalars and higher spin fields.
- Non-perturbative excitations ("conical defects") (Castro-R.G.-Gutperle-Raeymakers; Perlmutter, Prochazka, Raeymakers). Related by analytic continuation to a class of "light states" (bound to perturbative quanta).
- Black Hole States. (Kraus-Perlmutter, Gaberdiel-Hartman-Jin) Growth of CFT states matches the entropy at asymptotically high temperatures.

Matching Spectrum

- Perturbative excitations. (Gaberdiel-R.G.-Hartman-Raju) quanta of gravitons, scalars and higher spin fields.
- Non-perturbative excitations ("conical defects") (Castro-R.G.-Gutperle-Raeymakers; Perlmutter, Prochazka, Raeymakers). Related by analytic continuation to a class of "light states" (bound to perturbative quanta).
- Black Hole States. (Kraus-Perlmutter, Gaberdiel-Hartman-Jin) Growth of CFT states matches the entropy at asymptotically high temperatures.

Matching Spectrum

- Perturbative excitations. (Gaberdiel-R.G.-Hartman-Raju) quanta of gravitons, scalars and higher spin fields.
- Non-perturbative excitations ("conical defects") (Castro-R.G.-Gutperle-Raeymakers; Perlmutter, Prochazka, Raeymakers). Related by analytic continuation to a class of "light states" (bound to perturbative quanta).
- Black Hole States. (Kraus-Perlmutter, Gaberdiel-Hartman-Jin) Growth of CFT states matches the entropy at asymptotically high temperatures.

<ロ> (日) (日) (日) (日) (日)

Correlation Functions

- Matching of three point functions of scalars and currents. Large *N* factorisation of multi-trace operators (Chang-Yin, Kraus-Perlmutter, Papadodimas-Raju).
- Two point correlator on torus calculated for any *N*. Need to take large *N* limit (Chang-Yin).

(3)

Correlation Functions

- Matching of three point functions of scalars and currents. Large *N* factorisation of multi-trace operators (Chang-Yin, Kraus-Perlmutter, Papadodimas-Raju).
- Two point correlator on torus calculated for any *N*. Need to take large *N* limit (Chang-Yin).

		Overview		
	Generalisations			
 Can be generalized to other 2d vector cosets with SO(N) (Ahn, Gaberdiel-Vollenweider) 				
	$\sim \mathcal{N} = 1.2 \text{ Kaza}$			Desserie

- $\mathcal{N} = 1, 2$ Kazama-Suzuki models (Creutzig-Hikida-Ronne; Beccaria et.al.).
- Large $\mathcal{N} = 4$ Cosets and relation to String theory on $AdS_3 \times S^3 \times S^3 \times S^1$ (Gaberdiel-R.G.).

Analogue of 3d/4d proposal relating vector models (in general with Chern-Simons interactions) to higher spin/string theories on AdS_4 . (Klebanov-Polyakov; Sezgin-Sundell; Giombi-Yin ; GMPTWY; Aharony et.al.; Chang et.al.) Many parallels (as well as differences - cf. Maldacena-Zhiboedev) between the two cases.

	Overview		
Generalisations			
• Can be gener Gaberdiel-Voll	N) (Ahn,		
• $\mathcal{N}=1,2$ Kaz	ama-Suzuki mode	ls (Creutzig-Hikida-Ronne	e; Beccaria

- et.al.). -4 Cosets and relation to String theory on
- Large $\mathcal{N} = 4$ Cosets and relation to String theory on $AdS_3 \times S^3 \times S^3 \times S^1$ (Gaberdiel-R.G.).

Analogue of 3d/4d proposal relating vector models (in general with Chern-Simons interactions) to higher spin/string theories on AdS_4 . (Klebanov-Polyakov; Sezgin-Sundell; Giombi-Yin ; GMPTWY; Aharony et.al.; Chang et.al.) Many parallels (as well as differences - cf. Maldacena-Zhiboedev) between the two cases.

	Plan of the Talk	Overview		String Theory		
	Generalisations					
	 Can be generali Gaberdiel-Volleny 	• Can be generalized to other 2d vector cosets with <i>SO(N)</i> (Ahn, Gaberdiel-Vollenweider)				
• $\mathcal{N} = 1,2$ Kazama-Suzuki models (Creutzig-F			dels (Creutzig-Hikida-Ronne;	Beccaria		

• Large $\mathcal{N} = 4$ Cosets and relation to String theory on $AdS_3 \times S^3 \times S^3 \times S^1$ (Gaberdiel-R.G.).

Analogue of 3d/4d proposal relating vector models (in general with Chern-Simons interactions) to higher spin/string theories on AdS_4 . (Klebanov-Polyakov; Sezgin-Sundell; Giombi-Yin ; GMPTWY; Aharony et.al.; Chang et.al.) Many parallels (as well as differences - cf. Maldacena-Zhiboedev) between the two cases.

	Plan of the Talk	Overview		String Theory		
	Generalisations					
	 Can be generali Gaberdiel-Volleny 	• Can be generalized to other 2d vector cosets with <i>SO(N)</i> (Ahn, Gaberdiel-Vollenweider)				
• $\mathcal{N} = 1,2$ Kazama-Suzuki models (Creutzig-F			dels (Creutzig-Hikida-Ronne;	Beccaria		

• Large $\mathcal{N} = 4$ Cosets and relation to String theory on $AdS_3 \times S^3 \times S^3 \times S^1$ (Gaberdiel-R.G.).

Analogue of 3d/4d proposal relating vector models (in general with Chern-Simons interactions) to higher spin/string theories on AdS_4 . (Klebanov-Polyakov; Sezgin-Sundell; Giombi-Yin ; GMPTWY; Aharony et.al.; Chang et.al.) Many parallels (as well as differences - cf. Maldacena-Zhiboedev) between the two cases.

Plan of the Talk	Overview	Large $\mathcal{N} = 4$	String Theory
Generalisations			
 Can be gener Gaberdiel-Voll 	vector cosets with SO(N) (Ahn,	
$- N - 1.2 K_{2}$	ama Suzuki mada	le (Croutzie Hilida Danna	. Deservis

- $\mathcal{N} = 1, 2$ Kazama-Suzuki models (Creutzig-Hikida-Ronne; Beccaria et.al.).
- Large $\mathcal{N} = 4$ Cosets and relation to String theory on $AdS_3 \times S^3 \times S^3 \times S^1$ (Gaberdiel-R.G.).

Analogue of 3d/4d proposal relating vector models (in general with Chern-Simons interactions) to higher spin/string theories on AdS_4 . (Klebanov-Polyakov; Sezgin-Sundell; Giombi-Yin ; GMPTWY; Aharony et.al.; Chang et.al.) Many parallels (as well as differences - cf. Maldacena-Zhiboedev) between the two cases.

(日) (同) (日) (日)

- How does AdS/CFT work in a non-SUSY context?
- Exploit higher spin symmetry as a substitute for SUSY to constrain dynamics and extract information.
- Opens up the possibility to study holographic duals of solved large N 2d QFTs (generically massive) e.g. 't Hooft model of QCD₂.
- Integrate solvable 2d theories into the framework of gauge-string dualities and gain a general understanding of the domain of applicability of these ideas.
- Can try to address the tension between integrability and thermalisation (formation of black holes) in a simple situation. (cf. Gautam's talk)
- Toy model for understanding features of stringy geometry in a gauge invariant way. How does one talk about a horizon and its thermal entropy? Also entanglement entropy de Boer-Jottar; Ammon et.al.).

- How does AdS/CFT work in a non-SUSY context?
- Exploit higher spin symmetry as a substitute for SUSY to constrain dynamics and extract information.
- Opens up the possibility to study holographic duals of solved large N 2d QFTs (generically massive) e.g. 't Hooft model of QCD₂.
- Integrate solvable 2d theories into the framework of gauge-string dualities and gain a general understanding of the domain of applicability of these ideas.
- Can try to address the tension between integrability and thermalisation (formation of black holes) in a simple situation. (cf. Gautam's talk)
- Toy model for understanding features of stringy geometry in a gauge invariant way. How does one talk about a horizon and its thermal entropy? Also entanglement entropy de Boer-Jottar; Ammon et.al.).

- How does AdS/CFT work in a non-SUSY context?
- Exploit higher spin symmetry as a substitute for SUSY to constrain dynamics and extract information.
- Opens up the possibility to study holographic duals of solved large *N* 2d QFTs (generically massive) e.g. 't Hooft model of *QCD*₂.
- Integrate solvable 2d theories into the framework of gauge-string dualities and gain a general understanding of the domain of applicability of these ideas.
- Can try to address the tension between integrability and thermalisation (formation of black holes) in a simple situation. (cf. Gautam's talk)
- Toy model for understanding features of stringy geometry in a gauge invariant way. How does one talk about a horizon and its thermal entropy? Also entanglement entropy de Boer-Jottar; Ammon et.al.).

- How does AdS/CFT work in a non-SUSY context?
- Exploit higher spin symmetry as a substitute for SUSY to constrain dynamics and extract information.
- Opens up the possibility to study holographic duals of solved large *N* 2d QFTs (generically massive) e.g. 't Hooft model of *QCD*₂.
- Integrate solvable 2d theories into the framework of gauge-string dualities and gain a general understanding of the domain of applicability of these ideas.
- Can try to address the tension between integrability and thermalisation (formation of black holes) in a simple situation. (cf. Gautam's talk)
- Toy model for understanding features of stringy geometry in a gauge invariant way. How does one talk about a horizon and its thermal entropy? Also entanglement entropy de Boer-Jottar; Ammon et.al.).

- How does AdS/CFT work in a non-SUSY context?
- Exploit higher spin symmetry as a substitute for SUSY to constrain dynamics and extract information.
- Opens up the possibility to study holographic duals of solved large *N* 2d QFTs (generically massive) e.g. 't Hooft model of *QCD*₂.
- Integrate solvable 2d theories into the framework of gauge-string dualities and gain a general understanding of the domain of applicability of these ideas.
- Can try to address the tension between integrability and thermalisation (formation of black holes) in a simple situation. (cf. Gautam's talk)
- Toy model for understanding features of stringy geometry in a gauge invariant way. How does one talk about a horizon and its thermal entropy? Also entanglement entropy de Boer-Jottar; Ammon et.al.).

- How does AdS/CFT work in a non-SUSY context?
- Exploit higher spin symmetry as a substitute for SUSY to constrain dynamics and extract information.
- Opens up the possibility to study holographic duals of solved large *N* 2d QFTs (generically massive) e.g. 't Hooft model of *QCD*₂.
- Integrate solvable 2d theories into the framework of gauge-string dualities and gain a general understanding of the domain of applicability of these ideas.
- Can try to address the tension between integrability and thermalisation (formation of black holes) in a simple situation. (cf. Gautam's talk)
- Toy model for understanding features of stringy geometry in a gauge invariant way. How does one talk about a horizon and its thermal entropy? Also entanglement entropy de Boer-Jottar; Ammon et.al.).

Can we fit in (HS AdS)/(vector CFT) examples into the general framework of Gauge-String dualities?

- Need to do so to make sense of some novel features.
- Dual CFTs on S¹ × ℝ (or on Σ_{g≥1} × ℝ) has a continuum of light states for N → ∞.
- No independent bulk prescription for computing quantum corrections (¹/_N corrections). An embedding into string theory would give a definition.

Are there tensionless non-SUSY *AdS*₃ string theories for non-SUSY cosets? Can we use Vasiliev theories as an intermediate step in proving SUSY gauge-string dualities?

イロト イヨト イヨト

Can we fit in (HS AdS)/(vector CFT) examples into the general framework of Gauge-String dualities?

- Need to do so to make sense of some novel features.
- Dual CFTs on S¹ × ℝ (or on Σ_{g≥1} × ℝ) has a continuum of light states for N → ∞.
- No independent bulk prescription for computing quantum corrections $(\frac{1}{N} \text{ corrections})$. An embedding into string theory would give a definition.

Are there tensionless non-SUSY AdS_3 string theories for non-SUSY cosets? Can we use Vasiliev theories as an intermediate step in proving SUSY gauge-string dualities?

Can we fit in (HS AdS)/(vector CFT) examples into the general framework of Gauge-String dualities?

- Need to do so to make sense of some novel features.
- Dual CFTs on S¹ × ℝ (or on Σ_{g≥1} × ℝ) has a continuum of light states for N → ∞.
- No independent bulk prescription for computing quantum corrections $(\frac{1}{N} \text{ corrections})$. An embedding into string theory would give a definition.

Are there tensionless non-SUSY AdS_3 string theories for non-SUSY cosets? Can we use Vasiliev theories as an intermediate step in proving SUSY gauge-string dualities?

Can we fit in (HS AdS)/(vector CFT) examples into the general framework of Gauge-String dualities?

- Need to do so to make sense of some novel features.
- Dual CFTs on S¹ × ℝ (or on Σ_{g≥1} × ℝ) has a continuum of light states for N → ∞.
- No independent bulk prescription for computing quantum corrections $(\frac{1}{N} \text{ corrections})$. An embedding into string theory would give a definition.

Are there tensionless non-SUSY AdS₃ string theories for non-SUSY cosets? Can we use Vasiliev theories as an intermediate step in proving SUSY gauge-string dualities?

Can we fit in (HS AdS)/(vector CFT) examples into the general framework of Gauge-String dualities?

- Need to do so to make sense of some novel features.
- Dual CFTs on S¹ × ℝ (or on Σ_{g≥1} × ℝ) has a continuum of light states for N → ∞.
- No independent bulk prescription for computing quantum corrections $(\frac{1}{N} \text{ corrections})$. An embedding into string theory would give a definition.

Are there tensionless non-SUSY AdS₃ string theories for non-SUSY cosets? Can we use Vasiliev theories as an intermediate step in proving SUSY gauge-string dualities?
HS AdS/CFT and Gauge-String Duality

Can we fit in (HS AdS)/(vector CFT) examples into the general framework of Gauge-String dualities?

- Need to do so to make sense of some novel features.
- Dual CFTs on S¹ × ℝ (or on Σ_{g≥1} × ℝ) has a continuum of light states for N → ∞.
- No independent bulk prescription for computing quantum corrections $(\frac{1}{N} \text{ corrections})$. An embedding into string theory would give a definition.

Are there tensionless non-SUSY AdS_3 string theories for non-SUSY cosets? Can we use Vasiliev theories as an intermediate step in proving SUSY gauge-string dualities?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- An *AdS*₃ background with a large amount of supersymmetry is much more constrained.
- Many backgrounds with $\mathcal{N} = 2$ SUSY but much fewer with $\mathcal{N} = 4$ (i.e. (4,4) SUSY).
- Analogue of ABJ theories in 3d dual to non-abelian Vasiliev theory and string theory on $AdS_4 \times \mathbb{C}P^4$ (Chang-Minwalla-Sharma-Yin).
- A general $\mathcal{N} = 4$ SCFT has the so-called large $\mathcal{N} = 4$ SUSY algebra.
- Contains *two* SU(2) Kac-Moody algebras (unlike a single SU(2) in the usual/small $\mathcal{N} = 4$ case). Labelled by a single parameter the ratio of the two levels.
- CFT dual to string theory on $AdS_3 \times S^3 \times S^3 \times S^1$ should have this large $\mathcal{N} = 4$ symmetry (Boonstra et.al., Elitzur et.al.).

- An *AdS*₃ background with a large amount of supersymmetry is much more constrained.
- Many backgrounds with $\mathcal{N}=2$ SUSY but much fewer with $\mathcal{N}=4$ (i.e. (4,4) SUSY).
- Analogue of ABJ theories in 3d dual to non-abelian Vasiliev theory and string theory on $AdS_4 \times \mathbb{C}P^4$ (Chang-Minwalla-Sharma-Yin).
- A general $\mathcal{N} = 4$ SCFT has the so-called large $\mathcal{N} = 4$ SUSY algebra.
- Contains two SU(2) Kac-Moody algebras (unlike a single SU(2) in the usual/small $\mathcal{N} = 4$ case). Labelled by a single parameter the ratio of the two levels.
- CFT dual to string theory on $AdS_3 \times S^3 \times S^3 \times S^1$ should have this large $\mathcal{N} = 4$ symmetry (Boonstra et.al., Elitzur et.al.).

- An *AdS*₃ background with a large amount of supersymmetry is much more constrained.
- Many backgrounds with $\mathcal{N} = 2$ SUSY but much fewer with $\mathcal{N} = 4$ (i.e. (4,4) SUSY).
- Analogue of ABJ theories in 3d dual to non-abelian Vasiliev theory and string theory on $AdS_4 \times \mathbb{C}P^4$ (Chang-Minwalla-Sharma-Yin).
- A general $\mathcal{N} = 4$ SCFT has the so-called large $\mathcal{N} = 4$ SUSY algebra.
- Contains two SU(2) Kac-Moody algebras (unlike a single SU(2) in the usual/small $\mathcal{N} = 4$ case). Labelled by a single parameter the ratio of the two levels.
- CFT dual to string theory on $AdS_3 \times S^3 \times S^3 \times S^1$ should have this large $\mathcal{N} = 4$ symmetry (Boonstra et.al., Elitzur et.al.).

- An *AdS*₃ background with a large amount of supersymmetry is much more constrained.
- Many backgrounds with $\mathcal{N} = 2$ SUSY but much fewer with $\mathcal{N} = 4$ (i.e. (4,4) SUSY).
- Analogue of ABJ theories in 3d dual to non-abelian Vasiliev theory and string theory on $AdS_4 \times \mathbb{C}P^4$ (Chang-Minwalla-Sharma-Yin).
- A general $\mathcal{N} = 4$ SCFT has the so-called large $\mathcal{N} = 4$ SUSY algebra.
- Contains two SU(2) Kac-Moody algebras (unlike a single SU(2) in the usual/small $\mathcal{N} = 4$ case). Labelled by a single parameter the ratio of the two levels.
- CFT dual to string theory on $AdS_3 \times S^3 \times S^3 \times S^1$ should have this large $\mathcal{N} = 4$ symmetry (Boonstra et.al., Elitzur et.al.).

- An *AdS*₃ background with a large amount of supersymmetry is much more constrained.
- Many backgrounds with $\mathcal{N}=2$ SUSY but much fewer with $\mathcal{N}=4$ (i.e. (4,4) SUSY).
- Analogue of ABJ theories in 3d dual to non-abelian Vasiliev theory and string theory on $AdS_4 \times \mathbb{C}P^4$ (Chang-Minwalla-Sharma-Yin).
- A general $\mathcal{N} = 4$ SCFT has the so-called large $\mathcal{N} = 4$ SUSY algebra.
- Contains *two* SU(2) Kac-Moody algebras (unlike a single SU(2) in the usual/small $\mathcal{N} = 4$ case). Labelled by a single parameter the ratio of the two levels.
- CFT dual to string theory on $AdS_3 \times S^3 \times S^3 \times S^1$ should have this large $\mathcal{N} = 4$ symmetry (Boonstra et.al., Elitzur et.al.).

• The global part of the large $\mathcal{N} = 4$ algebra is the $D(2, 1|\alpha)$ Lie superalgebra.

• Generated by $L_{0,\pm 1}, G_{+\frac{1}{2}}^{a}, A_{0}^{\pm,i}$.

$$\begin{split} & [L_m, L_n] = (m-n) L_{m+n}; \quad [L_m, G_r^a] = (\frac{m}{2} - r) G_{m+r}^a \\ & [A_0^{\pm,i}, G_r^a] = i \alpha_{ab}^{\pm i} G_r^b; \quad [A_0^{\pm,i}, A_0^{\pm,j}] = i \epsilon^{ijl} A_0^{\pm,l} \\ & \{G_r^a, G_s^b\} = 2\delta^{ab} L_{r+s} + 4(r-s) \left(\gamma i \alpha_{ab}^{+\,i} A_{r+s}^{+,i} + (1-\gamma) i \alpha_{ab}^{-\,i} A_{r+s}^{-,i}\right) , \end{split}$$

Here $\alpha = \frac{\gamma}{1-\gamma}$ is a free parameter of the algebra.

- The global part of the large $\mathcal{N} = 4$ algebra is the $D(2, 1|\alpha)$ Lie superalgebra.
- Generated by $L_{0,\pm 1}, G^a_{\pm \frac{1}{2}}, A^{\pm,i}_0$.

$$\begin{split} & [L_m, L_n] = (m-n) L_{m+n}; \quad [L_m, G_r^a] = (\frac{m}{2} - r) G_{m+r}^a \\ & [A_0^{\pm,i}, G_r^a] = i \alpha_{ab}^{\pm i} G_r^b; \quad [A_0^{\pm,i}, A_0^{\pm,j}] = i \epsilon^{ijl} A_0^{\pm,l} \\ & \{G_r^a, G_s^b\} = 2\delta^{ab} L_{r+s} + 4 (r-s) \left(\gamma i \alpha_{ab}^{+i} A_{r+s}^{+,i} + (1-\gamma) i \alpha_{ab}^{-i} A_{r+s}^{-,i}\right) , \end{split}$$

Here $\alpha = \frac{\gamma}{1-\gamma}$ is a free parameter of the algebra.

- The global part of the large $\mathcal{N} = 4$ algebra is the $D(2, 1|\alpha)$ Lie superalgebra.
- Generated by $L_{0,\pm 1}, G^a_{\pm \frac{1}{2}}, A^{\pm,i}_0$.

$$\begin{split} & [L_m, L_n] = (m-n) L_{m+n}; \quad [L_m, G_r^a] = (\frac{m}{2} - r) G_{m+r}^a \\ & [A_0^{\pm,i}, G_r^a] = i \alpha_{ab}^{\pm i} G_r^b; \quad [A_0^{\pm,i}, A_0^{\pm,j}] = i \epsilon^{ijl} A_0^{\pm,l} \\ & \{G_r^a, G_s^b\} = 2\delta^{ab} L_{r+s} + 4 (r-s) \left(\gamma i \alpha_{ab}^{+i} A_{r+s}^{+,i} + (1-\gamma) i \alpha_{ab}^{-i} A_{r+s}^{-,i}\right) , \end{split}$$

Here $\alpha = \frac{\gamma}{1-\gamma}$ is a free parameter of the algebra.

- The global part of the large $\mathcal{N} = 4$ algebra is the $D(2, 1|\alpha)$ Lie superalgebra.
- Generated by $L_{0,\pm 1}, G^a_{\pm \frac{1}{2}}, A^{\pm,i}_0$.

$$\begin{split} & [L_m, L_n] &= (m-n) \, L_{m+n}; \quad [L_m, G_r^a] = (\frac{m}{2} - r) G_{m+r}^a \\ & [A_0^{\pm,i}, G_r^a] &= \mathrm{i} \, \alpha_{ab}^{\pm\,i} \, G_r^b; \quad [A_0^{\pm,i}, A_0^{\pm,j}] = \mathrm{i} \, \epsilon^{ijl} A_0^{\pm,l} \\ & \{ G_r^a, G_s^b \} &= 2 \delta^{ab} \, L_{r+s} + 4 \, (r-s) \, \left(\gamma \, \mathrm{i} \, \alpha_{ab}^{+\,i} \, A_{r+s}^{+,i} + (1-\gamma) \, \mathrm{i} \, \alpha_{ab}^{-\,i} \, A_{r+s}^{-,i} \right) \,, \end{split}$$

Here $\alpha = \frac{\gamma}{1-\gamma}$ is a free parameter of the algebra.

Overview	Large $\mathcal{N}=4$	

- The full large $\mathcal{N} = 4$ algebra has Kac-Moody commutators with levels k^{\pm} for the $A_n^{\pm,i}$. (The parameter $\gamma = \frac{k^-}{k^+ + k^-}$).
- There are additional non-linear terms in G_r^a, G_s^b (bilinears in the $A^{\pm,i}$). (Goddard-Schwimmer).
- This defines the nonlinear large $\mathcal{N} = 4$ algebra.
- Jacobi identities for the algebra constrain the value of the central charge to be

$$c = \frac{6k^+k^-}{k^+ + k^-} - 3$$

Overview	Large $\mathcal{N}=4$	

- The full large $\mathcal{N} = 4$ algebra has Kac-Moody commutators with levels k^{\pm} for the $A_n^{\pm,i}$. (The parameter $\gamma = \frac{k^-}{k^+ + k^-}$).
- There are additional non-linear terms in G_r^a , G_s^b (bilinears in the $A^{\pm,i}$). (Goddard-Schwimmer).
- This defines the nonlinear large $\mathcal{N} = 4$ algebra.
- Jacobi identities for the algebra constrain the value of the central charge to be

$$c = \frac{6k^+k^-}{k^+ + k^-} - 3$$

Overview	Large $\mathcal{N}=4$	

- The full large $\mathcal{N} = 4$ algebra has Kac-Moody commutators with levels k^{\pm} for the $A_n^{\pm,i}$. (The parameter $\gamma = \frac{k^-}{k^+ + k^-}$).
- There are additional non-linear terms in G_r^a , G_s^b (bilinears in the $A^{\pm,i}$). (Goddard-Schwimmer).
- This defines the nonlinear large $\mathcal{N} = 4$ algebra.
- Jacobi identities for the algebra constrain the value of the central charge to be

$$c = \frac{6k^+k^-}{k^+ + k^-} - 3$$

Overview	Large $\mathcal{N}=4$	

- The full large $\mathcal{N} = 4$ algebra has Kac-Moody commutators with levels k^{\pm} for the $A_n^{\pm,i}$. (The parameter $\gamma = \frac{k^-}{k^+ + k^-}$).
- There are additional non-linear terms in G_r^a , G_s^b (bilinears in the $A^{\pm,i}$). (Goddard-Schwimmer).
- This defines the nonlinear large $\mathcal{N} = 4$ algebra.
- Jacobi identities for the algebra constrain the value of the central charge to be

$$c = \frac{6k^+k^-}{k^++k^-} - 3 \tag{1}$$

A B F A B F

Overview	Large $\mathcal{N}=4$	

- The full large $\mathcal{N} = 4$ algebra has Kac-Moody commutators with levels k^{\pm} for the $A_n^{\pm,i}$. (The parameter $\gamma = \frac{k^-}{k^+ + k^-}$).
- There are additional non-linear terms in G_r^a , G_s^b (bilinears in the $A^{\pm,i}$). (Goddard-Schwimmer).
- This defines the nonlinear large $\mathcal{N} = 4$ algebra.
- Jacobi identities for the algebra constrain the value of the central charge to be

$$c = \frac{6k^+k^-}{k^++k^-} - 3 \tag{1}$$

- String theory on $AdS_3 \times S^3 \times S^3 \times S^1$ preserves (4, 4) SUSY.
- Characterised by two D5 brane charges (fluxes) Q₅[±] and a D1 charge Q₁.
- Dual CFT should have two SU(2)'s with levels $k^{\pm} = Q_5^{\pm}Q_1$.
- Brown-Henneaux central charge given by $c = \frac{6Q_1Q_5^+Q_5^-}{Q_5^++Q_5^-}$
- One complex modulus interpolating from supergravity limit to tensionless limit.
- However, no candidate CFT dual for the general case.

• Even for $Q_5^+ = Q_5^-$, proposal of $Symm^{Q_1Q_5}(S^3 \times S^1)$ does not seem to work (Gukov et.al.). Mismatch of BPS states with supergravity.

(日) (同) (三) (三)

- String theory on $AdS_3 \times S^3 \times S^3 \times S^1$ preserves (4, 4) SUSY.
- Characterised by two D5 brane charges (fluxes) Q_5^{\pm} and a D1 charge Q_1 .
- Dual CFT should have two SU(2)'s with levels $k^{\pm} = Q_5^{\pm}Q_1$.
- Brown-Henneaux central charge given by $c = \frac{6Q_1Q_5^+Q_5^-}{Q_5^++Q_5^-}$
- One complex modulus interpolating from supergravity limit to tensionless limit.
- However, no candidate CFT dual for the general case.

• Even for $Q_5^+ = Q_5^-$, proposal of $Symm^{Q_1Q_5}(S^3 \times S^1)$ does not seem to work (Gukov et.al.). Mismatch of BPS states with supergravity.

(日) (周) (三) (三)

- String theory on $AdS_3 \times S^3 \times S^3 \times S^1$ preserves (4, 4) SUSY.
- Characterised by two D5 brane charges (fluxes) Q_5^{\pm} and a D1 charge Q_1 .
- Dual CFT should have two SU(2)'s with levels $k^{\pm} = Q_5^{\pm}Q_1$.
- Brown-Henneaux central charge given by $c = \frac{6Q_1Q_5^+Q_5^-}{Q_5^++Q_5^-}$
- One complex modulus interpolating from supergravity limit to tensionless limit.
- However, no candidate CFT dual for the general case.

• Even for $Q_5^+ = Q_5^-$, proposal of $Symm^{Q_1Q_5}(S^3 \times S^1)$ does not seem to work (Gukov et.al.). Mismatch of BPS states with supergravity.

(日) (周) (三) (三)

- String theory on $AdS_3 \times S^3 \times S^3 \times S^1$ preserves (4, 4) SUSY.
- Characterised by two D5 brane charges (fluxes) Q_5^{\pm} and a D1 charge Q_1 .
- Dual CFT should have two SU(2)'s with levels $k^{\pm} = Q_5^{\pm}Q_1$.
- Brown-Henneaux central charge given by $c = \frac{6Q_1Q_5^+Q_5^-}{Q_2^++Q_2^-}$.

• One complex modulus interpolating from supergravity limit to tensionless limit.

• However, no candidate CFT dual for the general case.

• Even for $Q_5^+ = Q_5^-$, proposal of $Symm^{Q_1Q_5}(S^3 \times S^1)$ does not seem to work (Gukov et.al.). Mismatch of BPS states with supergravity.

(日) (周) (三) (三)

- String theory on $AdS_3 \times S^3 \times S^3 \times S^1$ preserves (4, 4) SUSY.
- Characterised by two D5 brane charges (fluxes) Q_5^{\pm} and a D1 charge Q_1 .
- Dual CFT should have two SU(2)'s with levels $k^{\pm} = Q_5^{\pm}Q_1$.
- Brown-Henneaux central charge given by $c = \frac{6Q_1Q_5^+Q_5^-}{Q_2^++Q_2^-}$.
- One complex modulus interpolating from supergravity limit to tensionless limit.
- However, no candidate CFT dual for the general case.

• Even for $Q_5^+ = Q_5^-$, proposal of $Symm^{Q_1Q_5}(S^3 \times S^1)$ does not seem to work (Gukov et.al.). Mismatch of BPS states with supergravity.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- String theory on $AdS_3 \times S^3 \times S^3 \times S^1$ preserves (4, 4) SUSY.
- Characterised by two D5 brane charges (fluxes) Q_5^{\pm} and a D1 charge Q_1 .
- Dual CFT should have two SU(2)'s with levels $k^{\pm} = Q_5^{\pm}Q_1$.
- Brown-Henneaux central charge given by $c = \frac{6Q_1Q_5^+Q_5^-}{Q_2^++Q_2^-}$.
- One complex modulus interpolating from supergravity limit to tensionless limit.
- However, no candidate CFT dual for the general case.

• Even for $Q_5^+ = Q_5^-$, proposal of $Symm^{Q_1Q_5}(S^3 \times S^1)$ does not seem to work (Gukov et.al.). Mismatch of BPS states with supergravity.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- String theory on $AdS_3 \times S^3 \times S^3 \times S^1$ preserves (4, 4) SUSY.
- Characterised by two D5 brane charges (fluxes) Q_5^{\pm} and a D1 charge Q_1 .
- Dual CFT should have two SU(2)'s with levels $k^{\pm} = Q_5^{\pm}Q_1$.
- Brown-Henneaux central charge given by $c = \frac{6Q_1Q_5^+Q_5^-}{Q_2^++Q_2^-}$.
- One complex modulus interpolating from supergravity limit to tensionless limit.
- However, no candidate CFT dual for the general case.

• Even for $Q_5^+ = Q_5^-$, proposal of $Symm^{Q_1Q_5}(S^3 \times S^1)$ does not seem to work (Gukov et.al.). Mismatch of BPS states with supergravity.

イロト 不得下 イヨト イヨト 二日

Strategy: Start with a vector coset duality with large $\mathcal{N} = 4$. Then generalize to U(M) Vasiliev theory and identify a candidate M-extended coset for the string background (in the tensionless limit).

The CFT

 $\frac{\mathfrak{su}(N+2)_{\kappa}^{(1)}}{\mathfrak{su}(N)_{\kappa}^{(1)}} \cong \frac{\mathfrak{su}(N+2)_{k} \oplus \mathfrak{so}(4N+4)_{1}}{\mathfrak{su}(N)_{k+2}} .$ Here $c = \frac{6(k+1)(N+1)}{k+N+2}$. Take $k, N \to \infty$ keeping $\lambda = \frac{N+1}{N+k+2} = \gamma$ fixed.

Has large $\mathcal{N} = 4$ SUSY (van Proeyen et.al., Sevrin et.al.).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Strategy: Start with a vector coset duality with large $\mathcal{N} = 4$. Then generalize to U(M) Vasiliev theory and identify a candidate M-extended coset for the string background (in the tensionless limit).

The CFT

$$\frac{\mathfrak{su}(N+2)^{(1)}_{\kappa}}{\mathfrak{su}(N)^{(1)}_{\kappa}} \cong \frac{\mathfrak{su}(N+2)_k \oplus \mathfrak{so}(4N+4)_1}{\mathfrak{su}(N)_{k+2}} \ .$$

Here $c = \frac{6(k+1)(N+1)}{k+N+2}$. Take $k, N \to \infty$ keeping $\lambda = \frac{N+1}{N+k+2} = \gamma$ fixed.

Has large $\mathcal{N} = 4$ SUSY (van Proeyen et.al., Sevrin et.al.).

イロト 不得下 イヨト イヨト 二日

The Vasiliev theory

Bulk theory based on a higher spin algebra shs₂[γ] which has global superalgebra D(2,1|α).
 Just as hs[λ] has sl(2) as its global subalgebra.

• Realised by taking the $\mathcal{N} = 2$ supersymmetric Vasiliev theory (with algebra *shs*[γ]) and extending to 2 × 2 Chan-Paton factors.

(本部) (本語) (本語)

The Vasiliev theory

- Bulk theory based on a higher spin algebra shs₂[γ] which has global superalgebra D(2,1|α).
 Just as hs[λ] has sl(2) as its global subalgebra.
- Realised by taking the $\mathcal{N} = 2$ supersymmetric Vasiliev theory (with algebra *shs*[γ]) and extending to 2 × 2 Chan-Paton factors.

くほと くほと くほと

Spectrum

There are 8 fields of each spin s > 1 (seven with s = 1). They are organized into multiplets R^(s) of D(2, 1|α) as follows:

$$egin{array}{rll} s:&(\mathbf{1},\mathbf{1})\ s+rac{1}{2}:&(\mathbf{2},\mathbf{2})\ R^{(s)}:&s+1:&(\mathbf{3},\mathbf{1})\oplus(\mathbf{1},\mathbf{3})\ s+rac{3}{2}:&(\mathbf{2},\mathbf{2})\ s+2:&(\mathbf{1},\mathbf{1})\ . \end{array}$$

• Also two massive BPS multiplets of fields

$$\phi_+: (\mathbf{2},\mathbf{1})_{s=0} \oplus (\mathbf{1},\mathbf{2})_{s=rac{1}{2}} \;, \qquad \phi_-: (\mathbf{1},\mathbf{2})_{s=0} \oplus (\mathbf{2},\mathbf{1})_{s=rac{1}{2}} \;,$$

 ϕ_- has two complex scalars $M_-^2 = -1 + \gamma^2$ and two dirac fermions with $m^2 = (\gamma - \frac{1}{2})^2$. Similarly for ϕ_+ with $M_+^2 = -1 + (1 - \gamma)^2$.

Rajesh Gopakumar (HRI)

Min. Mod. Holography

Kriti-13 20 / 25

Spectrum

There are 8 fields of each spin s > 1 (seven with s = 1). They are organized into multiplets R^(s) of D(2, 1|α) as follows:

$$egin{array}{rll} s:&(\mathbf{1},\mathbf{1})\ s+rac{1}{2}:&(\mathbf{2},\mathbf{2})\ R^{(s)}:&s+1:&(\mathbf{3},\mathbf{1})\oplus(\mathbf{1},\mathbf{3})\ s+rac{3}{2}:&(\mathbf{2},\mathbf{2})\ s+2:&(\mathbf{1},\mathbf{1})\ . \end{array}$$

• Also two massive BPS multiplets of fields

$$\phi_+: (\mathbf{2}, \mathbf{1})_{s=0} \oplus (\mathbf{1}, \mathbf{2})_{s=\frac{1}{2}} , \qquad \phi_-: (\mathbf{1}, \mathbf{2})_{s=0} \oplus (\mathbf{2}, \mathbf{1})_{s=\frac{1}{2}} ,$$

 ϕ_{-} has two complex scalars $M_{-}^2 = -1 + \gamma^2$ and two dirac fermions with $m^2 = (\gamma - \frac{1}{2})^2$. Similarly for ϕ_{+} with $M_{+}^2 = -1 + (1 - \gamma)^2$. aiesh Gopakumar (HRI) Min. Mod. Holography Kriti-13 20 / 25

Comparison

• Higher spin symmetry currents of coset match the gauge fields of the Vasiliev theory.

• The basic (half BPS) primaries of the coset are (f; 0) and $(0; \overline{f})$ and

$$(f; 0) \leftrightarrow \phi_+ , \qquad (0; \overline{f}) \leftrightarrow \phi_- .$$

More generally, can match the (quarter BPS) primaries of the coset labelled by two SU(2) quantum numbers (ℓ⁺, ℓ⁻) (ℓ[±] = 0, ½, 1,...) with 2ℓ⁺ quanta of φ₊ and 2ℓ⁻ quanta of φ₋.

(日) (同) (三) (三)

Comparison

- Higher spin symmetry currents of coset match the gauge fields of the Vasiliev theory.
- The basic (half BPS) primaries of the coset are (f; 0) and $(0; \overline{f})$ and

$$(\mathbf{f};\mathbf{0})\leftrightarrow\phi_+\;,\qquad\qquad (\mathbf{0};\overline{\mathbf{f}})\leftrightarrow\phi_-\;.$$

More generally, can match the (quarter BPS) primaries of the coset labelled by two SU(2) quantum numbers (ℓ⁺, ℓ⁻) (ℓ[±] = 0, ½, 1,...) with 2ℓ⁺ quanta of φ₊ and 2ℓ⁻ quanta of φ₋.

イロト イヨト イヨト

Comparison

- Higher spin symmetry currents of coset match the gauge fields of the Vasiliev theory.
- The basic (half BPS) primaries of the coset are (f; 0) and $(0; \overline{f})$ and

$$(\mathbf{f};\mathbf{0})\leftrightarrow\phi_+\;,\qquad\qquad (\mathbf{0};\overline{\mathbf{f}})\leftrightarrow\phi_-\;.$$

More generally, can match the (quarter BPS) primaries of the coset labelled by two SU(2) quantum numbers (ℓ⁺, ℓ⁻) (ℓ[±] = 0, ½, 1,...) with 2ℓ⁺ quanta of φ₊ and 2ℓ⁻ quanta of φ₋.

イロト 不得下 イヨト イヨト 二日

• Can we generalize this coset duality for the Vasiliev theory to one for the string theory?

- In analogy with the case for ABJ theories (Chang et.al.), generalize the Vasiliev theory to one with additional U(M) Chan-Paton indices.
- Gauge the U(M) on the boundary ⇒ one keeps only U(M) singlets in the bulk.

- 4 B M 4 B M

- Can we generalize this coset duality for the Vasiliev theory to one for the string theory?
- In analogy with the case for ABJ theories (Chang et.al.), generalize the Vasiliev theory to one with additional U(M) Chan-Paton indices.
- Gauge the U(M) on the boundary ⇒ one keeps only U(M) singlets in the bulk.

- 4 @ ▶ 4 @ ▶ 4 @ ▶

- Can we generalize this coset duality for the Vasiliev theory to one for the string theory?
- In analogy with the case for ABJ theories (Chang et.al.), generalize the Vasiliev theory to one with additional U(M) Chan-Paton indices.
- Gauge the U(M) on the boundary ⇒ one keeps only U(M) singlets in the bulk.

- The BPS spectrum of single particle states is now labelled by (ℓ^+, ℓ^-) with degeneracy one.
- Exactly the same as for the SUGRA theory on $AdS_3 \times S^3 \times S^3$ (de Boer, Pasquinucci, Skenderis).
- Thus some evidence that this is on the right track.
- Note, that the symmetric product proposal only gives BPS states with $(\ell^+ = \ell^-)$ (Gukov, Martinec, Moore, Strominger).

The (1,1) SUSY descendant of the BPS state with ℓ⁺ = ½, ℓ⁻ = ½
 corresponds to the modulus on the string theory which changes the radius of AdS₃ (or equivalently, tension of the string).

• Preserves the large $\mathcal{N} = 4$ SUSY but breaks the higher spin symmetry.

イロト イヨト イヨト イヨト

- The BPS spectrum of single particle states is now labelled by (ℓ^+, ℓ^-) with degeneracy one.
- Exactly the same as for the SUGRA theory on $AdS_3 \times S^3 \times S^3$ (de Boer, Pasquinucci, Skenderis).
- Thus some evidence that this is on the right track.
- Note, that the symmetric product proposal only gives BPS states with $(\ell^+ = \ell^-)$ (Gukov, Martinec, Moore, Strominger).

The (1,1) SUSY descendant of the BPS state with ℓ⁺ = ½, ℓ⁻ = ½
 corresponds to the modulus on the string theory which changes the radius of AdS₃ (or equivalently, tension of the string).

• Preserves the large $\mathcal{N}=4$ SUSY but breaks the higher spin symmetry.

イロト イヨト イヨト イヨト
- The BPS spectrum of single particle states is now labelled by (ℓ^+, ℓ^-) with degeneracy one.
- Exactly the same as for the SUGRA theory on $AdS_3 \times S^3 \times S^3$ (de Boer, Pasquinucci, Skenderis).
- Thus some evidence that this is on the right track.
- Note, that the symmetric product proposal only gives BPS states with $(\ell^+ = \ell^-)$ (Gukov, Martinec, Moore, Strominger).

The (1,1) SUSY descendant of the BPS state with l⁺ = ¹/₂, l⁻ = ¹/₂ corresponds to the modulus on the string theory which changes the radius of AdS₃ (or equivalently, tension of the string).

• Preserves the large $\mathcal{N}=4$ SUSY but breaks the higher spin symmetry.

イロト イヨト イヨト イヨト

- The BPS spectrum of single particle states is now labelled by (ℓ^+, ℓ^-) with degeneracy one.
- Exactly the same as for the SUGRA theory on $AdS_3 \times S^3 \times S^3$ (de Boer, Pasquinucci, Skenderis).
- Thus some evidence that this is on the right track.
- Note, that the symmetric product proposal only gives BPS states with $(\ell^+ = \ell^-)$ (Gukov, Martinec, Moore, Strominger).

• The (1,1) SUSY descendant of the BPS state with $l^+ = \frac{1}{2}$, $l^- = \frac{1}{2}$ corresponds to the modulus on the string theory which changes the radius of AdS_3 (or equivalently, tension of the string).

• Preserves the large $\mathcal{N}=4$ SUSY but breaks the higher spin symmetry.

(日) (同) (三) (三)

- The BPS spectrum of single particle states is now labelled by (ℓ^+, ℓ^-) with degeneracy one.
- Exactly the same as for the SUGRA theory on $AdS_3 \times S^3 \times S^3$ (de Boer, Pasquinucci, Skenderis).
- Thus some evidence that this is on the right track.
- Note, that the symmetric product proposal only gives BPS states with $(\ell^+ = \ell^-)$ (Gukov, Martinec, Moore, Strominger).

• The (1,1) SUSY descendant of the BPS state with $l^+ = \frac{1}{2}$, $l^- = \frac{1}{2}$ corresponds to the modulus on the string theory which changes the radius of AdS_3 (or equivalently, tension of the string).

• Preserves the large $\mathcal{N}=4$ SUSY but breaks the higher spin symmetry.

(日) (同) (三) (三)

- The BPS spectrum of single particle states is now labelled by (ℓ^+, ℓ^-) with degeneracy one.
- Exactly the same as for the SUGRA theory on $AdS_3 \times S^3 \times S^3$ (de Boer, Pasquinucci, Skenderis).
- Thus some evidence that this is on the right track.
- Note, that the symmetric product proposal only gives BPS states with $(\ell^+ = \ell^-)$ (Gukov, Martinec, Moore, Strominger).
- The (1,1) SUSY descendant of the BPS state with $\ell^+ = \frac{1}{2}, \ell^- = \frac{1}{2}$ corresponds to the modulus on the string theory which changes the radius of AdS_3 (or equivalently, tension of the string).
- Preserves the large $\mathcal{N} = 4$ SUSY but breaks the higher spin symmetry.

イロト 不得下 イヨト イヨト 二日

- The BPS spectrum of single particle states is now labelled by (ℓ^+, ℓ^-) with degeneracy one.
- Exactly the same as for the SUGRA theory on $AdS_3 \times S^3 \times S^3$ (de Boer, Pasquinucci, Skenderis).
- Thus some evidence that this is on the right track.
- Note, that the symmetric product proposal only gives BPS states with $(\ell^+ = \ell^-)$ (Gukov, Martinec, Moore, Strominger).
- The (1,1) SUSY descendant of the BPS state with $\ell^+ = \frac{1}{2}, \ell^- = \frac{1}{2}$ corresponds to the modulus on the string theory which changes the radius of AdS_3 (or equivalently, tension of the string).
- $\bullet\,$ Preserves the large $\mathcal{N}=4$ SUSY but breaks the higher spin symmetry.

(日) (周) (三) (三)

- However, the coset theory dual to the non-abelian U(M) Vasiliev theory not yet identified.
- Most obvious candidates such as su(N+M+1)k⊕so(4NM+4)1/su(M)k+M+1) do not work (wrong central charge).
- Important to identify a viable CFT candidate to complete the triality between cosets, Vasiliev theory and string theories.

- However, the coset theory dual to the non-abelian U(M) Vasiliev theory not yet identified.
- Most obvious candidates such as ^{su(N+M+1)k⊕so(4NM+4)1}/_{su(N)k+M+1} do not work (wrong central charge).
- Important to identify a viable CFT candidate to complete the triality between cosets, Vasiliev theory and string theories.

- However, the coset theory dual to the non-abelian U(M) Vasiliev theory not yet identified.
- Most obvious candidates such as su(N+M+1)k⊕so(4NM+4)1/su(M)k+M+1⊕su(M)k+N+1
 (wrong central charge).
- Important to identify a viable CFT candidate to complete the triality between cosets, Vasiliev theory and string theories.

To Wrap Up

- Learnt many things about vector coset holography from explicit checks and construction of classical solutions.
- Good launch pad for understanding non-SUSY AdS/CFT.
- But also time to integrate these examples into string theory.
- Made a start with the large $\mathcal{N}=4$ SUSY example a nice example of vector coset holography.
- Non-abelian Vasiliev theory seems to capture stringy (BPS) spectrum.
- But CFT for stringy limit yet to be identified.

.