

Non-commutative & non-associative closed string geometry from flux compactifications

Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München

6th Regional Meeting in String theory, Milos, 22. June 2011

I) Introduction

Closed string flux compactifications:

- Moduli stabilization
 string landscape
- AdS/CFT correspondence
- Generalized geometries
- Here: how does a closed string see space ? What is the proper geometrical description of closed string flux background ?

Non-commutative & non-associative geometry !

D.L., arXiv:1010.1361; R. Blumenhagen, E. Plauschinn, arXiv:1010.1263;

R. Blumenhagen, A. Deser, D.L., E. Plauschinn, F. Rennecke, arXiv:1106.0316;

(See also: L. Cornalba, R. Schiappa (2001); P. Bouwknegt, K. Hannabuss, V. Mathai (2006))

Point particle in a (constant) magnetic field: Configuration space: $\mathcal{M} = T^* \mathcal{Q}$, $\vec{B} = \operatorname{rot} \vec{A}$ Langrange function: $L = \frac{1}{2}(p_i)^2 = \frac{1}{2}(\dot{x}^i - A^i)^2$ Canonical momenta: $p_i = \frac{\partial L}{\partial \dot{r}^i} = \dot{x}^i - A^i$ $\pi^{ij} = \{x^i, x^j\} = 0, \quad \pi_{ij} = \{p_i, p_j\} = 0, \quad \{x^i, p_j\} = \delta^j_i$ $\overline{p}^i = \dot{x}^i = p^i + A^i$ Mechanical momenta: $\pi^{ij} = \{x^i, x^j\} = 0, \quad \bar{\pi}_{ij} = \{\bar{p}_i, \bar{p}_j\} = \epsilon_{ijk}B^k, \quad \{x^i, p_j\} = \delta^j_i$ Non-commutative (Poisson) algebra

Point particle in the field of a magnetic monopole:

(thanks to Thomas Strobl)

$$\dot{B}\in H^2(\mathcal{Q}),\; H=dB=\star
ho_{magn}\;$$
 (B is non-closed)

 ρ_{magn} ... charge density of a magnetic monopole.

$$\pi^{ij} = \{x^i, x^j\} = 0, \quad \bar{\pi}_{ij} = \{\bar{p}_i, \bar{p}_j\} = H_{ijk}x^k, \quad \{x^i, p_j\} = \delta_i^j$$

This leads to:

$$\bar{\pi}_{ijk} = \{\{\bar{p}_i, \bar{p}_j\}, \bar{p}_k\} + \text{perm.} = H_{ijk}$$

Twisted Poisson structure.

(C. Klimcik, T. Strobl, (2002); A. Alekseev, T. Strobl, (2005); C. Saemann, R. Szabo, arXiv: 1106.1890)

As we will see, we will get a twisted Poisson structure for closed strings, however for the position operators instead of the momentum operators.

Non-commutative geometry and string theory (a):

Open strings:

2-dimensional D-branes with 2-form F-flux \Rightarrow coordinates of open string end points become non-commutative: $2\pi i \alpha' F$

(-) =

 $[X_i(\tau), X_j(\tau)] = \epsilon_{ij}\Theta,$

(A. Abouelsaood, C. Callan, C. Nappi, S. Yost (1987); J. Fröhlich, K. Gawedzki (1993); F. Lizzi, ER. Szabo (1997); A.Connes, M. Douglas, A. Schwarz (1997), V. Schomeru (1999); ..

 $\frac{1}{1+F^2}$

Non-commutative geometry and string theory (a): **Open strings:**

2-dimensional D-branes with 2-form F-flux \Rightarrow coordinates of open string end points become non-commutative: $-\frac{2\pi i\alpha' F}{1+F^2}$

$$[X_i(\tau), X_j(\tau)] = \epsilon_{ij}\Theta,$$

constant

(A. Abouelsaood, C. Callan, C. Nappi, S. Yost (1987); J. Fröhlich, K. Gawedzki (1993); F. Lizzi, ER. Szabo (1997); A.Connes, M. Douglas, A. Schwarz (1997), V. Schomeru (1999); ..

Non-commutative geometry and string theory (a): **Open strings:**

2-dimensional D-branes with 2-form F-flux coordinates of open string end points become non-commutative: $-\frac{2\pi i\alpha' F}{1+F^2}$

$$[X_i(\tau), X_j(\tau)] = \epsilon_{ij}\Theta$$

(A. Abouelsaood, C. Callan, C. Nappi, S. Yost (1987); J. Fröhlich, K. Gawedzki (1993); F. Lizzi, ER. Szabo (1997); A.Connes, M. Douglas, A. Schwarz (1997), V. Schomeru (1999); ..

Non-commutative gauge theories.

constant

(N. Seiberg, E. Witten (1999); J. Madore, S. Schraml, P. Schupp, J. Wess (2000);

$$f_1(x) \star f_2(x) \star \ldots \star f_N(x) :=$$

$$\exp\left[i\sum_{m < n} \Theta^{ab} \partial_a^{x_m} \partial_b^{x_n}\right] f_1(x_1) f_2(x_2) \ldots f_N(x_N) \Big|_{x_1 = \ldots = x_N = x}$$

$$S \simeq \int d^n x \operatorname{Tr} \hat{F}_{ab} \star \hat{F}^{ab}$$

Non-commutative geometry and string theory (a): **Open strings:**

2-dimensional D-branes with 2-form F-flux coordinates of open string end points become non-commutative: $-\frac{2\pi i \alpha' F}{1+F^2}$

$$[X_i(\tau), X_j(\tau)] = \epsilon_{ij}\Theta$$

(A. Abouelsaood, C. Callan, C. Nappi, S. Yost (1987); J. Fröhlich, K. Gawedzki (1993); F. Lizzi, ER. Szabo (1997); A.Connes, M. Douglas, A. Schwarz (1997), V. Schomeru (1999); ..

Non-commutative gauge theories.

constant

(N. Seiberg, E. Witten (1999); J. Madore, S. Schraml, P. Schupp, J. Wess (2000);

$$\begin{split} f_1(x) \star f_2(x) \star \ldots \star f_N(x) &:= \\ \exp\left[i \sum_{m < n} \Theta^{ab} \partial_a^{x_m} \partial_b^{x_n}\right] f_1(x_1) f_2(x_2) \ldots f_N(x_N) \Big|_{x_1 = \ldots = x_N = x} \\ S &\simeq \int d^n x \operatorname{Tr} \hat{F}_{ab} \star \hat{F}^{ab} \end{split}$$

Remark: In the T-dual picture (DI-brane at angle) the coordinates are commutative!

Non-commutative geometry and string theory (b):

Closed strings:

Non-commutative geometry and string theory (b): Closed strings:

3-dimensional backgrounds with 3-form flux \Rightarrow

we will show that coordinates of closed strings become non-commutative: (D.L., arXiv:1010.1361)

$$[X_i(\tau,\sigma), X_j(\tau,\sigma)] \simeq F_{ijk}^{(3)} p^k$$

Non-commutative geometry and string theory (b):

Closed strings:

3-dimensional backgrounds with 3-form flux \Rightarrow

we will show that coordinates of closed strings become non-commutative: (D.L., arXiv:1010.1361)

Non-commutative geometry and string theory (b): **Closed strings:** 3-dimensional backgrounds with 3-form flux \Rightarrow we will show that coordinates of closed strings become non-commutative: (D.L., arXiv:1010.1361) $[X_i(\tau,\sigma), X_j(\tau,\sigma)] \simeq F_{ijk}^{(3)} p^k$ and even non-associative: (operator (R. Blumenhagen, E. Plauschinn, arXiv:1010.1263) $[[X_i(\tau,\sigma), X_j(\tau,\sigma)], X_k(\tau,\sigma)] + \text{perm.} \simeq F_{ijk}^{(3)}$ Non-commutative/non-associative gravity?

Non-commutative geometry and string theory (b): **Closed strings:** 3-dimensional backgrounds with 3-form flux \Rightarrow we will show that coordinates of closed strings become non-commutative: (D.L., arXiv:1010.1361) $[X_i(\tau,\sigma), X_j(\tau,\sigma)] \simeq F_{ijk}^{(3)} p^k$ and even non-associative: (operator (R. Blumenhagen, E. Plauschinn, arXiv:1010.1263) $[[X_i(\tau,\sigma), X_j(\tau,\sigma)], X_k(\tau,\sigma)] + \text{perm.} \simeq F_{iik}^{(3)}$ Non-commutative/non-associative gra constar

Outline:

II) T-duality & twisted tori

III) NC-NA Closed string geometry

IV) Non-associative closed string CFT

II) T-duality & twisted tori
 How does a closed string see geometry?
 Consider compactification on a circle with radius R:

$$X(\tau,\sigma) = X_L(\tau+\sigma) + X_R(\tau-\sigma)$$

$$X_L(\tau+\sigma) = \frac{x}{2} + p_L(\tau+\sigma) + i\sqrt{\frac{\alpha'}{2}} \sum_{n\neq 0} \frac{1}{n} \alpha_n e^{-in(\tau+\sigma)},$$

$$X_R(\tau-\sigma) = \frac{x}{2} + p_R(\tau-\sigma) + i\sqrt{\frac{\alpha'}{2}} \sum_{n\neq 0} \frac{1}{n} \tilde{\alpha}_n e^{-in(\tau-\sigma)}$$
(KK momenta)

$$p_L = \frac{1}{2} \left(\frac{M}{R} + (\alpha')^{-1} NR \right), \quad p = p_L + p_R = \frac{M}{R}$$

$$p_R = \frac{1}{2} \left(\frac{M}{R} - (\alpha')^{-1} NR \right) \qquad \tilde{p} = p_L - p_R = (\alpha')^{-1} NR$$
(dual momenta - winding modes)

T-duality:
$$T: R \longleftrightarrow \frac{\alpha'}{R}, M \longleftrightarrow N$$

 $T: \quad p \iff \tilde{p}, \quad p_L \iff p_L, \quad p_R \iff -p_R.$

- Dual space coordinates: $\tilde{X}(\tau, \sigma) = X_L X_R$
 - (X, \tilde{X}) : Doubled geometry:

(O. Hohm, C. Hull, B. Zwiebach (2009/10))

T-duality is part of diffeomorphism group.

$$T: X \longleftrightarrow \tilde{X}, X_L \longleftrightarrow X_L, X_R \longleftrightarrow -X_R$$

Compactification on a 2-dimensional torus:

Background: R_1 , R_2 , $e^{i\alpha}$, B2 complex background $\tau = \frac{e_2}{e_1} = \frac{R_2}{R_1} e^{i\alpha}$, parameters: $\rho = B + iR_1R_2 \sin \alpha$.

T-duality transformations:

•
$$SL(2,\mathbb{Z})_{\tau}: \quad \tau \to \frac{a\tau + b}{c\tau + d}$$

• $SL(2,\mathbb{Z})_{\rho}: \quad \rho \to \frac{a\rho + b}{c\rho + d}$

They act as shifts/rotations on doubled coordinates.

• T-duality in $x_1 \Leftrightarrow$ Mirror symmetry:

$$\tau \leftrightarrow \rho \iff B \leftrightarrow \Re \tau$$

Three-dimensional backgrounds \Rightarrow twisted 3-tori:

(A. Dabholkar, C. Hull (2003); S. Hellerman, J. McGreevy, B. Williams (2004); J. Derendinger, C. Kounnas, P. Petropoulos, F. Zwirner (2004); J. Shelton, W. Taylor, B. Wecht (2005); G. Dall'Agata, S. Ferrara (2005)...)

Fibrations: 2-dim. torus that varies over a circle:

$$T^2_{x^1,x^2} \hookrightarrow M^3 \hookrightarrow S^1_{x^3}$$

The fibration is specified by its monodromy properties.

Three-dimensional backgrounds \Rightarrow twisted 3-tori:

(A. Dabholkar, C. Hull (2003); S. Hellerman, J. McGreevy, B. Williams (2004); J. Derendinger, C. Kounnas, P. Petropoulos, F. Zwirner (2004); J. Shelton, W. Taylor, B. Wecht (2005); G. Dall'Agata, S. Ferrara (2005)...)

Fibrations: 2-dim. torus that varies over a circle:

$$T^2_{x^1,x^2} \hookrightarrow M^3 \hookrightarrow S^1_{x^3}$$

The fibration is specified by its monodromy properties.

Two (T-dual) cases:

(i) Geometric spaces (manifolds)

$$x^{3} \to x^{3} + 2\pi \implies \tau(x^{3} + 2\pi) = \frac{a\tau(x^{3}) + b}{c\tau(x^{3}) + d}$$

 \mathbf{O}

ΤI

 $T(x^{3}+2\pi) = -1/T(x^{3})$

-tori:

inger, Ferrara (2005)...)

Fibrati

Three-dimensional backgrounds \Rightarrow twisted 3-tori:

(A. Dabholkar, C. Hull (2003); S. Hellerman, J. McGreevy, B. Williams (2004); J. Derendinger, C. Kounnas, P. Petropoulos, F. Zwirner (2004); J. Shelton, W. Taylor, B. Wecht (2005); G. Dall'Agata, S. Ferrara (2005)...)

Fibrations: 2-dim. torus that varies over a circle:

$$T^2_{x^1,x^2} \hookrightarrow M^3 \hookrightarrow S^1_{x^3}$$

The fibration is specified by its monodromy properties.

Two (T-dual) cases:

(i) Geometric spaces (manifolds)

$$x^{3} \to x^{3} + 2\pi \implies \tau(x^{3} + 2\pi) = \frac{a\tau(x^{3}) + b}{c\tau(x^{3}) + d}$$

 \mathbf{O}

Three-dimensional backgrounds \Rightarrow twisted 3-tori:

(A. Dabholkar, C. Hull (2003); S. Hellerman, J. McGreevy, B. Williams (2004); J. Derendinger, C. Kounnas, P. Petropoulos, F. Zwirner (2004); J. Shelton, W. Taylor, B. Wecht (2005); G. Dall'Agata, S. Ferrara (2005)...)

Fibrations: 2-dim. torus that varies over a circle:

$$T^2_{x^1,x^2} \hookrightarrow M^3 \hookrightarrow S^1_{x^3}$$

The fibration is specified by its monodromy properties.

Two (T-dual) cases:

(i) Geometric spaces (manifolds) $x^3 \to x^3 + 2\pi \implies \tau(x^3 + 2\pi) = \frac{a\tau(x^3) + b}{c\tau(x^3) + d}$ (ii) Non-geometric spaces (T-folds) $x^3 \to x^3 + 2\pi \implies \rho(x^3 + 2\pi) = \frac{a\rho(x^3) + b}{c\rho(x^3) + d}$

 $P(x^{3}+2\pi) = -\frac{1}{p(x^{3})}$

-tori:

Fi A ten-dimensional action for non-geometrical fluxes:

III) NC-NA Closed string geometry

Can the closed string also see a non-commutative space? What deformation is needed?

Yes: one needs 3-form flux: $F^{(3)} = H/\omega/Q/R$ $(F^{(3)} = \partial F^{(2)})$

III) NC-NA Closed string geometry

Can the closed string also see a nor NS H-flux What deformation is needed?

Yes: one needs 3-form flux: $F^{(3)} = H/\omega/Q/R$ $(F^{(3)} = \partial F^{(2)})$

ve space?

III) NC-NA Closed string geometry Can the closed string also see a non-cometric space? What deformation is needed? Yes: one needs 3-form flux: $F^{(3)} = H/\omega/Q/R$ ($F^{(3)} = \partial F^{(2)}$) III) NC-NA Closed string geometry Can the closed string also see a non-component of ace? What deformation is needed?

Yes: one needs 3-form flux: $F^{(3)} = H/\omega/Q/R$ $(F^{(3)} = \partial F^{(2)})$

III) NC-NA Closed string geometry
Can the closed string also see a non-commune R-flux
What deformation is needed?

Yes: one needs 3-form flux: $F^{(3)} = H/\omega/Q/R$ $(F^{(3)} = \partial F^{(2)})$

III) NC-NA Closed string geometry Can the closed string also see a non-commu R-flux What deformation is needed? Yes: one needs 3-form flux: $F^{(3)} = H/\omega/Q/R$ $(F^{(3)} = \partial F^{(2)})$ (i) Geometric spaces (manifolds) $[X^1(\tau,\sigma), X^2(\tau,\sigma)] = 0$

III) NC-NA Closed string geometry Can the closed string also see a non-commu R-flux What deformation is needed? Yes: one needs 3-form flux: $F^{(3)} = H/\omega/Q/R$ $(F^{(3)} = \partial F^{(2)})$ (i) Geometric spaces (manifolds) $[X^{1}(\tau,\sigma), X^{2}(\tau,\sigma)] = 0$ (ii) Non-geometric spaces (T-folds) **T-duality** $[X^1(\tau,\sigma), X^2(\tau,\sigma)] \neq 0$

III) NC-NA Closed string geometry Can the closed string also see a non-commu R-flux What deformation is needed? Yes: one needs 3-form flux: $F^{(3)} = H/\omega/Q/R$ $(F^{(3)} = \partial F^{(2)})$ (i) Geometric spaces (manifolds) $[X^{1}(\tau,\sigma), X^{2}(\tau,\sigma)] = 0 \ ([X^{1}(\tau,\sigma), \tilde{X}^{2}(\tau,\sigma)] \neq 0)$ (ii) Non-geometric spaces (T-folds) (T-duality $[X^1(\tau,\sigma), X^2(\tau,\sigma)] \neq 0$ More general: Doubled geometry: Closed string non-commutativity in (X, X)-space Mittwoch, 22. Juni 2011

Problem:

- Background is non-constant.
- CFT is in general not exactly solvable

Ways to handle:

• Study SU(2) WZW model with H-flux

(R. Blumenhagen, E. Plauschinn, arXiv:1010.1263)

Consider monodromy properties and the corresponding closed string boundary conditions
 ⇒ Shifted closed string mode expansion

(D.L., arXiv:1010.1361)

• Consider sigma model perturbation theory for small fluxes

(R. Blumenhagen, A. Deser, D.L., E. Plauschinn, F. Rennecke, arxiv: 1106.0316)

Specific example: elliptic monodromy

C. Hull, R. Reid-Edwards (2009))

(i) Geometric space (ω -flux) ($\omega_{123} \sim \partial_{x^3} g_{x^1 x^2} \sim \partial_{x^3} \Re \tau(x^3)$)

$$\tau(x^3) = \frac{(1+i)\cos(Hx^3) + \sin(Hx^3)}{\cos(Hx^3) - (1+i)\sin(Hx^3)} \quad (H \in \frac{1}{4} + \mathbb{Z})$$

Monodromy: $\tau(x^3 + 2\pi) = -1/\tau(x^3)$

Specific example: elliptic monodromy

C. Hull, R. Reid-Edwards (2009))

(i) Geometric space (ω -flux) ($\omega_{123} \sim \partial_{x^3} g_{x^1 x^2} \sim \partial_{x^3} \Re \tau(x^3)$)

$$\tau(x^3) = \frac{(1+i)\cos(Hx^3) + \sin(Hx^3)}{\cos(Hx^3) - (1+i)\sin(Hx^3)} \quad (H \in \frac{1}{4} + \mathbb{Z})$$

Monodromy: $\tau(x^3 + 2\pi) = -1/\tau(x^3)$

Specific example: elliptic monodromy

C. Hull, R. Reid-Edwards (2009))

(i) Geometric space (ω -flux) ($\omega_{123} \sim \partial_{x^3} g_{x^1x^2} \sim \partial_{x^3} \Re \tau(x^3)$)

$$\tau(x^3) = \frac{(1+i)\cos(Hx^3) + \sin(Hx^3)}{\cos(Hx^3) - (1+i)\sin(Hx^3)} \quad (H \in \frac{1}{4} + \mathbb{Z})$$

Monodromy: $\tau(x^3 + 2\pi) = -1/\tau(x^3)$

This induces the following \mathbb{Z}_4 symmetric closed string boundary condition: winding $X^3(\tau, \sigma + 2\pi) = X^3(\tau, \sigma) + 2\pi N_3$ $X_L(\tau, \sigma + 2\pi) = e^{i\theta} X_L(\tau, \sigma), \quad \theta = -2\pi N_3 H,$ $X_R(\tau, \sigma + 2\pi) = e^{i\theta} X_R(\tau, \sigma), \quad \theta = -2\pi N_3 H,$ $X_R(\tau, \sigma + 2\pi) = e^{i\theta} X_R(\tau, \sigma), \quad L-R$ symmetric order 4 rotation (Complex coordinates: $X_{L,R} = X_{L,R}^1 + i X_{L,R}^2$)

Corresponding closed string mode expansion \Rightarrow

$$X_{L}(\tau + \sigma) = i\sqrt{\frac{\alpha'}{2}} \sum_{n \in \mathbb{Z}} \frac{1}{n - \nu} \alpha_{n - \nu} e^{-i(n - \nu)(\tau + \sigma)}, \qquad \nu = \frac{\theta}{2\pi} = -N_{3}H,$$

$$X_{R}(\tau - \sigma) = i\sqrt{\frac{\alpha'}{2}} \sum_{n \in \mathbb{Z}} \frac{1}{n + \nu} \tilde{\alpha}_{n + \nu} e^{-i(n + \nu)(\tau - \sigma)} \text{ (shifted oscillators!)}$$

Then one obtains:

$$[X_L(\tau,\sigma), \bar{X}_L(\tau,\sigma)] = -[X_R(\tau,\sigma), \bar{X}_R(\tau,\sigma)] = \tilde{\Theta}$$

$$\tilde{\Theta} = \alpha' \sum_{n \in \mathbb{Z}} \frac{1}{n - \nu} = -\alpha' \pi \cot(\pi N_3 H)$$

 $[X^{1}(\tau,\sigma), X^{2}(\tau,\sigma)] = [X_{L}^{1} + X_{R}^{1}, X_{L}^{2} + X_{R}^{2}] = 0$

T-dual geometry (mirror symmetry): $\tau(x^3) \leftrightarrow \rho(x^3)$ (ii) Non-geometric space (Q-flux) $(1 \pm i) \cos(Hx^3) \pm \sin(Hx^3) = 1$

$$\rho(x^3) = \frac{(1+i)\cos(Hx^3) + \sin(Hx^3)}{\cos(Hx^3) - (1+i)\sin(Hx^3)} \quad (H \in \frac{1}{4} + \mathbb{Z})$$

$$\Rightarrow \text{H-field: } H(x^3) = H \frac{10 - 12\sin(2Hx^3) - 6\cos(2Hx^3)}{(2\sin(2Hx^3) + \cos(2Hx^3) - 3)^2}$$

Monodromy: $\rho(x^3 + 2\pi) = -1/\rho(x^3)$

T-dual geometry (mirror symmetry): $\tau(x^3) \leftrightarrow \rho(x^3)$ (ii) Non-geometric space (Q-flux) $(1 \pm i) \cos(Hx^3) \pm \sin(Hx^3) = 1$

$$\rho(x^3) = \frac{(1+i)\cos(Hx^3) + \sin(Hx^3)}{\cos(Hx^3) - (1+i)\sin(Hx^3)} \quad (H \in \frac{1}{4} + \mathbb{Z})$$

$$\Rightarrow \text{ H-field: } H(x^3) = H \frac{10 - 12\sin(2Hx^3) - 6\cos(2Hx^3)}{(2\sin(2Hx^3) + \cos(2Hx^3) - 3)^2}$$

Monodromy: $\rho(x^3 + 2\pi) = -1/\rho(x^3)$

T-dual geometry (mirror symmetry): $\tau(x^3) \leftrightarrow \rho(x^3)$ (ii) Non-geometric space (Q-flux)

$$\rho(x^3) = \frac{(1+i)\cos(Hx^3) + \sin(Hx^3)}{\cos(Hx^3) - (1+i)\sin(Hx^3)} \quad (H \in \frac{1}{4} + \mathbb{Z})$$

⇒ H-field:
$$H(x^3) = H \frac{10 - 12\sin(2Hx^3) - 6\cos(2Hx^3)}{(2\sin(2Hx^3) + \cos(2Hx^3) - 3)^2}$$

Monodromy:
$$ho(x^3+2\pi)=-1/
ho(x^3)$$

This induces the following \mathbb{Z}_4 asymmetric closed string boundary condition: $X^3(\tau, \sigma + 2\pi) = X^3(\tau, \sigma) + 2\pi N_3$ $X_L(\tau, \sigma + 2\pi) = e^{i\theta} X_L(\tau, \sigma), \quad \theta = -2\pi N_3 H,$ $X_R(\tau, \sigma + 2\pi) = e^{-i\theta} X_R(\tau, \sigma).$ L-R a-symmetric order 4 rotation

Corresponding closed string mode expansion \Rightarrow

$$X_L(\tau+\sigma) = i\sqrt{\frac{\alpha'}{2}} \sum_{n\in\mathbb{Z}} \frac{1}{n-\nu} \alpha_{n-\nu} e^{-i(n-\nu)(\tau+\sigma)}, \qquad \nu = \frac{\theta}{2\pi} = -N_3 H,$$

$$X_R(\tau-\sigma) = i\sqrt{\frac{\alpha'}{2}} \sum_{n\in\mathbb{Z}} \frac{1}{n+\nu} \tilde{\alpha}_{n-\nu} e^{-i(n-\nu)(\tau-\sigma)}$$

Then one finally obtains:

$$[X_L(\tau,\sigma), \bar{X}_L(\tau,\sigma)] = [X_R(\tau,\sigma), \bar{X}_R(\tau,\sigma)] = \tilde{\Theta}$$
$$[X^1(\tau,\sigma), X^2(\tau,\sigma)] = [X^1_L + X^1_R, X^2_L + X^2_R] = i\tilde{\Theta}$$

T-duality in x^3 - direction \Rightarrow R-flux Winding no. $N_3 \iff$ Momentum no. M_3 $[X^1(\tau, \sigma), X^2(\tau, \sigma)] = i\Theta$ $\Theta = \alpha' \sum_{n \in \mathbb{Z}} \frac{1}{n - \nu} = -\alpha' \pi \cot(\pi M_3 H)$

Act on wave functions \Rightarrow replace momentum number by momentum operator:

$$M_3 \equiv \sqrt{\alpha'} p^3$$
, $N_3 \equiv \sqrt{\alpha'} \tilde{p}^3$

Then one obtains the following non-commutative algebra:

$$\begin{split} [X^1, X^2] \simeq i l_s^3 F^{(3)} \, p^3 \quad ([X^i, X^j] \simeq i \epsilon^{ijk} F^{(3)} p^k) \\ & \text{Use} \quad [p^3, X^3] = -i \end{split}$$

$$\implies [[X^1, X^2], X^3] + \text{perm.} \simeq F^{(3)} l_s^3$$

Non-associative algebra (twisted Poisson structure)!

This nicely agrees with the non-associative closed string structure found by Blumenhagen, Plauschinn in the SU(2) WZW model: arXiv:1010.1263

Summary: Chain of three T-dualities:

IV) Non-associative closed string CFT

R. Blumenhagen, A. Deser, D.L., E. Plauschinn, F. Rennecke, arXiv: 1106.0316

General idea: Consider a flat background plus linear B-field:

$$B_{ab} = \frac{1}{3} H_{abc} X^c$$

CFT-perturbation theory linear in H:

(Theory is still conformal at linear order in H.)

$$S = S_0 + S_1, \quad S_1 = \frac{1}{2\pi\alpha'} \frac{H_{abc}}{3} \int_{\Sigma} d^2 z \, X^a \partial X^b \, \partial X^c$$

Correlation function:

$$\left\langle \mathcal{O}_1 \dots \mathcal{O}_N \right\rangle = \frac{1}{\mathcal{Z}} \int [dX] \mathcal{O}_1 \dots \mathcal{O}_N e^{-\mathcal{S}[X]}$$

= $\left\langle \mathcal{O}_1 \dots \mathcal{O}_N \right\rangle_0 - \left\langle \mathcal{O}_1 \dots \mathcal{O}_N \mathcal{S}_1 \right\rangle_0 + \dots$

Solution of classical equations of motion: $\partial \overline{\partial} X^a = \frac{1}{2} H^a{}_{bc} \partial X^b \overline{\partial} X^c$ $X^a_0(z, \overline{z}) = \mathsf{X}^a_L(z) + \mathsf{X}^a_R(\overline{z})$ $\mathsf{X}^a(z, \overline{z}) = \mathsf{X}^a_0(z, \overline{z}) + \frac{1}{2} H^a{}_{bc} \mathsf{X}^b_L(z) \mathsf{X}^c_R(\overline{z})$

Tachyon vertex operator:

$$\mathcal{V}(z,z) = :\exp\left(ik_L \cdot \mathcal{X}_L + ik_R \cdot \mathcal{X}_R\right)$$
$$k_L^a = p^a + \frac{w^a}{\alpha'}, \quad k_R^a = p^a - \frac{w^a}{\alpha'}$$

Allowed momenta and winding:

<i>H</i> -flux		ω -flux		<i>Q</i> -flux		<i>R</i> -flux	
$\boxed{\langle p_1, p_2, p_3 \rangle^-}$	\checkmark	$\langle p_1, p_2, w_3 \rangle^-$	\checkmark	$\langle p_1, w_2, w_3 \rangle^-$	\checkmark	$\langle w_1, w_2, w_3 \rangle^-$	\checkmark
$\boxed{\langle w_1, w_2, w_3 \rangle^+}$	\checkmark	$\langle w_1, w_2, p_3 \rangle^+$	\checkmark	$\langle w_1, p_2, p_3 \rangle^+$	\checkmark	$\langle p_1, p_2, p_3 \rangle^+$	\checkmark

Allowed momenta and winding:

H-flux		ω -flux		<i>Q</i> -flux		<i>R</i> -flux	
$\boxed{\langle p_1, p_2, p_3 \rangle^-}$	\checkmark	$\langle p_1, p_2, w_3 \rangle^-$	\checkmark	$\langle p_1, w_2, w_3 \rangle^-$	\checkmark	$\langle w_1, w_2, w_3 \rangle^-$	\checkmark
$\left[\langle w_1, w_2, w_3 \rangle^+ \right]$	\checkmark	$\langle w_1, w_2, p_3 \rangle^+$	\checkmark	$\langle w_1, p_2, p_3 \rangle^+$	\checkmark	$\langle p_1, p_2, p_3 \rangle^+$	\checkmark

Remark: At higher order in H, the theory will flow to some new CFT: $\mu \frac{\partial g^{ab}}{\partial \mu} = -\frac{\alpha'}{4} H^a{}_{pq} H^{bpq}$

H-flux: Flow to the SU(2) WZW model.
R-flux: Flow to an L-R asymmetric ,,SU(2) WZW" model.

Basic three-point function:

$$\left\langle \mathcal{X}^{a}(z_{1}, z_{1}) \,\mathcal{X}^{b}(z_{2}, z_{2}) \,\mathcal{X}^{c}(z_{3}, z_{3}) \right\rangle$$

= $-\frac{{\alpha'}^{2}}{12} \,H^{abc} \left[L\left(\frac{z_{12}}{z_{13}}\right) + L\left(\frac{z_{23}}{z_{21}}\right) + L\left(\frac{z_{13}}{z_{23}}\right) - \text{c.c.} \right]$
 $(z_{ij} = z_{i} - z_{j})$

(agrees with WZW-model computation: R. Blumenhagen, E. Plauschinn, arXiv:1010.1263)

Rogers dilogarithm:
$$L(x) = \text{Li}_2(x) + \frac{1}{2}\log(x)\log(1-x)$$

Basic three-point function:

$$\left\langle \mathcal{X}^{a}(z_{1}, z_{1}) \mathcal{X}^{b}(z_{2}, z_{2}) \mathcal{X}^{c}(z_{3}, z_{3}) \right\rangle$$
$$= -\frac{\alpha'^{2}}{12} H^{abc} \left[L\left(\frac{z_{12}}{z_{13}}\right) + L\left(\frac{z_{23}}{z_{21}}\right) + L\left(\frac{z_{13}}{z_{23}}\right) - \text{c.c.} \right]$$
$$(z_{ij} = z_{i} - z_{j})$$

(agrees with WZW-model computation: R. Blumenhagen, E. Plauschinn, arXiv:1010.1263)

Rogers dilogarithm: $L(x) = \text{Li}_2(x) + \frac{1}{2}\log(x)\log(1-x)$

This function is discontinuous when $z_1 \rightarrow z_2 = 1, \ z_1 \rightarrow z_3 = 0$

It develops a jump when all three points approach each other, i.e. $z_1 \rightarrow z_3 = 0, \ z_2 \rightarrow z_3 = 0$

3-tachyon amplitudes:

(i) 3 momentum states in H-background:

$$\left\langle \mathcal{T}_{1} \mathcal{T}_{2} \mathcal{T}_{3} \right\rangle^{-} = \int \prod_{i=1}^{3} d^{2} z_{i} \, \delta^{(2)}(z_{i} - z_{i}^{0}) \, \delta(p_{1} + p_{2} + p_{3}) \times \\ \exp\left[-i\theta^{abc} \, p_{1,a} p_{2,b} p_{3,c} \left[\mathcal{L}\left(\frac{z_{12}}{z_{13}}\right) - \mathcal{L}\left(\frac{\overline{z}_{12}}{\overline{z}_{13}}\right)\right]_{\theta} \right]$$

(ii) 3 momentum states in R-background:

(corresponds to 3 winding states in H-background)

$$\left\langle \mathcal{T}_{1} \mathcal{T}_{2} \mathcal{T}_{3} \right\rangle^{+} = \int \prod_{i=1}^{3} d^{2} z_{i} \, \delta^{(2)}(z_{i} - z_{i}^{0}) \, \delta(p_{1} + p_{2} + p_{3}) \times \\ \exp\left[-i\theta^{abc} \, p_{1,a} p_{2,b} p_{3,c} \left[\mathcal{L}\left(\frac{z_{12}}{z_{13}}\right) + \mathcal{L}\left(\frac{\overline{z}_{12}}{\overline{z}_{13}}\right)\right]\right]_{\theta} d^{2} d^{2$$

Behavior under permutations of the vertex operators:

$$\left\langle \mathcal{V}_{\sigma(1)} \mathcal{V}_{\sigma(2)} \mathcal{V}_{\sigma(3)} \right\rangle^{\epsilon} = \exp\left[i \left(\frac{1+\epsilon}{2} \right) \eta_{\sigma} \, \pi^2 \, \theta^{abc} \, p_{1,a} \, p_{2,b} \, p_{3,c} \right] \left\langle \mathcal{V}_1 \, \mathcal{V}_2 \, \mathcal{V}_3 \right\rangle^{\epsilon}$$
$$\left(\epsilon = \mp 1 \quad \text{for H or R} \right)$$

N-tachyon amplitudes:

$$\left\langle \mathcal{V}_1 \, \mathcal{V}_2 \, \dots \, \mathcal{V}_N \right\rangle^{\mp} = \left\langle V_1 \, V_2 \, \dots \, V_N \right\rangle_0^{\mp} \times \\ \exp \left[-i\theta^{abc} \sum_{1 \le i < j < k \le N} p_{i,a} \, p_{j,b} \, p_{k,c} \left[\mathcal{L}\left(\frac{z_{ij}}{z_{ik}}\right) \mp \mathcal{L}\left(\frac{z_{ij}}{z_{ik}}\right) \right] \right]_{\theta}$$

E.g. the fluxed Virasoro-Shapiro amplitude with N=4:

$$\left\langle \mathcal{V}_{1} \, \mathcal{V}_{2} \, \mathcal{V}_{3} \, \mathcal{V}_{4} \right\rangle^{\mp} = \left\langle V_{1} \, V_{2} \, V_{3} \, V_{4} \right\rangle_{0}^{\mp} \times \left[-i\theta^{abc} \, p_{1,a} \, p_{2,b} \, p_{3,c} \left[\mathcal{L}(\frac{z_{12}}{z_{13}}) - \mathcal{L}(\frac{z_{12}}{z_{14}}) + \mathcal{L}(\frac{z_{13}}{z_{14}}) - \mathcal{L}(\frac{z_{23}}{z_{24}}) \mp \text{c.c.} \right] \right]_{\theta}$$

The phase factor appearing when commuting two vertex operators can be decoded in a deformed N-product:

$$V_{p_1}(x)_N \dots {}_N V_{p_N}(x) \stackrel{\text{def}}{=} \exp\left(-i \frac{\pi^2}{2} \theta^{abc} \sum_{1 \le i < j < k \le N} p_{i,a} p_{j,b} p_{k,c}\right) V_{\sum p_i}(x)$$

Non-associative \triangle - product for functions:

 $f_1(y) \bigtriangleup f_2(y) \bigtriangleup \dots \bigtriangleup f_N(y) :=$ $\exp\left[\sum_{m < n < r} F^{abc} \partial_a^{y_m} \partial_b^{y_n} \partial_c^{y_r}\right] f_1(y_1) f_2(y_2) \dots f_N(y_N)\Big|_{y_1 = \dots = y_N = y_N}$

(see also: K. Savvidy (2002))

The phase factor appearing when commuting two vertex operators can be decoded in a deformed N-product:

$$V_{p_1}(x)_N \dots {}_N V_{p_N}(x) \stackrel{\text{def}}{=} \exp\left(-i \frac{\pi^2}{2} \theta^{abc} \sum_{1 \le i < j < k \le N} p_{i,a} p_{j,b} p_{k,c}\right) V_{\sum p_i}(x)$$

Non-associative \triangle - product for functions:

 $f_1(y) \bigtriangleup f_2(y) \bigtriangleup \dots \bigtriangleup f_N(y) :=$ $\exp\left[\sum_{m < n < r} F^{abc} \partial_a^{y_m} \partial_b^{y_n} \partial_c^{y_r}\right] f_1(y_1) f_2(y_2) \dots f_N(y_N)\Big|_{y_1 = \dots = y_N = y_N}$

(see also: K. Savvidy (2002))

 Is there are non-commutative (non-associative) theory of gravity? Is there a map to commutative gravity (like SW-map for gauge theories)? (Non-commutative geometry & gravity: P.Aschieri, M. Dimitrijevic, F. Meyer, J. Wess (2005))