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Motivation

Gauge theory

•Confinement/deconfinement transitions in large N gauge theories
have been generally studied using lattice methods and holography.

• In special situations, perturbative analytic calculations exist.
YM on S1 × S3: Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk (2003)

YM on S1 × S2: Papadodimas, Shieh, van Raamsdonk (2006)

•Generation of a mass gap in pure YM theory calls for a
non-perturbative treatment.

• In four-fermi theories, e.g. Gross-Neveu model, can prove

(ψ̄iψi)
2 → ψ̄iψi〈ψ̄iψi〉

The condensate (at large Nf ) satisfies a gap equation, like in BCS
theory, and characterizes a nonperturtative vacuum with dynamical
mass generation, symmetry breaking and asymptotic freedom.
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•Can we find such a phenomenon in gauge theories?

•Yes, we can. For YM compactified on T D (with large D)

Tr [Ai ,Aj ]
2 → AA〈AA〉

Dynamical mass generation, asymptotic freedom, ...., can prove
many nonperturbative results.

•Why study YM on tori?

•Euclidean YM on S1 of length β corresponds to thermal YM (at
temperature 1/β). Low temperature: temporal Wilson loop W0 = 0
(unbroken ZN symmetry→ confinement); high temperature W0 6= 0
(brone ZN symmetry→ deconfinement). Deconfinement: ZN → 1.

•YM on T D have been studied holographically (Aharony, Marsano, Minwalla,

Papadodimas, van Raamsdonk, Wiseman (2005)) and in the lattice (Narayanan, Neuberger et al,

2003-2011). Exotic phase structure: e.g. for YM4 on T 4, with
L0 = β > L1 > L2 > L3, the phase structure is found to be
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Which radii small Symmetry Non-zero Wilson loops Name of phase
None Z 4

N None 0c

L3 Z 3
N W3 1c

L2,L3 Z 2
N W2W3 2c

L1,L2,L3 ZN W1,W2,W3 3c

L0,L1,L2,L3 1 W0,W1,W2,W3 4c

•Only 0c is a confinement phase, with intact ZN symmetry; all the
rest are various ‘deconfinement’ phases.

• In the 0c phase, physics is independent of all radii (large N volume
independence Eguchi, Kawai 1982); in the 1c phase, physics depends on L3

but is independent of the rest, etc.

• ‘Cascade’: there is no phase boundary across which two Wilson
lines acquire non-zero values simultaneously.

•We will be able to compute a number of these phase boundaries
analytically and verify the above properties.



Introduction d=0 d=1 d=2 and D2 Dynamics Conclusions



Introduction d=0 d=1 d=2 and D2 Dynamics Conclusions



Introduction d=0 d=1 d=2 and D2 Dynamics Conclusions



Introduction d=0 d=1 d=2 and D2 Dynamics Conclusions

Gravity motivations

Gravity

•Phase transitions in gauge theory correspond to interesting
phase transitions in gravity (Hawking-Page, Gregory-Laflamme,
Scherk-Schwarz,...).



Introduction d=0 d=1 d=2 and D2 Dynamics Conclusions

Gravity motivations

Gravity

•Phase transitions in gauge theory correspond to interesting
phase transitions in gravity (Hawking-Page, Gregory-Laflamme,
Scherk-Schwarz,...).

•Studying the holographic duals of gauge theories on T D leads
to new proposals for strong-coupling continuations of the
deconfiment transition. [cf. Takeshi’s talk yesterday on
Deconfinement in 4D YM].



Introduction d=0 d=1 d=2 and D2 Dynamics Conclusions

Gravity motivations

Gravity

•Phase transitions in gauge theory correspond to interesting
phase transitions in gravity (Hawking-Page, Gregory-Laflamme,
Scherk-Schwarz,...).

•Studying the holographic duals of gauge theories on T D leads
to new proposals for strong-coupling continuations of the
deconfiment transition. [cf. Takeshi’s talk yesterday on
Deconfinement in 4D YM].

•The end-point of a dynamical Gregory-Laflamme transition is
interesting to study (especially from the viewpoint of the
appearance of a naked singularity). We will study the dynamical
transition in the gauge theory. Basu-Mandal-Morita-Wadia (in progress).
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Plan

The Technique: (d + D) dimensional YM on T D (large D)

d=0 (Bosonic IKKT)

d=1 (← SS reduction of D1)

d=2 (← SS reduction of D2)

Dynamical Gregory Laflamme in gauge theory

Conclusions and open problems
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The large D technique

•Consider a d + D dimensional bosonic YM theory on a small T D

S =
1
4

∫

ddxTr



F 2
µν +

1
2

D
∑

I=1

DµY IDµY I − g2
∑

I,J

1
4
[Y I ,Y J ]2





Can we treat the Y 4 term in a fashion similar to 4-fermi terms as in
Gross-Neveu or NJL models?
Hotta-Nishimura-Tsuchiya 1999, Mahato-Mandal-Morita 2009
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Large Nf

Recall Gross-Neveu model:

S =

∫

d2x
(

ψ̄i∂µγ
µψi − g(ψ̄iψi)

2
)

The technique to solve Gross-Neveu model is to introduce an
auxiliary dynamical field φ, g(ψ̄iψi)

2 = φψ̄iψi − φ2/(4g) and
integrate out the fermions to get

Seff [φ] = Nf logDet(γµ∂µ + 2φ) + φ2/(4g) -1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

In the large Nf limit, Nf g = λ fixed, the 1-loop term competes
with the tree level term. Hence, a non-trivial value of the
flavour-singlet condensate

< φ >=
2λ
Nf

< ψ̄iψi > 6= 0 = Λ exp[−α/(gNf )]

appears at the new saddle point. [BCS, χSB, ...]
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Back to YM

•Can we write Y 4 = −B2/4 + BY 2 etc. to get a non-trivial
vacuum with < Y 2 > 6= 0?
What could a ‘singlet’ Y 2 be? It can’t be of the form Tr [Y ,Y ]
which trivially vanishes. It can be Tr(Y IY J), but we can’t write
Tr([YI ,YJ ]

2) = BIJTr [Y IY J ]− B2
IJ/4 (single trace 6= double

trace).
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Back to YM

•Can we write Y 4 = −B2/4 + BY 2 etc. to get a non-trivial
vacuum with < Y 2 > 6= 0?
What could a ‘singlet’ Y 2 be? It can’t be of the form Tr [Y ,Y ]
which trivially vanishes. It can be Tr(Y IY J), but we can’t write
Tr([YI ,YJ ]

2) = BIJTr [Y IY J ]− B2
IJ/4 (single trace 6= double

trace).

•Turns out that by considering gauge-non-invariant, but
SO(D)-invariant auxiliary fields, we CAN write

Tr [YI ,YJ ]
2 ≡ −Y I

aY J
b Mab,cdY J

c Y J
d = BabM−1

ab;cdBcd − 2iBabY I
aY I

b

where we have written Y I = Y I
aλa, and

Mab,cd = −1
4

{

Tr [λa, λc][λb, λd ]+(a↔ b)+(c ↔ d)+(a↔ b, c ↔ d)
}

Now Y is only quadratic; integrating over Y , we get
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Large D saddle point

Z =

∫

DAµDBab exp[−Seff [A,B], Seff [A,B] =

=

∫

dd x [
1

4g2

(

F 2
µν + BabM−1

ab;cdBcd

)

] + (D/2)logDet(−D2
µδab + iBab)

The idea now is to take a ’tHooft-like limit D →∞,g2 → 0 with
g2D = (ĝ)2 held fixed. The determinant term will now compete with
the tree level term, leading to a new large D saddle point for
< Bab >= iMab,cd < Y I

cY I
c > Note complex contour.

• In the examples we consider below, we will obtain saddle point
values of the form < Bab >= i∆2δab, which will imply dynamical
generation of a condensate of the form

(1/D) < Y I
aY I

b >= ∆2δab

or, equivalently a mass gap MY = ∆ (cf. the BY 2 term). In the large D
saddle point, the field Bab can be treated as classical, leading to a
large D evaluation of Seff [A].
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d=0

Yang-Mills integrals (cf. Bosonic IKKT model)

Z =

∫

dY I exp[− 1
4g2 Tr

∑

I,J

[Y I ,Y J ]2]

=

∫

DY I
aDBab exp[

1
4g2 BabM−1

ab,cdBcd −
i

2g2 BabY I
aY I

b]

=

∫

DBabe−S ,S =
1

4g2 BabM−1
ab,cd Bcd + D/2logdet[Bab] (1)

This can be computed at finite N, in a large D expansion! The leading
term comes from the trace part Bab = B0δab:

S =
NB2

0

8ĝ2 +
(N2 − 1)

4
log
(

− B2
0

ĝ2N

)

where (ĝ)2 = g2D. At large N,

F = − log Z
DN2 = −1

4
+

log 2
4

+
1
D

(

−5
8
+

1
2

log
3
2

)

+ O
(

1
D2

)

.



Introduction d=0 d=1 d=2 and D2 Dynamics Conclusions

d=0: comparison with numerics

The circles represent numerical values of 1/(DN) < trY IY I > /(ĝ/
√

2)
(extrapolated to N =∞), while the dotted line represents the 1/D
result discussed above. [The analytic result was also independently
obtained by Hotta-Nishimura-Tsuchiya].
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d=1

This is the first non-trivial dimension involving a gauge field Aµ.
Consider the size of the Euclidean dimension to be finite, β.

Z =

∫

DA0DY Ie−S,

S =

∫ β

0
dt Tr





D
∑

I=1

1
2

(

D0Y I)2 −
∑

I,J

g2

4
[Y I ,Y J ][Y I ,Y J ]



 . (2)

Step 1: Wilson loop:
For finite β, can’t gauge away A0; fix gauge ∂tA0 = 0 [Aharony et al]

∆FP = exp[−SFP ],SFP = N2
∞
∑

n=1

|un|2/n

where un = (1/N)TrUn,U = P exp[i
∮

dtA0]. Thus, A0 reduces only to
the Wilson loop (Polyakov loop).
u1 = 0: centre symmetry unbroken (“confined” phase); u1 6= 0: centre
symmetry broken (“deconfined” phase).
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d=1: Integrate Y ’s

Step 2: Integrate out Y I :
We show results only for the dominant mode Bab(t) = i∆2δab

D
2

log
(

det
(

−D2
0 +△2

))

=
DN2β△

2
− D

∞
∑

n=1

xn

n
|un|2.

Combining with the classical B2 term, and ∆FP we get

S(△, {un})
DN2 = −β△

4

8λ̃
+
β△
2

+
∞
∑

n=1

(

1/D − xn

n

)

|un|2.

where λ̃ = λD = g2ND is the large D ’tHooft coupling.
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d=1: Large D saddle point

Step 3: Evaluate ∆ at the saddle point

△0({un}) = λ̃1/3

(

1 +
2
3

∞
∑

n=1

x̄n|un|2
)

+ · · · ,

where x̄ = exp[−βλ̃1/3].
Step 4: Put this back in S[∆, {un}]:

S({un})
DN2 =

3
8
βλ̃1/3 + a1|u1|2 + b1|u1|4 +

∞
∑

n=2

an|un|2 + · · · ,

an =
1
n
(1/D − x̄n) ,

b1 =
1
3
βλ̃1/3x̄2, (3)

where the · · · involve other u4
n terms for n > 1, which are down

at large D. u1 = (1/N)TrU.
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d=1: Landau-Ginzburg

0

S/DN2

|u1|

1/2

T < Tc1

T = T
c1

T
c1 < T < T

c2

T = Tc2

T > Tc2

u1 = TrU/N. As T crosses Tc1, u1 becomes tachyonic and there is a
second order phase transition which signals an onset of
non-uniformity in the eigenvalue distribution ρ(α). At T = Tc2,
characterized by a potential minimum at |u1| = 1/2, a gap develops in
the eigenvalue distribution, signalling a GWW transition.
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d=1: phase diagram

TT c2c1

2nd order 3rd order (GWW)

uniform

ρ

θ

ρ

θ
ρ

θ

Τ

Tc1 Tc2 R2 F0

Numerical result 0.8761 0.905 2.291 6.695
Leading large-D result 0.947 0.964 2.16 7.02
Large-D including 1/D effect 0.895 0.917 2.28 6.72

2nd and 3rd rows are our results, with D = 9 (10-dimensional YM
theory compactified to d=1). Numerical results are from Nishimura
and Kawahara. The agreement between the 3rd row and the 1st row
are within 1% (which is 1/D2).
Works even for D = 2!
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d=1: chemical potential

Morita 2010
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Gravity correspondence: D1 branes

2d Euclidean SYM on S1
β2

× S1
L with (AP, P) spin structure for fermions

↔ black string wrapped along S1
β2

at temperature β (D1 at large L, smeared
D0 at small L).

As the box size increases beyond horizon size, D0 branes clump, leading to a

Gregory-Laflamme transition. [figure] The weak coupling version are the

clumping of eigenvalues of U.

uniform

non-uniform

gapped

2d SYM 1d YM

0d YM

t′

λ′

1st

2nd

3rd

λ′ = t′3

λ′ = 1/t′

1d SYM

λ′
= λ2L2, t ′ = L/β. λ′ < t ′3 described by 1D YM since temporal KK modes

(and fermions) are massive. Phase transitions: λ′t ′ = 1/T 3
c1, 1/T 3

c2.
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d=2

Consider d = 2 Euclidean YM theory with D ajoint scalars,
compactified on a 2-torus T 2.

S =

∫ β

0
dt
∫ L

0
dx Tr





1
2g2 F 2

01 +
D
∑

I=1

1
2

(

DµY I
)2
−
∑

I,J

g2

4
[Y I ,Y J ][Y I ,Y J ]





We now have two Wilson lines U = P exp[i
∮ β A] and

V = P exp[i
∮ L A] along the two cycles. There are now possibly

4 or more phases, corresponding to whether TrU,TrV are zero
or non-zero and whether a non-zero Wilson line can exist in 2
distinct phases (non-uniform vs gapped eigenvalue
distribution).
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d=2: small L

•For small enough L, the problem reduces to d = 1, with A1

turning into an extra Y , which we have solved above.

• Large N volume independence vs KK reduction. In the centre
symmetric phase (Tr V=0: uniform eigenvalues), KK reduction
does not work in the usual fashion since new soft modes, with
mass ∼ 1/(NL), appear. However, for small enough L,
eigenvalues of A1 are clumped near 0 (this is consistent with
eigenvalues of A0 getting more and more clumped at low
enough β) hence centre symmetry along L is broken (Tr V 6= 0).
Hence KK reduction works along L and the problem simplifies
to the d = 1 model.
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d=2: large L

Need to evaluate the 1-loop effective action

S(1)(Aµ,∆) =
D
2

log det
(

−D2
µ +△2)

where Bab(x , t) = i∆2δab is, as usual, the dominant mode at large D.

Under the assumptions L∆≫ 1,∆≫
√

λ̃, it turns out that the Wilson
line V decouples from the dynamics, yielding (Semenoff-Tirkonnen-Zarembo 1996,

Basu-Ezhutachan-Wadia 2005)

S/DN2 =

∫ ∞

−∞

dx
[

1
2N

Tr
(

|∂xU|2
)

− ξ

N2 |TrU|2
]

.

where ξ =
√

△0

2πλ̃2β3 e−△0β and ∆0 is an analog of ΛQCD (Asymptotic

freedom, dynamical mass generation)

△0 =

√

λ̃

2π
log
(

2πΛ2

λ̃

)

+ · · · , λ̃ = (2π∆2
0)/ log(Λ2/∆2

0)

Full formula involves Lambert’s W-function.
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d=2: large L phase transition

The double trace action was analyzed in [Semenoff-Zarembo,
Basu-Ezhuthachan-Wadia], using the eigenvalue density

ρ(θ, x) =
1
N

N
∑

i=1

δ(θ − θi(x))

The hamiltonian becomes (at large N)

H =

∫

dθ
(

1
2
ρv2 +

π2

6
ρ3 − ξ |u1|2

)

.

where v = ∂θΠ. The hamiltonian admits x-independent
solutions

ρ(θ) =

√
2
π

(

√

E + 2ξρ1 cos θ
)
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The eigenvalue density can be uniform, non-uniform or gapped,
for various ξ-values.

−π −π −ππ π π

ρ(θ) ρ(θ) ρ(θ)

θ θ θ
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d=2: Landau-Ginzburg potential

Here C1 is roughly < TrU > (in a static phase), and V (C1) can be
regarded as an on-shell evaluation of the action S in the previous
slide. There is a clear first order phase transition.
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d=2: Stability and order of transition

E

ξξ0 ξ2ξ1ξ3

Phase I (uniform)

Phase III

Phase II

Gapped

Non-uniform

Energy vs ξ for three types of eigenvalue distribution of the
Wilson line U. ξ is a monotonically increasing function of T .
Note the 1st order transition at ξ1.
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d=2: phase diagram

β

L

?

un = 0

v
n
6= 0

un = 0

vn = 0

v
n
= 0

un 6= 0

un 6= 0

vn 6= 0

1st

2nd

3rd

Figure: Phases at small and large L. The second joining pattern is
picked out by gravity calculations. This supports the ‘cascade’ found
in lattice calculations.
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Gravity correspondence: D2 branes

•To get a gravity dual of d = 2 bosonic YM, start with D2
branes= 3d SYM on T 3 with radii β, L1, L2.

•Consider AP b.c. for fermions along L2. For small enough L2

the corresponding KK modes and all fermions decouple⇒
d = 2 YM.

•However, for very small L2, the gravity analysis is not reliable;
hence L2 cannot be taken too small,⇒ fermions persist.

•Phase diagram depends on fermion boundary conditions
along β, L1: (P,P), (AP, P), (P, AP), (AP,AP).

•Gravity solutions (phases) include D0, D1 and D2 branes
(smeared/ localized) and AdS solitons which are double Wick
rotations of these.
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Brane free energies

DpL0,(L1,L2,...,Lp) denotes a Dp brane wrapped on a contractible cycle
of length L0 (cf. cigar), and non-contractible L1, ..., Lp.

⇒ 〈TrU0〉 6= 0, 〈TrU1〉 = 〈TrU2〉 = ... = 0

ds2 = α′

[

F (u)

(

f (u)dt2 +

p
∑

i=1

dxidxi)

)

+
du2

F (u)f (u)
+ G(u)dΩ2

8−p

]

F (u) =
u(7−p)/2
√

dpλp+1
, G(u) =

√

dpλp+1u(3−p)/2, f (u) = 1−
(u0

u

)7−p

λp+1 = g2
p+1N (4)

S/N2 = Cpλ
p−3
5−p

p+1L1 · · · Lpβ
(

−β−
2(7−p)

5−p + H(Ureg)
)

,

H(Ureg) =

(

2ap
√

λp+1

)2(7−p)/(5−p)

U7−p
reg (5)
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D2: (P, P, AP)
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D1L2(L1)

D1L2(β)

TrU = 0

TrV = 0

TrU 6= 0

TrV = 0
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TrU 6= 0

TrV 6= 0

TrW 6= 0

TrU = 0
TrV 6= 0

TrW 6= 0 D2L2(β,L1)

TrW 6= 0

C

gravity

D

Figure: D2 brane on T 3 with (P,P,AP) boundary condition. Gravity
description reliable above dotted lines.
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d=2: Combining gauge theory & gravity-extrapolated

β

L

TrU = 0

1st

TrV 6= 0
TrU = 0

TrV = 0

TrV = 0

TrU 6= 0

Lc

βc

TrV 6= 0

TrU 6= 0

A

B

2c3c

4c

C

O

D

2nd
3rd

[cf. Takeshi’s talk yesterday on Deconfinement in 4D YM]
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New results from lattice [in collaboration with R. Narayanan]
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d=2: Dynamical transitions

•We derived the large L effective action above. By flipping t ↔ x1, we
get the following effective action at large β (low temperature)

S(A)/DN2 =

∫ ∞

0
dt

(

1
2N

Tr
(

|∂tV |2
)

+

√

△0

2πλ̃2L3
e−△0L

∣

∣

∣

∣

1
N

TrV

∣

∣

∣

∣

2
)

where V (t) = P exp[i
∫

A1(x , t)dx ].

• The static solutions, as mentioned before, are given by uniform,
non-uniform and gapped eigenvalue distributions. The stability of
these depends on the value of L.

•By using the above action, we can consider dynamical transitions
between these phases, which would include gauge theory duals of
dynamical Gregory-Laflamme transitions.
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Gapless→ gapped
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Figure: The figure on the left shows a slightly perturbed gapless
distribution at t = 0. The figure in the middle shows a nearly gapped
distribution (t=8000). The figure on the extreme right depicts ρ1(t) as
it changes from 0 at t = 0 to 0.55 at t = 8000



Introduction d=0 d=1 d=2 and D2 Dynamics Conclusions

Gapless→ gapped: density plot
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Figure: Coordinate space fermion distribution corresponding to the
central figure of Fig 3. The ‘waist’ does not vanish at very large times.
cf. Horowitz-Maeda conjecture: ‘no naked singularity’.
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Gapped→ gapless
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Figure: The figure on the left shows a slightly perturbed gapped
distribution at t = 0. The value of ξ is 0.23. The figure in the middle
shows a gapless distribution at t = 10000. The figure on the extreme
right depicts ρ1(t) as it changes from 0.5 at t = 0 to 0 at t = 8000
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Open problems and work in progress

Fermions [work in progress with Hiroshi Isono]. Schematically,

ψ2Y + Y 4 = BY 2 + B2 + ψ2Y

= B(Y + 1/(2B)ψ2)2 − ψ4/(4B) = B(Ỹ )2 − F 2/(4B) + ψ2F

⇒ SSB of SO(D). Large D vs SUSY.

Higher dimensions (d ≥ 3). In addition to log(D2
µ + B), the

kinetic term F 2
µν plays an important role. Makes analysis difficult.

Dynamical transitions: end-point of GL, equilibration, time arrow
[with Basu, Morita, Wadia; Iizuka, Morita]

Large D as a new classical limit: 〈TrY IY I〉/(ND) ∼ ∆2
0. In fact,

Ψ(Y 2) turns out to be (under certain circumstances)
∼ δ(Y 2 − Y 2

0 ). Appearance of size (horizon?). Need to compute
Wilson line in the bulk to compute the location of horizon.

Saddle point configuration corresponds to black objects, with
entropy O(N2). How does this appear in the Y I quantum
mechanics? Splitting of the O(N2) level....
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M type of phase transition

small T D× small S1 2nd+3rd

small T D× large S1 1st

small S2 2nd+3rd

small S3 1st

Table: Confinement/deconfinement type transitions in lower
dimensional pure Yang-Mills theories on S1

β ×M. Here “small S1”
and “small T D” refer to sizes small enough to ensure (a) that the ZN

symmetries in the S1 and T D directions, respectively, are broken, and
(b) that all the KK modes can be integrated out. “Large S1” ensures
that the ZN is not broken.
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Glueball

Bhanot, Daley and Klebanov:
d = 2,D = 1

Tr (Y (k1)Y (k2)...Y (kr )) Hagedorn spectrum of glueballs

S.H. Oscillation of the condensate


	Introduction
	

	d=0
	

	d=1
	

	d=2 and D2
	

	Dynamics
	

	Conclusions
	


