Holographic Three-Point Functions of Giant Gravitons

Konstantinos Zoubos

Niels Bohr Institute

6th Regional Meeting on String Theory
Milos
23/6/2011

Based on arXiv:1103.4079 with A. Bissi, C. Kristjansen and D. Young

Motivation: Semiclassical States in AdS/CFT

- Context: AdS/CFT correspondence between $\mathcal{N}=4$ SYM and string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
- Interested in $\mathcal{N}=4$ SYM operators with large quantum numbers, e.g. $\operatorname{Tr}\left(X^{J_{1}} Y^{J_{2}}\right)$
- E.g. large R-charge \Leftrightarrow large angular momentum along S^{5}
- Semiclassical states on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ play a significant role
- Their role is particularly crucial in the context of AdS/CFT integrability [Gubser, Klebanov, Polyakov '02]
- They are dual to long operators with a large number of impurities
- Examples: Folded and circular spinning strings, giant magnons, (cusped) Wilson loops...

Correlation functions in AdS/CFT

- Consider the set of all gauge invariant operators $\mathcal{O}_{\text {, }}$ in $\mathcal{N}=4 \operatorname{SYM}\left(\mathcal{O}_{,} \in\left\{\operatorname{Tr}(X Y X Z X \cdots), \operatorname{Tr}\left(D_{\mu} X \psi \bar{\psi} \cdots\right), \cdots\right\}\right)$
- Their two-point functions take the form:

$$
\left\langle\mathcal{O}_{I}^{\Delta_{I}}(x) \overline{\mathcal{O}}_{J}^{\Delta_{J}}(y)\right\rangle=\frac{\delta_{I J}}{|x-y|^{2 \Delta_{I}}}
$$

- Spectral problem: Determine Δ_{l} for all \mathcal{O}_{I}
- This is now believed to be solved for practically all operators in (planar) $\mathcal{N}=4$ SYM
- Integrability techniques (Bethe ansatz, Y-system...)
- Next step: Three-point functions!

$$
\left\langle\mathcal{O}_{1}^{\Delta_{1}}(x) \mathcal{O}_{2}^{\Delta_{2}}(y) \mathcal{O}_{3}^{\Delta_{3}}(z)\right\rangle=\frac{\mathcal{C}_{123}}{|x-y|^{\Delta_{1}+\Delta_{2}-\Delta_{3}}|x-z|^{\Delta_{1}+\Delta_{3}-\Delta_{2}}|y-z|^{\Delta_{2}+\Delta_{3}-\Delta_{1}}}
$$

- Knowing all the $\mathcal{C}_{I J K}$ (as well as the Δ_{I}) would amount to solving the theory (in principle)

Two-point functions of semiclassical states

- In AdS/CFT, correlation functions of single-trace operators are calculated using Witten diagrams

- We would like a similar prescription for semiclassical states
- For two-point functions, this was discussed in [Tsuij 'o6, Janik, Surowka, Wereszczynski '10]
- Appropriate Wick rotations take a spinning string solution to a configuration starting and ending at the boundary

Three-point functions of semiclassical states

- We would like to do something similar for three-point functions
- However, that would seem to involve knowing the geometric solution for a semiclassical string ending on the boundary at three points

- Some recent progress, but the general problem is still open [Vicedo '11, Klose, McLoughlin '11]
- Expectation is that integrability will eventually give the answer for $\mathcal{C}_{\text {IJK }}$ while bypassing the precise solution

State of the art: Two heavy, one light

[Zarembo '10, Costa, Monteiro, Santos, Zoakos '10, Buchbinder/Tseytlin/Roiban/Russo '10]

- Take two of the states to be heavy (semiclassical) and one to be light (dual to a supergravity mode)

- Ignore backreaction of the light state on the heavy one
- The semiclassical trajectory is unchanged
- Integrate over the position of the insertion of the light state on the heavy state worldvolume

Three-point function prescription

- $\mathcal{C}_{\text {IJK }}$ is given by the following prescription: [Zarembo ${ }^{10]}$

$$
\frac{\left\langle\mathcal{W} \mathcal{O}_{l}(y)\right\rangle}{\langle\mathcal{W}\rangle}=\lim _{\epsilon \rightarrow 0} \frac{\pi}{\epsilon^{\Delta_{l}}} \sqrt{\frac{2}{\Delta_{I}-1}}\left\langle\phi_{I}(y, \epsilon) \frac{1}{Z_{\text {heavy }}} \int D X e^{-S_{\text {heavy }}[X]}\right\rangle_{\text {bulk }}
$$

- $\phi(y, \epsilon)$ is the supergravity mode dual to the single-trace chiral primary $\mathcal{O}_{\text {, }}$
- For a string, the action is:

$$
S_{\text {heavy }}=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma \sqrt{h} G_{M N} \partial^{a} X^{M} \partial_{a} X^{N}
$$

and couples to ϕ through $G_{M N}=g_{M N}+\gamma_{M N}, \gamma_{M N}=V_{M N}^{\prime} \phi_{I}$

- Several cases have been considered recently
- Weak coupling side less developed [Escobedo,Gromov,Sever,Vieira' 10]

Back to the BPS sector

- All this was for semiclassical obects which are far from BPS
- But can these techniques also provide new input in the $\frac{1}{2}$-BPS sector?
- Much better control on the gauge theory side (often exact results exist)
- Could hope to find exact matching between the two sides of the duality
- In this talk, we will look at correlation functions involving operators in representations of order N
- We will identify and attempt to compute the same correlation functions holographically
- First review some facts about the $\frac{1}{2}$-BPS sector

The trace basis

- The simplest basis of $\frac{1}{2}$-BPS operators is made up products of traces of a single $\mathcal{N}=4$ scalar

$$
\operatorname{Tr}\left(Z^{J}\right), \operatorname{Tr}\left(Z^{J-1}\right) \operatorname{Tr}(Z), \operatorname{Tr}\left(Z^{J-2}\right) \operatorname{Tr}\left(Z^{2}\right), \ldots
$$

- Focus on single-trace chiral primaries: $\mathcal{O}^{J}=\operatorname{Tr} Z^{J}$
- Dual to gravity modes in the dual theory
- Two- and three-point functions [Lee et al. '98, D'Hoker etal. '98, Kristiansen et al. '02, Constable et al. '02]

$$
\begin{aligned}
\left\langle\mathcal{O}^{J} \overline{\mathcal{O}}^{J}\right\rangle & =J N^{J}\left(1+O\left(1 / N^{2}\right)\right) \\
\left\langle\mathcal{O}^{J} \mathcal{O}^{K} \overline{\mathcal{O}}^{J+K}\right\rangle & =N^{J+K-1} J K(J+K)\left(1+O\left(1 / N^{2}\right)\right)
\end{aligned}
$$

- Structure constants

$$
\begin{aligned}
\mathcal{C}_{J, K, K+J} & =\frac{\left\langle\mathcal{O}^{J} \mathcal{O}^{J} \overline{\mathcal{O}}^{J+K}\right\rangle}{\sqrt{\left\langle\mathcal{O}^{J} \overline{\mathcal{O}}^{J}\right\rangle\left\langle\mathcal{O}^{K} \overline{\mathcal{O}}^{K}\right\rangle\left\langle\mathcal{O}^{J+K} \overline{\mathcal{O}}^{J+K}\right\rangle}} \\
& =\frac{1}{N} \sqrt{J K(J+K)}\left[1+O\left(1 / N^{2}\right)\right]
\end{aligned}
$$

Operators of very large dimension

- We are working in the planar limit $N \rightarrow \infty$
- What happens when we consider trace operators whose dimension $J \sim N$?
- Relations appear between single and multitrace states $\Rightarrow J$ bounded!
- The \mathcal{O}^{J} cease to be orthogonal in this limit
- The usual $1 / N^{2}$ counting for non-planar diagrams is upset by huge combinatoric factors
- Correlation functions of the \mathcal{O}^{J} are not well-behaved
[Balasubramanian et al. '01, Dhar, Mandal, Smedbäck '05]
- Does there exist a better $\frac{1}{2}$-BPS basis for $J \sim N$?

Schur polynomial operators

[Corley, Jevicki, Ramgoolam '01]

- Defined by a representation R_{n} of the symmetric group S_{n}

$$
\chi_{R_{n}}(Z)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \chi_{R_{n}}(\sigma) Z_{i_{1}}^{i_{\sigma(1)}} \cdots Z_{i_{n}}^{i_{\sigma(n)}}
$$

- They can be expanded in a trace basis
- For the antisymmetric representation:

$$
\begin{aligned}
O_{2}^{A}= & -\frac{1}{2} \operatorname{Tr}\left(Z^{2}\right)+\frac{1}{2} \operatorname{Tr}(Z)^{2} \\
O_{3}^{A}= & \frac{1}{3} \operatorname{Tr}\left(Z^{3}\right)-\frac{1}{2} \operatorname{Tr}\left(Z^{2}\right) \operatorname{Tr}(Z)+\frac{1}{6} \operatorname{Tr}(Z)^{3} \\
O_{4}^{A}= & -\frac{1}{4} \operatorname{Tr}\left(Z^{4}\right)+\frac{1}{3} \operatorname{Tr}\left(Z^{3}\right) \operatorname{Tr}(Z)+\frac{1}{8} \operatorname{Tr}\left(Z^{2}\right)^{2} \\
& -\frac{1}{4} \operatorname{Tr}\left(Z^{2}\right) \operatorname{Tr}(Z)^{2}+\frac{1}{24} \operatorname{Tr}(Z)^{4}
\end{aligned}
$$

Schurs vs. Multi-traces

- The Schurs are a better basis when $\Delta \sim N$
[Corley, Jevicki, Ramgoolam '01, Dhar, Mandal, Smedbäck '05]
- Orthogonal for any value of N

$$
\left\langle\chi_{R}(Z) \chi_{s}(\bar{Z})\right\rangle=\delta_{R, S} \prod_{i . j \in R}(N-i+j)
$$

- Correlation functions fall with N

$$
\left\langle\chi_{R}(Z) \chi_{S}(Z) \chi_{T}(\bar{Z})\right\rangle=g(R, S ; T) \prod_{i, j \in T}(N-i+j)
$$

($g(R, S, T)$: Littlewood-Richardson coefficients)

- Two- and three-point functions: (here for antisymmetric)

$$
\begin{aligned}
\left\langle\chi_{k}^{A}(\bar{Z}) \chi_{k}^{A}(Z)\right\rangle & =\prod_{i=1}^{k}(N-i+1), \\
\left\langle\chi_{k}^{A}(\bar{Z}) \chi_{k-J}^{A}(Z) \chi_{J}^{A}(Z)\right\rangle & =\prod_{i=1}^{k}(N-i+1)
\end{aligned}
$$

AdS duals for the Schurs?

- The description is simplest for the symmetric and antisymmetric cases
- Antisymmetric Schurs are nothing but determinant and subdeterminant operators

$$
\chi_{k}^{A}(Z)=\operatorname{det}_{k}(Z)
$$

- For $k \sim N$, these have been argued to be dual to giant gravitons on S^{5} [Balasubramanian et al. '01]
- Satisfy the stringy exclusion principle
- Symmetric Schurs were shown to be dual to AdS_{5} giant gravitons [Corley, Jevicki, Ramgoolam '01]

Giant Gravitons

[McGreevy, Susskind, Toumbas '00]

- D3-branes wrapped around (trivial) cycles in AdS_{5} or S^{5} and rotating along the S^{5}
- Stabilised by their angular momentum k
- Their radius increases with k through Myers effect
- As $k \rightarrow 0$, they reduce to pointlike gravitons
- Preserve $\frac{1}{2}$ Supersymmetry [Grisaru, Myers, Tafiord '00]
- Have been argued to be good duals to Schur polynomials for $k \sim N$
- Since $R \leq R_{S^{5}}$, we have a simple explanation of the stringy exclusion principle

Our goal

- Can we compute holographic correlation functions involving Schur polynomials?
- We are interested in the semiclassical limit, $k \sim N \gg 1$
- $\left\langle\bar{\chi}_{k}(\bar{Z}) \chi_{k-\prime}(Z) \chi_{\prime}(Z)\right\rangle$ is beyond our reach. We would need the full semiclassical geometry
- Inspired by the progress in the semiclassical string context, we can try to compute a correlation function of two Schurs and one trace operator:

$$
\left\langle\bar{\chi}_{k}(\bar{Z}) \chi_{k-\jmath}(Z) \operatorname{Tr} Z^{J}\right\rangle
$$

- On the dual gravity side, this should correspond to a giant graviton emitting a light graviton

Gauge theory side

- We want the structure constant (here for symmetric):

$$
C_{k, k-J, J}^{S} \equiv \frac{\left\langle\chi_{k}^{S}(\bar{Z}) \chi_{k-J}^{S}(Z) \operatorname{Tr} Z^{J}\right\rangle}{\sqrt{\left\langle\chi_{k}^{S}(\bar{Z}) \chi_{k}^{S}(Z)\right\rangle\left\langle\chi_{k-J}^{S}(\bar{Z}) \chi_{k-J}^{S}(Z)\right\rangle\left\langle\operatorname{Tr} \bar{Z}^{J} \operatorname{Tr} Z^{J}\right\rangle}},
$$

- We can simply use that:

$$
\operatorname{Tr} Z^{J}=\sum_{R_{J}} \chi_{R_{J}}\left(\sigma_{0}\right) \chi_{R_{J}}(Z)
$$

(σ_{0} the cyclic permutation) to find

$$
\begin{aligned}
& \left\langle\chi_{k}^{S}(\bar{Z}) \chi_{k-J}^{S}(Z) \operatorname{Tr} Z^{J}\right\rangle=\prod_{j=1}^{k}(N-1+j) \\
& \left\langle\chi_{k}^{A}(\bar{Z}) \chi_{k-J}^{A}(Z) \operatorname{Tr} Z^{J}\right\rangle=(-1)^{J-1} \prod_{i=1}^{k}(N-i+1)
\end{aligned}
$$

Gauge theory result

- Normalise by dividing by the relevant norms
- We are interested in the limit

$$
N, k \rightarrow \infty \quad \text { with } \quad \frac{k}{N} \text { finite }, \quad J \ll k
$$

- Result: The structure constants are:

$$
\begin{aligned}
C_{k, k-J, J}^{S} & =\frac{1}{\sqrt{J}}\left(1+\frac{k}{N}\right)^{J / 2} \\
C_{k, k-J, J}^{A} & =(-1)^{(J-1)} \frac{1}{\sqrt{J}}\left(1-\frac{k}{N}\right)^{J / 2} \quad k \leq N
\end{aligned}
$$

Gravity side

- Now compute the same object in the dual $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ theory, following the approach of [Zarembo '10]
- As discussed, we need to evaluate the following object:

$$
\frac{\left\langle\mathcal{W} \mathcal{O}_{l}(y)\right\rangle}{\langle\mathcal{W}\rangle}=\lim _{\epsilon \rightarrow 0} \frac{\pi}{\epsilon^{\Delta_{l}}} \sqrt{\frac{2}{\Delta_{I}-1}}\left\langle\phi_{I}(y, \epsilon) \frac{1}{Z_{\mathrm{D} 3}} \int D X e^{-S_{D 3}[X]}\right\rangle_{\text {bulk }}
$$

- $S_{D 3}^{E}$ is the Euclidean D-brane action

$$
S_{D 3}^{E}=\frac{N}{2 \pi^{2}} \int d^{4} \sigma\left(\sqrt{g}-i P\left[C_{4}\right]\right),
$$

where $g_{a b}=\partial_{a} X^{M} \partial_{b} X_{M}, \quad a, b=0, \cdots 3 . X^{M}$ are the brane embedding coordinates

Giant graviton in S^{5}

- Global metric for $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$:

$$
d s^{2}=-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \widetilde{\Omega}_{3}^{2}+d \theta^{2}+\sin ^{2} \theta d \phi^{2}+\cos ^{2} \theta d \Omega_{3}^{2}
$$

- Giant graviton ansatz

$$
\rho=0, \quad \sigma^{0}=t, \quad \phi=\phi(t), \quad \sigma^{i}=\chi_{i}, \quad C_{\phi \chi_{1} \chi_{2} \chi_{3}}=\cos ^{4} \theta \operatorname{Vol}\left(\Omega_{3}\right)
$$

- Action

$$
S=-N \int d t\left[\cos ^{3} \theta \sqrt{1-\dot{\phi}^{2} \sin ^{2} \theta}-\dot{\phi} \cos ^{4} \theta\right]
$$

- Angular momentum

$$
k=\frac{\delta L}{\delta \dot{\phi}}=\frac{N \dot{\phi} \sin ^{2} \theta \cos ^{3} \theta}{\sqrt{1-\dot{\phi}^{2} \sin ^{2} \theta}}+N \cos ^{4} \theta
$$

- The energy $E=\dot{\phi} k-L$ is minimized by

$$
\cos ^{2} \theta=\frac{k}{N}, \quad E_{\min .}=k, \quad S_{\min .}=0 \quad \Rightarrow \dot{\phi}=1
$$

Giant graviton in S^{5} (cont.)

- We will need the fluctuations of the sugra mode [Kim, Romans, van Nieuwenhuizen '85, Lee, Minwalla, Rangamani, Seiberg '98, Berenstein, Corrado, Fischler, Maldacena '98]

$$
\begin{aligned}
& \delta g_{\mu \nu}=\left[-\frac{6 \Delta}{5} g_{\mu \nu}+\frac{4}{\Delta+1} \nabla_{(\mu} \nabla_{\nu)}\right] s^{\Delta}(X) Y_{\Delta}(\Omega), \\
& \delta g_{\alpha \beta}=2 \Delta g_{\alpha \beta} s^{\Delta}(X) Y_{\Delta}(\Omega), \\
& \delta C_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}=-4 \epsilon_{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \mu_{5}} \nabla^{\mu_{5}} s^{\Delta}(X) Y_{\Delta}(\Omega), \\
& \delta C_{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}}=4 \epsilon_{\alpha \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}} s^{\Delta}(X) \nabla^{\alpha} Y_{\Delta}(\Omega),
\end{aligned}
$$

- $Y_{\Delta}(\Omega)$ correspond to the $[0, \Delta, 0]$ representation

$$
Y_{\Delta}(\Omega)=\frac{\sin ^{\Delta} \theta e^{\Delta t}}{2^{\Delta / 2}} \Leftrightarrow \mathcal{O}=\operatorname{Tr} Z^{\Delta}
$$

- s^{Δ} will be replaced by the bulk-to-boundary propagator

$$
s^{\Delta} \rightarrow \sqrt{\frac{\alpha_{0}}{B_{\Delta}}} \frac{z^{\Delta}}{\left(\left(x-x_{B}\right)^{2}+z^{2}\right)^{\Delta}} \simeq \sqrt{\frac{\alpha_{0}}{B_{\Delta}}} \frac{z^{\Delta}}{x_{B}^{2 \Delta}}
$$

Giant graviton in S^{5} (cont.)

- Now we need to vary the action
- DBI part

$$
\begin{aligned}
& \delta S_{D B I}=\frac{N}{2} \cos ^{2} \theta \int d t Y_{\Delta}(\Omega)(\frac{4}{\Delta+1} \partial_{t}^{2}-\frac{2 \Delta(\Delta-1)}{\Delta+1} \\
&\left.-8 \Delta \sin ^{2} \theta+6 \Delta\right) s^{\Delta}
\end{aligned}
$$

- Wess-Zumino part

$$
\delta S_{W Z}=-2^{-\frac{\Delta}{2}+2} N \Delta \int d t e^{\Delta t} \sin ^{\Delta} \theta \cos ^{4} \theta s^{\Delta}
$$

- Substituting s^{Δ}, with $z=R / \cosh t$, we finally find

$$
\delta S=-\left(\frac{2 R}{x_{B}^{2}}\right)^{\Delta} \sqrt{\Delta} \cos ^{2} \theta \sin ^{\Delta} \theta
$$

to conclude that

$$
\mathcal{C}_{k, k-J, J}^{A}=\sqrt{J} \frac{k}{N}\left(1-\frac{k}{N}\right)^{J / 2}
$$

Giant graviton in AdS_{5}

- Now the graviton wraps an $S^{3} \subset \operatorname{AdS}_{5},\left(S^{3}: \vartheta, \phi_{1}, \phi_{2}\right)$
- We take the following ansatz

$$
\rho=\text { const. }, \quad \sigma^{0}=t, \quad \sigma^{i}=\tilde{\chi}_{i}, \quad \phi=\phi(t), \quad \theta=\frac{\pi}{2}
$$

to obtain

$$
S=\int d t L=-N \int d t\left[\sinh ^{3} \rho \sqrt{\cosh ^{2} \rho-\dot{\phi}^{2}}-\sinh ^{4} \rho\right]
$$

- More complicated bulk-to-boundary propagator:

$$
s \rightarrow \frac{\Delta+1}{4 \sqrt{\Delta} N x_{B}^{2 \Delta}} \frac{R^{\Delta} e^{\Delta t}}{\left(\cosh \rho \cosh t-\cos \vartheta \sin \phi_{1} \sinh \rho\right)^{\Delta}}
$$

- The final result is

$$
\delta S=-\left(\frac{2 R}{x_{B}^{2}}\right)^{\Delta} \frac{1}{\sqrt{\Delta}}\left(\cosh ^{\Delta} \rho-\cosh ^{-\Delta} \rho\right)
$$

or

$$
C_{k, k-J, J}^{S}=\frac{1}{\sqrt{J}}\left[\left(1+\frac{k}{N}\right)^{J / 2}-\left(1+\frac{k}{N}\right)^{-J / 2}\right]
$$

Summary of Results

- Antisymmetric $\left(S^{5}\right)$ case
- Gauge theory

$$
\mathcal{C}_{k, k-J, J}=(-1)^{J-1} \frac{1}{\sqrt{J}}\left(1-\frac{k}{N}\right)^{J / 2}
$$

- Gravity

$$
C_{k, k-J, J}=\sqrt{J} \frac{k}{N}\left(1-\frac{k}{N}\right)^{J / 2}
$$

- Symmetric $\left(\mathrm{AdS}_{5}\right)$ case
- Gauge theory

$$
\mathcal{C}_{k, k-J, J}=\frac{1}{\sqrt{J}}\left(1+\frac{k}{N}\right)^{J / 2}
$$

- Gravity

$$
C_{k, k-J, J}=\frac{1}{\sqrt{J}}\left[\left(1+\frac{k}{N}\right)^{J / 2}-\left(1+\frac{k}{N}\right)^{-J / 2}\right]
$$

Discussion

???

Discussion

???

- We find a mismatch between gauge and gravity sides...

Discussion

???

- We find a mismatch between gauge and gravity sides...
- Symmetric case matches for $k / N \rightarrow \infty$, antisymmetric case only for the maximal case $k / N=1$

Discussion

???

- We find a mismatch between gauge and gravity sides...
- Symmetric case matches for $k / N \rightarrow \infty$, antisymmetric case only for the maximal case $k / N=1$
- Might the semiclassical approach fail for giant gravitons?

Discussion

???

- We find a mismatch between gauge and gravity sides...
- Symmetric case matches for $k / N \rightarrow \infty$, antisymmetric case only for the maximal case $k / N=1$
- Might the semiclassical approach fail for giant gravitons?
- Not likely, has been succesfully applied in the very similar context of Wilson loops in higher representations
[Giombi, Ricci, Trancanelli '06]

Discussion

???

- We find a mismatch between gauge and gravity sides...
- Symmetric case matches for $k / N \rightarrow \infty$, antisymmetric case only for the maximal case $k / N=1$
- Might the semiclassical approach fail for giant gravitons?
- Not likely, has been succesfully applied in the very similar context of Wilson loops in higher representations
[Giombi, Ricci, Trancanelli '06]
- There do not seem to be any subtle $1 / N$ enhancements

Discussion

???

- We find a mismatch between gauge and gravity sides...
- Symmetric case matches for $k / N \rightarrow \infty$, antisymmetric case only for the maximal case $k / N=1$
- Might the semiclassical approach fail for giant gravitons?
- Not likely, has been succesfully applied in the very similar context of Wilson loops in higher representations
[Giombi, Ricci, Trancanelli '06]
- There do not seem to be any subtle $1 / N$ enhancements
- Were we correct in identifying Schur polynomials with giant gravitons?

What is the true dual of a giant graviton?

- Giant gravitons smoothly reduce to light gravitons as $k \ll N .\left(C_{k, k-J, J} \rightarrow \sqrt{J} k / N\right)$

What is the true dual of a giant graviton?

- Giant gravitons smoothly reduce to light gravitons as $k \ll N .\left(C_{k, k-J, J} \rightarrow \sqrt{J} k / N\right)$
- Schurs are dual to giant gravitons for $k \gg \sqrt{N}$

What is the true dual of a giant graviton?

- Giant gravitons smoothly reduce to light gravitons as $k \ll N .\left(C_{k, k-J, J} \rightarrow \sqrt{J} k / N\right)$
- Schurs are dual to giant gravitons for $k \gg \sqrt{N}$
- Single-trace operators dual to light gravitons for $k \ll N$

What is the true dual of a giant graviton?

- Giant gravitons smoothly reduce to light gravitons as $k \ll N .\left(C_{k, k-J, J} \rightarrow \sqrt{J} k / N\right)$
- Schurs are dual to giant gravitons for $k \gg \sqrt{N}$
- Single-trace operators dual to light gravitons for $k \ll N$
- But the Schurs don't reduce to single traces in any limit!

$$
\text { (Recall e.g. } \left.O_{2}^{a}=-\frac{1}{2} \operatorname{Tr}(Z Z)+\frac{1}{2} \operatorname{Tr}(Z)^{2}\right)
$$

What is the true dual of a giant graviton?

- Giant gravitons smoothly reduce to light gravitons as $k \ll N .\left(C_{k, k-J, J} \rightarrow \sqrt{J} k / N\right)$
- Schurs are dual to giant gravitons for $k \gg \sqrt{N}$
- Single-trace operators dual to light gravitons for $k \ll N$
- But the Schurs don't reduce to single traces in any limit!

$$
\text { (Recall e.g. } \left.\quad O_{2}^{a}=-\frac{1}{2} \operatorname{Tr}(Z Z)+\frac{1}{2} \operatorname{Tr}(Z)^{2}\right)
$$

- So the Schurs cannot be dual to giant gravitons for any k. Even at $k \sim N$, we cannot trust the very subleading terms in their OPE to reflect giant graviton physics

$$
\chi_{k}(\bar{Z}(0)) \chi_{k-J}(Z(x))=\ldots+C_{k, k-J, J}^{\text {gauge }} \operatorname{Tr} \bar{Z}^{J}(0) x^{-2 J}+\ldots
$$

- The chiral primary $\operatorname{Tr} Z^{J}$ is sensitive to corrections of this order

What is the true dual of a giant graviton?

- Giant gravitons smoothly reduce to light gravitons as $k \ll N .\left(C_{k, k-J, J} \rightarrow \sqrt{J} k / N\right)$
- Schurs are dual to giant gravitons for $k \gg \sqrt{N}$
- Single-trace operators dual to light gravitons for $k \ll N$
- But the Schurs don't reduce to single traces in any limit!

$$
\text { (Recall e.g. } \left.\quad O_{2}^{a}=-\frac{1}{2} \operatorname{Tr}(Z Z)+\frac{1}{2} \operatorname{Tr}(Z)^{2}\right)
$$

- So the Schurs cannot be dual to giant gravitons for any k. Even at $k \sim N$, we cannot trust the very subleading terms in their OPE to reflect giant graviton physics

$$
\chi_{k}(\bar{Z}(0)) \chi_{k-J}(Z(x))=\ldots+C_{k, k-J, J}^{\text {gauge }} \operatorname{Tr} \bar{Z}^{J}(0) x^{-2 J}+\ldots
$$

- The chiral primary $\operatorname{Tr} Z^{J}$ is sensitive to corrections of this order
- Need the true basis of operators, which interpolates between the Schurs and the trace operators

Outlook

- Can we find an interpolating basis?

Outlook

- Can we find an interpolating basis?
- Naive guess (for symmetric representation): Jack Polynomials.

Outlook

- Can we find an interpolating basis?
- Naive guess (for symmetric representation): Jack Polynomials.
- Smoothly interpolate between Schur and chiral primary bases, e.g.

$$
J_{2}^{S}=\frac{1}{\beta+1}\left(\beta(\operatorname{Tr} X)^{2}+\operatorname{Tr} X^{2}\right)
$$

Outlook

- Can we find an interpolating basis?
- Naive guess (for symmetric representation): Jack Polynomials.
- Smoothly interpolate between Schur and chiral primary bases, e.g.

$$
J_{2}^{S}=\frac{1}{\beta+1}\left(\beta(\operatorname{Tr} X)^{2}+\operatorname{Tr} X^{2}\right)
$$

- Unfortunately, preliminary results indicate that they do not reproduce the expected behaviour on the string side...

Outlook

- Can we find an interpolating basis?
- Naive guess (for symmetric representation): Jack Polynomials.
- Smoothly interpolate between Schur and chiral primary bases, e.g.

$$
J_{2}^{S}=\frac{1}{\beta+1}\left(\beta(\operatorname{Tr} X)^{2}+\operatorname{Tr} X^{2}\right)
$$

- Unfortunately, preliminary results indicate that they do not reproduce the expected behaviour on the string side...
- Other directions
- ABJM theory (in progress)

Outlook

- Can we find an interpolating basis?
- Naive guess (for symmetric representation): Jack Polynomials.
- Smoothly interpolate between Schur and chiral primary bases, e.g.

$$
J_{2}^{S}=\frac{1}{\beta+1}\left(\beta(\operatorname{Tr} X)^{2}+\operatorname{Tr} X^{2}\right)
$$

- Unfortunately, preliminary results indicate that they do not reproduce the expected behaviour on the string side...
- Other directions
- ABJM theory (in progress)
- Operators of $O\left(N^{2}\right) \Rightarrow$ LLM description

Outlook

- Can we find an interpolating basis?
- Naive guess (for symmetric representation): Jack Polynomials.
- Smoothly interpolate between Schur and chiral primary bases, e.g.

$$
J_{2}^{S}=\frac{1}{\beta+1}\left(\beta(\operatorname{Tr} X)^{2}+\operatorname{Tr} X^{2}\right)
$$

- Unfortunately, preliminary results indicate that they do not reproduce the expected behaviour on the string side...
- Other directions
- ABJM theory (in progress)
- Operators of $O\left(N^{2}\right) \Rightarrow$ LLM description
- Beyond the $\frac{1}{2}$-BPS sector

Outlook

- Can we find an interpolating basis?
- Naive guess (for symmetric representation): Jack Polynomials.
- Smoothly interpolate between Schur and chiral primary bases, e.g.

$$
J_{2}^{S}=\frac{1}{\beta+1}\left(\beta(\operatorname{Tr} X)^{2}+\operatorname{Tr} X^{2}\right)
$$

- Unfortunately, preliminary results indicate that they do not reproduce the expected behaviour on the string side...
- Other directions
- ABJM theory (in progress)
- Operators of $O\left(N^{2}\right) \Rightarrow$ LLM description
- Beyond the $\frac{1}{2}$-BPS sector
- Correlation functions of three heavy giant gravitons

