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Introduction

Strongly coupled fermions play an important role in

many physical systems:

e QCD
® Technicolor

e Condensed matter



Typically, at weak coupling the dynamics is simple,
while at strong coupling one finds many interesting
phenomena, such as dynamical symmetry breaking,

mass generation and confinement.

The focus of this lecture will be the transition
between the two regimes.



Imagine a situation where the dynamics depends
on a continuous parameter A ( the coupling”),
such that for A\ < \. the order parameter (say a
dynamically generated mass) vanishes, while for

larger coupling it is non-zero.

The transition at A = A, may be either first order
or continuous. A conformal phase transition is a
particular kind of continuous transition, which
apparently plays a role in QCD and other strongly

coupled systems.



Conformal phase transition in QCD

Consider an SU(N) gauge theory coupled to F
flavors of fermions in the fundamental rep. In the
large N (Veneziano) limit, N,FF — co withx=N/F
fixed, the infrared dynamics of this theory depends
on X. For z < % the theory is infrared free. For

smaller F the IR dynamics is non-trivial.



If x is only slightly larger than 2/1 I, the gauge
coupling runs from zero Iin the UV to a small non-
zero value in the IR. The theory dynamically
generates a scale Agcp ., the crossover scale
between the UV and IR . For energies well below
this scale the dynamics is governed by a weakly

coupled interacting fixed point (Banks, Zaks).



As x increases (or F decreases), the IR theory
becomes more strongly interacting. VWhen it
exceeds a critical value, I . ,the model
undergoes a phase transition to a phase in
which conformal symmetry is broken, and the

quarks get a non-zero mass (4. The chiral

symmetry SU(F); x SU(F)r is broken to its
diagonal subgroup.



This phase transition is believed to be

continuous:

vl

! ! F

Near the transition one has:

u~ Agope ve—=c Miransky scaling



This phase structure is obtained in various
uncontrolled approximations, and it would be nice
to understand it better. Among other things this is
important for technicolor, the attempt to
understand electroweak symmetry breaking as a
consequence of strong gauge dynamics. It was
recognized long ago that viable models of this sort
must live in the vicinity of such a phase transition;

they are known as walking technicolor .



In QCD, it is difficult to analyze the dynamics near
the transition even in the large N limit, since this
involves solving a strongly coupled matrix model. In
this lecture we will consider a class of theories
which exhibit a similar phase transition but that can
be solved at large N.

These models are of interest in their own right, as
they involve 2+1 dimensional fermions strongly
interacting with 3+ dimensional gauge fields. This
type of dynamics may be experimentally realized in
condensed matter systems, such as graphene (Rey).



N=4 SYM coupled to defect fermions

The basic model we will consider can be thought
of as the low energy theory on a non-
supersymmetric brane system consisting of N
D3-branes and F D7-branes, oriented as follows:

o 1 2 3 4 5 6 7 8 9

D3 x X x X
D7 x x X X X X X X



Spectrum:

e 3-3 strings: 3+ | dimensional N=4 SYM
e 3-7 strings: 2+ | dimensional fermion

Low energy Lagrangian:

S =Sn=4+ /dSiU(i@E”YMDuw T g&¢¢9)



This gauge theory describes 2+ 1| dimensional
fermions with a tunable coupling and we will see
that it exhibits interesting dynamics when the
coupling is cranked up. We will study it at large N,

with F of order one, the standard t Hooft limit.

The classical Lagrangian is conformally invariant.
The quantum theory preserves this symmetry
for A < A ,and undergoes a continuous phase

transition at ..



A good way to probe the phase structure of the
model is to calculate the expectation value of

the open Wilson line operator

OW (2,) = ()P exp |ig / "] w(y)

In the conformal phase, A < A, it is determined
by conformal symmetry to take the form

1

(OW(z,y)) ~ iy 0, )A()\)—l

(z —y



The leading deviation from the conformal behavior
is associated with the possible addition of a mass
term for ¢, and the vev (), which is non-zero
for A > A\, .These give

1 (o) | m |

(OW (z,y)) ~ i@ (o) AT oA

where



In momentum space one has

(OW (p)) ~p™ N (p+ M(p) + ),

- (2) +52(2)

which can be summarized as

%(ﬁmp)) L CNM(p) =0,

One can think of M(p) as the order parameter for

conformal symmetry breaking.



The function C()) is related to the anomalous
dimension () via the relation

YA = — - \/i—cm

At weak coupling it can be calculated using
standard QFT techniques. One finds

- O(\?)



As the coupling increases, C'()\) increases and the
anomalous dimension becomes more negative. As
long as it remains real, one can show that the order
parameter M(p) vanishes. However, iffwhen C()\)
exceeds |/4, one can show that M becomes non-
zero. At large p it behaves like

N

M(p) = Ap (%) sin (ﬁm% + (b)

where



p = M(0)
is the dynamically generated scale. It is related
to the UV cutoff by

M(AUv) =0

which is the requirement that the bare mass is

zero. This leads to the Miransky-type relation

-
p =~ Apgyexp ( \/E>

To have a large hierarchy of scales, need x < 1.




We are led to the following picture:

A conformal phase transition takes place at a
i . At
that point the dimension of the fermion bilinear

takes the value A(yy)) = g and the two
leading terms in M(p) are comparable.

value of the coupling satisfying C()\.) =

The double trace operator (1)1))~ is marginal.
This is related to the picture for CPT’s
proposed by Kaplan, Lee, Son, Stephanov.



The phase diagram is schematically the following:

coupling

he 3

For \ < )\. there are two fixed points which differ in

the value of the four-Fermi coupling. The anomalous

dimensions take the values -, ()) = 1y \/1 — C(N).

2 V4




As )\ — )., the two fixed points approach each

other and above . they move off the real axis.

Comments:

e At )\ =0 the two fixed points in question are
understood from studies of NJL models.

* |n the above analysis we assumed that C())
reaches the value 1/4 at a finite A .This clearly

goes beyond the weak coupling regime. To see what

happens we next study this issue at strong
coupling.



Strong coupling analysis

At strong coupling, N=4 SYM is described by |IB
supergravity on AdSs x S° .The D7-brane can be

viewed as a probe propagating in this background.
Metric of AdSs x S°:

2 I\ 2
ds® = (%) dx,dz" ( ) (dp” + p?dQ + (dz”)?)

r

The D7-brane wraps z°, z!, 22, p, Q4 . Induced

metric on its worlvolume: AdS, x S*

2
ds® = (E)Qda: a1 (2 (dp? + p2d2)
T a 0 P P 4



This state is conformally invariant (in 2+1 d) but
it is unstable to condensation of the scalar field
parametrizing the position of the brane in z”

Indeed, denoting z” = f(p) one finds the DBI
action

A 2
SD7:/d3:z:/O dﬂp2 +Lf(p)2p4\/1+f’(p)2



The linearized eom for f is:

a% (p°f'(p)) +2f(p) = 0.

This is the KG equation in AdS for a scalar field with
mass below the BF bound. lts general solution is

flp)=Ap (%) sin <gln£ +¢>

14
One can show that its energy is lower than that of

D=

the conformal solution f=0.



The strong coupling analysis mirrors closely the weak
coupling one, with

M—f  p—=p

Thus, we conclude that the strong coupling behavior
of the function C is:

Coo = C(A — 00) =2

If C is a continuous function, there must be a phase
transition at a finite value of A .



We conclude that the model undergoes a phase
transition at finite t Hooft coupling, from a conformal

phase to one in which a mass is generated dynamically.

This transition occurs out of the regime of validity of

the weak and strong coupling expansions. Therefore, it
is hard to study the vicinity of the transition, and even
to decide whether the transition is continuous or first

order.

We will next discuss approximation schemes which

allow one to approach this problem.



Perturbative expansions

The basic idea is to change the parameters of the
model so that the phase transition is pushed either
to weak coupling, where one can use standard

QFT techniques, or to strong coupling, where one
can use holography.

To this end we replace the flavor D7-branes by
Dp-branes oriented as follows:



* We now have two additional parameters to play
with: d, n.The original D3/D7 system corresponds to

d=3, n=5, but we can treat d, n as continuous free
parameters.

* For n>d one can check that the only massless states
of (3,p) strings are fermions, so one can study the

issues raised before for general d, n in this range.

* OQOur basic idea is to vary the parameters so that the

phase transition occurs in a region that we can
control.



Weak coupling

For general d, n, the perturbative analysis gives:

d
p= (P~ M (p)) + C(N)p*°M(p) =0
CO) = g (2d—1) + (6~ ) + O(V)




- (1) -G

=7 = -2 (452) e

The phase transition now occurs when

C(Ac) = (d—2)7/4

For d =2+ €, ). ~¢* ,and we can use

perturbation theory to study the transition.



Strong coupling

For general d, n, it is convenient to write the metric as

2 I\ 2
ds? = (%) dz, dz" + <?> (dp? + pdQ2 _| +df* + f2dQ:_,)

The Dp-brane wraps d of the z*, as well as S™ '} and

forms a curve f(p).The DBI action for fis




The linearized eom for f is:

0
9 (P )+ (n=d)p" P f = 0.

As before, we can use it to read off

Coo = lim C(A)=n—d

A—> 00

and

_ 9\ ?
Koo = lim kK(A) =n—d— (d—> .

A—> 00



If Koo < 0, the system remains in the conformal
phase for all A . On the other hand, for k. >0, i.e.

d—2\"°
o= (122),

for

the system undergoes a CPT at a finite coupling. We
can explore the transition in gravity by taking

n=nmn.+0

With Koo = 0 < 1.



This leads to a kind of gravitational epsilon-
expansion.To leading order in 0 , we need to
solve the DBI eom for f. One finds the by

now familiar large p behavior

d—2

P

fp) = Ap (ﬁ)TSm (Mlngﬂb) -

The dynamically generated scale is

F(0) = i~ Aexp ( fz)



Mesons

To study mesons in the massive phase we need to
expand about the background solution and study
small excitations. Find (7 ~ 1/V\):

0- mesons: m?/f* ~ 0.44,9.65,26.63,51.35,84, - - -

vector mesons: m?/fi? ~ 3.08,15.12,34.87, 62.32,97.46, - - -

Note the anomalously light scalar meson; it can be
thought of as an analog of the techni-dilaton.



In technicolor there is a long-standing debate about
the fate of the dilaton near the CPT in QCD. There
are two schools of thought:

( | ) mtd/mmeson — 0
(2) Mitd /Mmeson — const
as ~ — 0.

We find that (2) is correct.



Intriguingly, in QCD it was argued (by M.
Hashimoto and K.Yamawaki) that the mass
of the techni-dilaton is smaller than that of
the lightest vector meson by a factor of
about 2.8. In our system this ratio is about

2.6...



Comments

* One can also discuss the system at finite
temperature and chemical potential. Find a
line of first order phase transitions
separating the broken phase from the

unbroken one.

* Our results confirm the ideas of Kaplan et
al, that CPT’s are stable because of their
topological nature - they arise when two RG
fixed points approach each other and
“annihilate.”



® Understanding the phase transition in QCD
requires more work. From our perspective
this has to do with generalizing the
discussion from open strings (DBI) to
closed strings (gravity).

® |t would also be interesting to see if one
can realize this kind of transition
experimentally in systems of 2 dimensional

electrons interacting with 3 dimensional
fields.



