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Plan of the talk

• Few comments on superconductivity and (non) Fermi liquid

• Holographic superconductor

• P-wave insulator/conductor/superconductor phase diagram(A. Akhavan, M.

A., 1011.6158 )

• Fermions on asymptotically AdS background
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Few comments on superconductivity

Superconductivity is an electrical resistance of exactly zero which occurs

in certain materials below a characteristic temperature known as critical

temperature Tc. These material are called superconductor.

It is important to note that superconductivity is a quantum mechanical

phenomenon. It is also characterized by a phenomenon called the Meissner

effect.

The ejection of any sufficiently weak magnetic field from the interior of the

superconductor as it transitions into the superconducting state.

A phenomenological description of superconductivity was first given by Lon-

don brothers (Fritz and Heinz London in 1935) with simple equation

~J = −
ne2

mc
~A
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In terms of the electric and magnetic fields E and B one has

∂ ~J

∂t
= −

ne2

mc
~E, ∇× ~J = −

ne2

mc
~B

Known as London’s equations.

If the second of London’s equations is manipulated by applying Ampere’s
law one finds

∇2 ~B =
1

λ2
~B, λ2 =

mc2

4πne2

Where λ is London penetration depth which is a a characteristic length over
which external magnetic fields are exponentially suppressed.
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A more complete theory of superconductivity was given by Bardeen, Cooper

and Schrieffer in 1957 and is known as BCS theory.

They showed that interactions with phonons can cause pairs of elections

with opposite spin to bind and form a charged boson called a Cooper pair.

Below a critical temperature Tc, there is a second order phase transition and

the Cooper pair, being bosons, condenses.

The DC conductivity becomes infinite producing a superconductor.
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Depending on the orbital angular momentum of the wave function of Cooper

pairs one has

• s-wave superconductor; L = 0

• p-wave superconductor; L = 1

• d-wave superconductor; L = 2
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It was thought that the highest Tc for a BCS superconductor was around 30

K.

The highest Tc known today (at atmospheric pressure) is Tc = 134 K.

There is evidence that electron pairs still form in these high Tc materials,

but the pairing mechanism is not well understood. It is believed that high

Tc superconductor is d-wave.

At normal phase the system cannot be described by standard Fermi liquid.
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Fermionic systems

• Free electron gas

N non-interacting Fermi particles of spin s = 1
2. The single particle eigen-

states are plane wave states with momentum K , and energy Ek = h2k2

8π2m
.

The ground state → Fermi sea : All single particles stats are filled up to a

limiting wave vector kf = (3π2N)1/3.

Ef =
p2f

2m
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• Fermi liquid

Electrons in a metal may be thought of a free fermion gas with some effective
mass m∗.

Effectively we have quasiparticles and in the ground state the quasiparticle
fill the Fermi see up to the Fermi momentum

Ef =
p2f

2m

One may also add the interaction of the quasiparticles (Landau Fermi liquid)

The predictions for temperature dependence of specific heat and electrical
resistivity in the Fermi liquid scenario are

C ∼ T ρ ∼ T2
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• Non-Fermi liquid

In 1991 Seaman et al, Phys. Rev. Lett 67 presented measurements of

specific heat and electric resistivity of some material which strongly disagreed

with the Fermi liquid model .

The temperature dependence of specific heat and electrical resistivity of

(Non-Fermi liquid) are

C ∼ T lnT, ρ ∼ T

There is no long lived quasiparticles
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The information can be read from poles structure of the fermion Green’s

function near Fermi surface.

Moreover unlike BCS theory, it is believed that in high TC superconductor it

may involve strong coupling system.

Therefore AdS/CFT may proved a framework to study it.
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Holographic superconductor

How to construct a holographic model for superconductor. This means we

want to have gravity dual which exhibits certain features of superconductiv-

ity.

• We want to have a holographic model −→ gravity with negative cosmo-

logical constant (AdS solution).

• We want finite density −→ U(1) gauge field in the bulk.

• Finite temperature CFT −→ Embedding the Schwarzschild black hole

solution into AdS.

• To describe superconductor one needs a black hole solution which has

hair at low temperature, though has no hair at high temperature. Gubser

0801.2977
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The simplest model may be given by the following action

S =
∫
d4x

√
−g

[
R+

6

L2
−

1

4
F2 + |∇ψ|2 −m2|ψ|2

]

This is charged scalar coupled to a U(1) gauge field.

For sufficiently low temperature the black hole solution is unstable to develop

hair where the U(1) gauge symmetry is also broken.
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P-wave holographic superconductor

Consider a five dimensional SU(2) Einstein-Yang-Mills theory with a negative

S =
∫
d5x

√
−g

[
1

2

(
R+

12

L2

)
−

1

4
F aµνF

a µν
]
,

The equations of motion are

Rµν −
1

2
gµνR− 6gµν = Tµν,

1
√
−g

∂µ(
√
−gF a µν) + qfabcAbµF

c µν = 0,

where

Tµν = F aµρF
a ρ
ν −

1

4
gµνF

a
µνF

a µν,

F aµν = ∂µA
a
ν − ∂νA

a
µ + qfabcAbµA

c
ν.
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The equations of motion support an AdS solitonic solution with zero gauge

field

ds2 =
1

r2g(r)
dr2 + r2(−dt2 + dx2 + dy2) + r2g(r)dχ2, g = 1−

r40
r4
.

• This provides a gravity description of a three dimensional field theory with

a mass gap.

• It is still a solution with a constant non-zero gauge potential At = µ.
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The action admits another analytic solution with non-zero gauge field

ds2 =
dr2

r2g
− r2gdt2 + r2(dx2 + dy2 + dz2), A = ρ

(
1−

1

r2

)
σ3dt,

g = 1−
1 + ρ3/3

r4
+

ρ2

3r3
,

σ3 is the generator of U(1) subgroup.The horizon is located at r = 1. In

this notation the Hawking temperature of the black hole is T = 2−ρ2/3
2π .

This is, indeed, an AdS Reissner-Nordström black hole which carries the

charge of the U(1) abelian subgroup of the SU(2) gauge group.
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Probe limit

For canonical normalized field

Rµν −
1

2
gµνR− 6gµν =

1

q
Tµν,

For large q keeping Tµν finite, the back reactions will be negligible
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To study the insulator/superconductor phase transition, following Gubser,
0803.3483 , we will consider the following ansatz for the gauge field

A = φ(r) σ3dt+ ψ(r) σ1dx.

t-component of the gauge field represents the U(1) gauge field, while the
second term plays the role of the charged field whose condensation breaks
the U(1) gauge symmetry.

Plugging this ansatz into the equations of motion, for the AdS soliton solu-
tion, one arrives at

φ′′ +

(
3

r
+
g′

g

)
φ′ −

ψ2

r4g
φ = 0, ψ′′ +

(
3

r
+
g′

g

)
ψ′ +

φ2

r4g
ψ = 0.

See also Gubser and Pufu 0805.2960, Roberts and Hartnoll 0805.3898
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The equations are invariant under the rescaling r → r0r, φ → r0φ and ψ →
r0ψ, so that r0 may be dropped from the equations.

• Near the boundary

φ = µ−
ρ

r2
, ψ = ψ0 +

ψ1

r2
.

• Near the tip

ψ = α0 + α1(1−
1

r
) + α2(1−

1

r
)2 · · · ,

φ = β0 + β1(1−
1

r
) + β2(1−

1

r
)2 · · · .

We set ψ0 = 0 and Also up to a normalization one has 〈O〉 ∼ ψ1.

With these boundary conditions one may solve the equations to find the ex-
pectation value of the dual operator as a function of the chemical potential.
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One finds that the solution is unstable to develop a hair for the chemical

potential bigger than a critical value, µ > µc.
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The phase transition is second order (ρ = ∂F/∂µ).

The phase transition may be interpreted as an insulator/superconductor

phase transition.

See Nishioka, Ryu and Takayanagi 0911.0962. for s-wave case.
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To study the conductivity of the theory we will consider an extra magnetic

field along y direction.

From gravity description point of view this can be done by turning on a

non-zero gauge field in y direction.

Ay = A(r)eiωtσ3.

The corresponding equation of motion for Ay is given by

A′′ +

(
3

r
+
g′

g

)
A′ +

φ2

r4g

(
ω2 − ψ2

)
A = 0.
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For large r

A = A0 +
A1

r2
.

The conductivity in y direction is (see for example Hartnoll, Herzog and

Horowitz 0803.3295)

σyy =
−iA1

ωA0
.

Using the numerical solution we had found for ψ and φ in the previous

subsection we can find the behavior of the AC conductivity in terms of the

energy ω.
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At ω → 0 we find a pole showing that we have an infinite conductivity as

expected for the superconductor phase.

Im(σ) =
∫
dω′

Re(σ)

ω − ω′
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One can redo the same computations on the RN AdS black hole.

Again consider the following ansatz for the gauge field

A = φ(r) σ3dt+ ψ(r) σ1dx.

• The solution is unstable to develop a vector hair for sufficiently low tem-

perature where the U(1) gauge symmetry is also broken.

• This corresponds to a second order conductor/superconductor phase tran-

sition from field theory point of view.
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Phase structure in probe limit

• The equations of motion support two distinctive solutions; AdS soliton

and AdS charged black hole. [Insulator, conductor]

• In each case the solution becomes unstable to develop a vector hair as

we change the parameters of the model. [insulator/superconductor phase

transition, conductor/superconductor phase transition]

• There is a first order phase transition from AdS soliton to AdS charged

black hole (Witten hep-th/9803131) [insulator/conductor phase transition]
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So altogether we get four different phases as follows.

T

Μ

Soliton Soliton 
Superconductor

Charged Black Hole

Charged BH 
Superconductor

B

A

a
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Beyond probe limit

The aim is to study the effects of the gauge field on the background metric.

(see also Ammon, Erdmenger, Grass, Kerner and O’Bannon 0912.3515,

Manvelyan, Radu and Tchrakian 0812.3531, Basu, He, Mukherjee and Shieh

0911.4999 )

• AdS soliton

ds2 =
dr2

g(r)
+ r2

(
−f(r)dt2 + h(r)dx2 + dy2

)
+ g(r)e−χ(r)dη2,

A = φ(r)σ3dt+ ψ(r)σ1dx.

• AdS charged black hole

ds2 =
dr2

g(r)
+ r2

(
h(r)dx2 + dy2 + dz2

)
− g(r)e−χ(r)dt2,

A = φ(r)σ3dt+ ψ(r)σ1dx.
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Taking into account the back reactions we observe two new features in the

phase diagram of the model.

The first observation is that for large chemical potential as we decrease

temperature the favored phase is soliton superconductor.

T

Μ

Soliton Soliton 
Superconductor

Charged Black Hole

Charged BH 
Superconductor

B

A

b

In particular we cannot have a phase describing hairy charged black hole at

zero temperature which could have been the case if the phase diagram had

been given by probe limit.
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On the other hand there are two special points, named by A and B in figure

which in order to understand their physical significant, it requires to study

the system beyond the probe limit.

Actually our numerical computations show that the positions of these two

points labeled by µA and µB change as we are changing q.
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As we further decrease q we observe that while both µA and µB increase,

the point A passes though the point B .

We encounter a new phase transition. Actually as we decrease temperature

there is a range of µ between which the superconductor becomes an insulator

via a first order phase transition.

see Horowitz and Way 1007.3714 for the case of s-wave.
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Going further it seems that the phase where we have soliton superconduc-

tor becomes smaller and smaller and eventually disappears from the phase

diagram, though due to the uncertainty of our numerical results, we have

not been able to explore the situation exactly.

In particular for low temperature (for small enough q, i.e. q ≈ 0.86) the

numerical solution develops a singularity and one has to study T → 0 limit

of hairy charged black hole more carefully.
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Zero temperature limit

• It is then natural to pose the equation what happens when we send the

temperature of the AdS charged black hole to zero?

• Sending temperature to zero we will end up with an extremal black hole

whose near horizon geometry develops an AdS2 throat with non-zero entropy.

• To study holographic superconductors at zero temperature the extremal

black hole cannot provide the gravity dual descriptions.

• One must have a geometry with zero size horizon ensuring that the ground

state is a single state (entropy is zero).

See Horowitz and Roberts 0908.3677 for the case of s-wave.

See also Basu, He, Mukherjee and Shieh 0911.4999 for 3D p-wave super-

conductors
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One needs to solve the equations of motion with a particular boundary

condition ensuring that the resultant geometry would have zero size horizon.

Consider the ansatz

ds2 =
dr2

g(r)
+ r2

(
h(r)dx2 + dy2 + dz2

)
− g(r)e−χ(r)dt2,

A = φ(r)σ3dt+ ψ(r)σ1dx.

with the following behaviors in r → 0+ limit.

φ ∼ φ0(r), ψ ∼ ψ0 − ψ1(r), χ ∼ χ0 − χ1(r), g ∼ r2 + g1(r), h ∼ h0 + h1(r),

with the assumption that φ0, ψ1, χ1, g1 and h1 go to zero sufficiently fast in

the limit of r → 0+.
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Plugging these behaviors into the corresponding equations of motion, at

leading order, one finds

φ = φ0
e−

α
r

√
r
, χ = χ0 −

eχ0αφ2
0

6r2
e−

2α
r , g = r2 −

eχ0αφ2
0

6r2
e−

2α
r ,

ψ = ψ0

(
1−

eχ0q2φ2
0

4rα2
e−

2α
r

)
, h = h0

(
1 +

eχ0φ2
0

8r
e−

2α
r

)
.

where α = qψ0/h0.

On the other hand for large r one impose the following asymptotic conditions

for the gauge field components

φ = µ−
ρ

r2
, ψ =

ψ̃

r2
.
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Fermion on asymptotically AdS solutions

Typically we have following phase structure for the holographic supercon-

ductor.

T

Μ

Soliton Soliton 
Superconductor

Charged Black Hole

Charged BH 
Superconductor

B

A

a

T

Μ

Soliton Soliton 
Superconductor

Charged Black Hole
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Superconductor

B

A

b

One may probe different regions by a fermionic field.
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Some references

S.S. Lee 0809.3402

Liu, McGreevy and Vegh 0903.2477

Faulkner, Liu, MacGreevy and Vegh 0907.2694

Faulkner and Polchinski 1001.3402

Faulkner, Iqbal, Liu, MacGreevy and Vegh 1101.0597

........

Mostly for s-wave superconductor.

For p-wave see, however, Gubser, Rocha and Yarom 1002.4416; Ammon,

Erdmenger, Kaminski and O’Bannon, 1003.1134; M. A , work in progress
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When the system is in normal conductor phase the corresponding geometry

is given by RN AdS black hole

ds2 =
dr2

r2g
− r2gdt2 + r2(dx2 + dy2 + dz2), A = ρ

(
1−

1

r2

)
σ3dt,

g = 1−
1 + ρ3/3

r4
+

ρ2

3r3
,

s-wave: A is U(1). p-wave A is U(1) ⊂ SU(2).

Fermions in this background may provide a framework to study non Fermi

liquid.
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We consider following action in the bulk

S =
∫
d4x

√
gψ̄(iΓµDµ −m)ψ

where Dµ = ∂µ + 1
4ω

ab
µ Γab − iqAµ. (s-wave)

• For T = 0 the near horizon metric is AdS2 ×R2.

• Therefore the low energy physics of the boundary theory can be described
by the AdS2 geometry: IR CFT

• It is easy to find the retarded two point function of the emergent IR CFT
(Liu, McGreevy and Vegh 0903.2477)

Gk(ω) = c(k)ω2νk

c(k) is a complex function and δk = 1
2 + νk is the conformal dimension in

2D CFT
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This not the retarded Green function of the whole theory. It can be found in

low energy around Fermi surface as follows (Faulkner, Liu, MacGreevy and

Vegh 0907.2694)

GR(k, ω) =
h1

k⊥ − 1
vf
ω − h2c(k)ω2νk

The pole structure of the Green function depends on νk.

• νk > 1
2: Stable quasiparticle (nor Fermi liquid)

• νk < 1
2: No quasiparticle

• νk = 1
2: there is log solution; strange metal

For νk = 1 it is very similar to Fermi liquid.
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Other parts of the phase structure can also be considered both in s and p

wave models
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Summary

• AdS/CFT is found useful to find different models for superconductor

• To see more interesting physics one needs to go beyond probe limit

• One may probe different region of the phase structure by fermions

• In the conductor phase the physics around the Fermi surface is governed

by emergent IR CFT
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