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motivation

Holographic WRG is an attempt to geometrize the Wilsonian approach
to renormalization group, and relates IR(horizon) dynamics to
UV(boundary) dynamics holographically

One possible application is to explore IR effective holographic
descriptions of strongly coupled systems —- phenomenological
semi-holographic action for non-Fermi liquid [Faulkner-Polchinski], which
consists of the action of the strongly interacting system with emergent
dynamical fermions
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example: free massive scalar

background metric

ds2 = gzz(z)dz2 + gµν(z)dxµdxν

gzz(z), gµν(z) ∼ z−2 (z ∼ 0) : asymptotically AdSd+1

action

S =
1

2

Z

dzddx
√

g(gMN∂Mφ∂Nφ + m2φ2)
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holographic WRG : canonical quantization in the radial direction

We will formally write bulk path integrals as transition amplitudes with the
radial coordinate regarded as the Euclidean time using the canonical
quantization

radial Hamiltonian & commutation relation

Hrad =

Z

ddx

»

1

2
√

ggzz
π2 +

√
g

„

1

2
gµν∂µφ∂νφ +

m2

2
φ2

«–

[φ, π] = i

these data reproduce the bulk path integral

〈IR|bU(εIR, ε0)|φ0〉 =

Z

[dφ]φ(ε0)=φ0, φ(εIR)=φIR
e−S

bU(ε2, ε1) := T exp−
Z ε2

ε1

dz cHrad
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holographic WRG : assumptions

two assumptions

radial coordinate ε ∼ field theory energy scale Λ−1

(for pure AdS, near the boundary, ε = Λ−1)

the precise relation between z and Λ in a general case is unknown, but
that is not necessary in the following discussion

extend the GKP-W relation at the UV boundary ε0 to that at a general
cutoff ε:

〈IR| bU(εIR, ε)| eφ〉 =
D

exp

Z

eφOs

Estd

Λ(ε)
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holographic WRG : UV cutoff theory

first, specify a UV initial state, equivalently, UV field theory

〈IR|bU(εIR, ε0)|Ψ〉 =

Z

[dφ]
D

exp

Z

φ0O
Estd

Λ0

〈φ0|Ψ〉

Ψ specifies UV field theory
standard quantization : |Ψ〉= |φ〉 bφ|φ〉= φ|φ〉

alternative quantization : |Ψ〉= |π〉〉 bπ|π〉〉= π|π〉〉

multi-trace deformations, inclusion of bulk counter terms
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holographic WRG : divide the full transition amplitude

divide the full partition function (UV boundary theory) at an intermediate
cutoff by inserting the completeness relation

〈IR| bU(εIR, ε0)|Ψ〉 =

Z

[d eφ]〈IR| bU(εIR, ε)| eφ〉〈 eφ| bU(ε, ε0)|Ψ〉
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holographic WRG : connecting UV with IR

replace the full and the IR transition amplitudes by generating functional

〈IR| bU(εIR, ε0)|Ψ〉 =

Z

[d eφ]
D

exp

Z

eφOs

Estd

Λ
ΨUV(ε, eφ)
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holographic WRG : connecting UV with IR

for example, when UV is in the standard quantization |Ψ〉 = |φ0〉,
D

exp

Z

φ0Os

Estd

Λ0

=

Z

[d eφ]
D

exp

Z

eφOs

Estd

Λ
ΨUV(ε, eφ)

UV transition amplitude on the bulk side
←→ integration from UV cutoff to lower cutoff on the boundary side
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UV wave functional and flows

If the bulk action is quadratic, the UV amplitude generally becomes a
Gaussian :

ΨUV(ε, eφ) = exp

Z

k

√
γ

»

−1

2
F (ε) eφ2 + B(ε) eφ

–

+

Z

k

C(ε)

Then, the integration over eφ at the intermediate cutoff gives rise to (up to
O-independent terms)

D

exp

Z

1

2
√

γF (ε)
O2

s +
B(ε)

F (ε)
Os

Estd

Λ(ε)

this defines a flow of equivalent low energy effective theories, which we
call holographic Wilsonian RG flow.

UV theory with single-trace deformation
= IR theory with single- and double-trace deformations

F ∼ double-trace deformation B ∼ single-trace deformation

multi-trace deformation : eφm ←→ Om
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flow equations and beta functions

the wavefunctional satisfies the Schrödinger equation with the radial
Hamiltonian Hrad

∂εΨUV(ε) = −HradΨUV(ε)

that gives rise to flow equations for coefficients F, B, C

1
√

g
∂ε(
√

γF ) = −F 2 + gµνkµkν + m2

1
√

g
∂ε(
√

γB) = −BF

1
√

g
∂εC =

1

2

Z

k

J2 + O(κ2)
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flow equations and beta functions

consider pure AdSd+1 : gzz = z−2 , gµν = z−2ηµν

flow equation for F

ε∂εF = −F 2 + dF + ε2k2 + m2 (k2 := ηµνkµkν)

interpret F as a collection of double-trace coupling constants

F (ε, k) =

∞
X

n=0

fn(ε)(εk)2n fn(ε)←→ O�nO

flow equations for coefficients fn

ε∂εf0 = −f2
0 + df0 + m2

ε∂εf1 = (d− 2)f1 − 2f0f1 + 1

· · ·
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flow diagram f0-f1

the flow equation for f0 exhibits two fixed points

UV f0 = ∆−, J ∼ ε∆+ : alternative quantization

IR f0 = ∆+, J ∼ ε∆− : standard quantization

where ∆± := d
2
± ν , ν :=

q

`

d
2

´2
+ m2
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extremal black hole background

metric : charged black hole

gii =
1

z2
, gtt =

H

z2
, gzz =

1

z2H
,

H(z) = 1 + 3

„

z

z∗

«4

− 4

„

z

z∗

«3

expected fixed points

fixed points near the boundary←→AdSd+1

fixed points near the horizon←→near horizon AdS2 ×Rd−1
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black hole : flow equations and beta functions

flow equation for F

ε∂ε(f
√

H) = d f
√

H − f2 + ε2(kiki + ω2/H) + m2

derivative expansion of F

F (k, ε) =
X

n,m

f̄n,m(ε)(ε2kiki)
n(εω)2m

regard the red shift factor H as an additional coupling to eliminate
explicit ε-dependence from the RHS
(equivalent to regard H as a flow parameter)

ε∂εf̄0,0 =

»

d− β(H)

2H

–

f̄0,0 +
m2 − f̄2

0,0√
H

ε∂εH = β(H)

where β(H) satisfies

(1−H + β(H)/3)3 = (1−H + β(H)/4)4
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f0,0-H diagram

Figure: RG flow diagram in the f̄0,0-H plane which is plotted for d = 3, m= 1. P1
and P2 are UV fixed points, P3 and P4 are IR fixed points.
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four fixed points

at the UV boundary (d = 3) : H = 1

f0,0 =
3

2
±

s

„

3

2

«2

+ m2R2
AdS4

at the IR boundary : H = 0

f0,0 =
1

2
±

s

„

1

2

«2

+
m2R2

AdS4

6

the last expression coincides with f0,0 at two fixed points in near horizon
AdS2 × R2 geometry

note 1: f0,0 = d
2
±

r

“

d
2

”2
+ m2R2

AdSd+1
for AdSd+1

note 2: RAdS2 =
RAdSd+1√

d(d−1)
as the NH geometry of AdSd+1 BH
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FERMIONS

action

S =

Z

dzddx ΨΓMDMΨ

Main difference from the scalar case is that the Dirac action is in first
order and thus Ψ, Ψ are both the coordinates and the momenta. In
order to solve this second-class constraint, it is convenient to
decompose Ψ, Ψ in terms of the chirality.

Ψ =

„

Ψ+

Ψ−

«

, Ψ =
`

Ψ+ Ψ−
´

canonical quantization with the radial coordinate as the Euclidean time

{χ±, χ±} = ±1 , χ := (ggzz)1/4Ψ

Hrad :=

Z

k

√
gzz

ˆ

iχ+γµkµχ− + iχ−γµkµχ+ + mχ+χ+ −mχ−χ−
˜
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initial states for standard quantization

standard quantization : fix non-normalizable modes, which are

χ+ ∼ z
d
2
−mχ0

+, χ− ∼ z
d
2
−mχ0

−

Thus, following the scalar case, we choose an eigenstate of (χ+, χ−)
as an initial state

bχ+|χ+, χ−〉 = χ+|χ+, χ−〉
bχ−|χ+, χ−〉 = χ−|χ+, χ−〉

With this choice, a transition amplitude starting from the initial state
correctly reproduce the correct boundary action for the standard
quantization:

〈IR| bU(εIR, ε)|χ+, χ−〉 =

Z

[dχ] exp

„

S[χ] +

Z

bdy

χ+χ+

«
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GKP-W relation

Thus, the GKP-W relation for the standard quantization is

〈IR| bU(εIR, ε)|χ+, χ−〉 =
D

exp

Z

O−χ− + χ+O+

Estd

Λ(ε)

for alternative quantization, we just have to replace non-normalizable
modes by normalizable modes

(χ+, χ−) 7−→ (χ+, χ−) (O+, O−) 7−→ (O+, O−)
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UV amplitude and flow equations

divide the full partition function

〈IR| bU(εIR, ε0)|Ψ0〉

=

Z

[dχ] 〈IR| bU(εIR, ε)|χ+, χ−〉e
R

χ+χ++χ−χ−ΨUV(ε; χ+, χ−)

where the UV amplitude is

ΨUV(ε; χ+, χ−) := 〈χ+, χ−| bU(ε, ε0)|Ψ0〉

and the completeness relation inserted is

1 =

Z

[dχ]|χ+, χ−〉e
R

χ+χ++χ−χ−〈χ+, χ−|

the UV amplitude is generally given by

ΨUV = exp

Z

χ−F (ε)χ+ + B+(ε)χ+ + χ−B−(ε) + C(ε)
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UV amplitude and flow equations

a flow of physically equivalent effective theories
D

exp

Z

O−F (ε)O+ + B+(ε)O+ + O−B−(ε)
Estd

Λ(ε)

flow equations from the Schrödinger equation −∂εΨUV = cHradΨUV

√
gzz∂εF = F (iγµkµ)F + iγµKµ − 2mF ,

√
gzz∂εB− = F (iγµkµ)B− −mB− ,
√

gzz∂εB+ = B+(iγµkµ)F −mB+ ,
√

gzz∂εC = J+(iγµkµ)J− + O(κ2) ,
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flow equations and beta functions

expand F in momentum (derivative expansion)

F (ε, k) =

∞
X

n=0

fn(ε)(εγ bµkµ)n−1

generally, F starts from k−1, which can be seen directly from on-shell
value of the action

flow equations for f0-f1

ε∂εf0 = (1− 2m)f0 − f2
0

ε∂εf1 = 2f0f1 − 2mf1

· · ·
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Berlin

flow diagram : pure AdS

-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

1.5

fixed points (in KW window : 0 < m < 1/2)

UV : f0 = 0 : standard quantization

IR : f0 = 1− 2m : alternative quantization
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Berlin

flow diagram : extremal charged black hole

In the same way as the bosonic case, we regard the red shift factor H as a
new coupling and draw a flow diagram in f00-H

-1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Figure: f0,0-H diagram with m= 0.2
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Berlin

conclusion and open problems

what we have done

analyzed flow equations for extremal charged black holes and checked
that the possible four fixed points give us the correct mass dimensions.

extended holographic WRG to fermions by introducing generalized
coherent states.
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Berlin

conclusion and open problems

We can partially understand the emergence of the semi-holographic action
...1 Assume the double-trace coupling F has a single pole F ∼ a1

γ bµ(k−kF )µ

...2 hWRG equation
Z

[d4χ] 〈IR| bU(εIR, ε)|χ+, χ−〉e
R

χ+χ++χ−χ−〈χ+, χ−| bU(ε, ε0)|Ψ〉

=

Z

[d2χ]
D

exp

Z

χ+O+ + O−χ−
Estd

Λ(ε)
exp−

Z

χ+F−1χ− + · · ·

=
D

exp

Z

O−FO+ + · · ·
Estd

Λ(ε)

...3 the last expression becomes non-local around kF . In order to avoid this,
keep χ of momentum in the neighbourhood of kF un-integrated out

D

exp

Z

k∈SF

χ+O+ + O−χ−
Estd

Λ(ε)
exp−

Z

k∈SF

χ+F−1χ−

=

Z

[dM ] exp S[M ] +

Z

k∈SF

χ+O+ + O−χ− − χ+γ bµ(k − kF )µχ−

χ−, χ+ can be interpreted as emergent dynamical fermions
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Berlin

conclusion and open problems

hWRG for interacting theories, dynamical gravity :
application to holographic fluid dynamics at the boundary and at the horizon
understanding of a-function, c-function in terms of hWRG

hWRG is now in the level of re-interpretation...
Can hWRG really shed new light on issues which cannot be understood
by conventional holographic techniques ??

Hiroshi Isono Holographic Wilsonian RG —– flow diagrams, fermions



Berlin

conclusion and open problems

hWRG for interacting theories, dynamical gravity :
application to holographic fluid dynamics at the boundary and at the horizon
understanding of a-function, c-function in terms of hWRG

hWRG is now in the level of re-interpretation...
Can hWRG really shed new light on issues which cannot be understood
by conventional holographic techniques ??

Hiroshi Isono Holographic Wilsonian RG —– flow diagrams, fermions


