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motivation

@ Holographic WRG is an attempt to geometrize the Wilsonian approach
to renormalization group, and relates IR(horizon) dynamics to
UV(boundary) dynamics holographically

@ One possible application is to explore IR effective holographic
descriptions of strongly coupled systems —- phenomenological
semi-holographic action for non-Fermi liquid [Faulkner-Polchinski], which
consists of the action of the strongly interacting system with emergent
dynamical fermions

-
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example: free massive scalar

@ background metric
ds? = g..(2)dz* + g (z)dz"dz”
9:2(2), guv(z) ~ 272 (2 ~ 0) : asymptotically AdS41

@ action

5 = % /dzddmﬁ(gMNaM¢aN¢ +m2¢?)
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holographic WRG : canonical quantization in the radial direction

@ We will formally write bulk path integrals as transition amplitudes with the
radial coordinate regarded as the Euclidean time using the canonical
quantization

@ radial Hamiltonian & commutation relation

Hradz/dd { NP +f< “"aﬂ¢ay¢+m72¢2>}
(¢, 7]

%
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holographic WRG : canonical quantization in the radial direction

@ We will formally write bulk path integrals as transition amplitudes with the
radial coordinate regarded as the Euclidean time using the canonical
quantization

@ radial Hamiltonian & commutation relation

Hradz/dd { NP +f< “"aﬂ¢ay¢+m72¢2>}
(¢, 7]

%

@ these data reproduce the bulk path integral

(IR|U(er, €0) o) = /[d¢]¢<eo>=¢o,¢(em)=¢m6_

ﬁ(ez,el) = Texp—/ dz Hrad

€1
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holographic WRG : assumptions

two assumptions

@ radial coordinate e ~ field theory energy scale A~*
(for pure AdS, near the boundary, e = A~ 1)

the precise relation between z and A in a general case is unknown, but
that is not necessary in the following discussion
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holographic WRG : assumptions

two assumptions

@ radial coordinate e ~ field theory energy scale A~*
(for pure AdS, near the boundary, e = A~ 1)

the precise relation between z and A in a general case is unknown, but
that is not necessary in the following discussion

@ extend the GKP-W relation at the UV boundary o to that at a general
cutoff e:

(IR|U (err, €)|p) = <eXp/$Os>j\t(de)
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holographic WRG : UV cutoff theory

@ first, specify a UV initial state, equivalently, UV field theory

(IR[T(em, o) ) = [[d0]{exp [ $00)" " (dol®)
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holographic WRG : UV cutoff theory

@ first, specify a UV initial state, equivalently, UV field theory

(IR[T(em, o) ) = [[d0]{exp [ $00)" " (dol®)

@ ¥ specifies UV field theory
o standard quantization : [¥) = |¢)  &|d) = ¢|P)

e alternative quantization : |¥) = |=)) T|mw) ) = w|w))

o multi-trace deformations, inclusion of bulk counter terms
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holographic WRG : divide the full transition amplitude

@ divide the full partition function (UV boundary theory) at an intermediate
cutoff by inserting the completeness relation

(IR|U (e1r; €0)|¥) = /[d¢7]<IRI(7(61R,€)|¢~5><¢~>Iﬁ(6’ €)|¥)

(IR|U (e1r, €)|d) Tuv(e,d) = <¢|U(e €0)| T)

~ ~r" ~
€
€ 0
Z < ‘
N __

/Y
(IR|U (€1, €0)|¥)
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holographic WRG : connecting UV with IR

@ replace the full and the IR transition amplitudes by generating functional
~ ~ ~ std ~
(IRIT (erms €0)|¥) = [[d6){ exp [ 30.)" " wov(e.d)

<IR‘[7(€IR,€)I$) = <CXP/$O>Z‘1) \IIUV (65 a)
Al A

”~ N N

€ €0

VA |

| - 7
—

R std,
(IR|U (e1r; €0) o) = <exp/¢00>1\tu(€u)
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holographic WRG : connecting UV with IR

o for example, when UV is in the standard quantization |¥) = |¢o),
<exp/¢)oOS>Std = /[d$]<exp/$05>5td\lluv(e 25)
Ao A ’

@ UV transition amplitude on the bulk side
«—— integration from UV cutoff to lower cutoff on the boundary side
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UV wave functional and flows

@ If the bulk action is quadratic, the UV amplitude generally becomes a
Gaussian :

Tyv(e, @) = exp/k NG [—%F(e)az +B(e)$] —I—/kC(e)
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UV wave functional and flows

@ If the bulk action is quadratic, the UV amplitude generally becomes a
Gaussian :

Vov(e.d) =exp [ V7 |- 3RO + B@F| + [ c@

@ Then, the integration over $ at the intermediate cutoff gives rise to (up to
O-independent terms)

<e"p/ 2ﬁ11r(e)052 T ];8 05>j:(de>

this defines a flow of equivalent low energy effective theories, which we
call holographic Wilsonian RG flow.
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UV wave functional and flows

@ If the bulk action is quadratic, the UV amplitude generally becomes a
Gaussian :

Vov(e.d) =exp [ V7 |- 3RO + B@F| + [ c@

@ Then, the integration over $ at the intermediate cutoff gives rise to (up to
O-independent terms)

<e"p/ 2ﬁ11r(e)052 T ];8 05>j:(de>

this defines a flow of equivalent low energy effective theories, which we
call holographic Wilsonian RG flow.

@ UV theory with single-trace deformation
= IR theory with single- and double-trace deformations

F ~ double-trace deformation B ~ single-trace deformation

multi-trace deformation : ¢™ «—— O™
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flow equations and beta functions

@ the wavefunctional satisfies the Schrédinger equation with the radial
Hamiltonian Hyaa

8. Pyuv(e) = —HyaaPuv(€)

that gives rise to flow equations for coefficients F, B, C

1

50 VAF) = —F + ¢ kb, + m?
1

—— O B) = —BF

750-(VAB)

1

1 2 2
8.C==-[ Jg*+0
V9 ZA +O(7)
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flow equations and beta functions

@ consider pure AdSg+1: gz = 27 2%, gu = 2 N

@ flow equation for F'

€d.F = —F? + dF + k> + m? (K := n""k.k.)

@ interpret F as a collection of double-trace coupling constants

F(e,k) = 3 fa(e)(€k)*™™  fa(e) — OO"O

n=0

@ flow equations for coefficients f,

€dcfo = —f5 + dfo + m?
Gaefl = (d —_ 2)f1 d 2f0f1 + 1
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flow diagram fo-f;

the flow equation for fo exhibits two fixed points
o UV fo=A_, J~ e®+ :alternative quantization
@ IR fo= A4, J~ e®~ :standard quantization

where A ::%:I:l/, V= (%)2+m2

=\

°‘\§\\\f}///// =\

N1/ e
0_0\\\/////4//? ]

N7 1IN
87
2

A< TN




extremal black hole background

@ metric : charged black hole

1 H 1
gii — ;7 gttt = Z72’ gzz Z2H,

H(z)=1+3 (;)4 —4 (:)3
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extremal black hole background

@ metric : charged black hole

1 H 1
gii — ;7 gttt = ;’ gzz Z2H,

H(z)=1+3 (;)4 —4 (;)3

@ expected fixed points
o fixed points near the boundary «—— AdS44 1

e fixed points near the horizon <—— near horizon AdSz x R4—1

H Irosni Isono Holographic Wilsonian RG — flow diagrams, fermions



black hole : flow equations and beta functions

@ flow equation for F'
€de(fVH) =d fVH — f* + € (kiki + w?/H) + m?
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black hole : flow equations and beta functions

@ flow equation for F'
€0 (fVH) =d fVH — f* + *(kiki + w?/H) +m?

@ derivative expansion of F

F(k,e) = Z Frym (€)(2kiks)™ (ew)®™

n,m
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black hole : flow equations and beta functions

@ flow equation for F'

€0 (fVH) =d fVH — f* + *(kiki + w?/H) +m?

@ derivative expansion of F

F(k,e) = Z Frym (€)(2kiks)™ (ew)®™

n,m

@ regard the red shift factor H as an additional coupling to eliminate
explicit e-dependence from the RHS
(equivalent to regard H as a flow parameter)

B(H)
2H

m? — 3.0

685.1?0,0 == |: \/ﬁ

ed.H = 3(H)
where 3(H) satisfies
(1— H+B(H)/3)> = (1 - H + (H)/4)*

}foo—i-
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fo,0-H diagram

P

Figure: RG flow diagram in the fo,o-H plane which is plotted ford = 3, m = 1. P1
and P2 are UV fixed points, P3 and P4 are IR fixed points.
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four fixed points

@ atthe UVboundary (d =3): H =1

3\ 2
fo,0 = 3 + <§> +m2R% 45,

%Y

H Irosni Isono Holographic Wilsonian RG — flow diagrams, fermions



four fixed points

@ atthe UVboundary (d =3): H =1
3 3\?
Joo = 3 + \/<2> + m2RidS4

@ atthe IRboundary: H =0

1 1\? mzRids‘l
= )

the last expression coincides with fo,0 at two fixed points in near horizon
AdSs x R? geometry
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four fixed points

@ atthe UVboundary (d =3): H =1
3 3\?
Joo = 3 + \/<2> + mzRidsél

@ atthe IRboundary: H =0

1 1\? mzR%ds‘l
= )

the last expression coincides with fo,0 at two fixed points in near horizon
AdSs x R? geometry

2
@ note 1: fo,o = % + \/(%) —+ mZRide_H for Ade+1

Radsy i,

Rads, = a1

@ note 2: as the NH geometry of AdS441 BH
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@ action

S = /dzddwﬁrMDM\II
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@ action
S = /dzddw I Dy v
@ Main difference from the scalar case is that the Dirac action is in first
order and thus ¥, ¥ are both the coordinates and the momenta. In

order to solve thij second-class constraint, it is convenient to
decompose ¥, ¥ in terms of the chirality.

v = (ij) . T = (T D)

H Irosni Isono Holographic Wilsonian RG — flow diagrams, fermions



@ action
S = /dzddw I Dy v
@ Main difference from the scalar case is that the Dirac action is in first
order and thus ¥, ¥ are both the coordinates and the momenta. In

order to solve thij second-class constraint, it is convenient to
decompose ¥, ¥ in terms of the chirality.

v = (ij) . T = (T D)

@ canonical quantization with the radial coordinate as the Euclidean time
{x+,X+}=%1, x:=(997)"*®

H:aq := /\/gzz [iXy v kux— +iX_Y'kux+ + mx+ XL — mX_Xx-]
k
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initial states for standard quantization

@ standard quantization : fix non-normalizable modes, which are

— 4 _m_o0 2_m_o
Xy ~z2" "Xy, x-~z2 "x2
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initial states for standard quantization

@ standard quantization : fix non-normalizable modes, which are
— d_m_o0 d_m 0
X4 ~22 TXgqs X—~22TUXD
@ Thus, following the scalar case, we choose an eigenstate of (x, , x-)
as an initial state

§+|Y+7X—> =Y+|Y+7 X—)
5C\—|Y+7X—> = X—|Y+aX—>
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initial states for standard quantization

@ standard quantization : fix non-normalizable modes, which are

— 4 _m_o0 2_m_o
Xy ~z2" "Xy, x-~z2 "x2

@ Thus, following the scalar case, we choose an eigenstate of (x, , x-)
as an initial state

> 2|

+Y+7X—> =Y+|Y+,x—>
X4 X-) = X=X4sX-)

@ With this choice, a transition amplitude starting from the initial state
correctly reproduce the correct boundary action for the standard
quantization:

(IRIT (erm, s x-) = [ [dxdexp (S[x] +[ . Y+x+>
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GKP-W relation

@ Thus, the GKP-W relation for the standard quantization is
std

(IRID (erm, %4 x-) = (exp [ O-x- +%,:04)
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GKP-W relation

@ Thus, the GKP-W relation for the standard quantization is

std

(IRID (erm, %4 x-) = (exp [ O-x- +%,:04)

@ for alternative quantization, we just have to replace non-normalizable
modes by normalizable modes

(Y-}-ax—) — (X+>X-) (0+56—) — (64—9 0-)
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UV amplitude and flow equations

@ divide the full partition function
(IR|U (err; €0)|Wo)
= / [dx] (IR|U (e1r; €)Xy, X )&/ X4 XX Wyy (& x4, X_)
where the UV amplitude is
Tuv (e x+:X-) = (X+,X_|U(€, €0)|¥o)

and the completeness relation inserted is

1= / [AX][% 4> X ye! T+ TXx— (x5 |
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UV amplitude and flow equations

@ divide the full partition function
(IR|U (err; €0)|Wo)
= / [dx] (IR|U (e1r; €)Xy, X )&/ X4 XX Wyy (& x4, X_)
where the UV amplitude is
Tuv (e x+:X-) = (X+,X_|U(€, €0)|¥o)

and the completeness relation inserted is

1= / [AX][% 4> X ye! T+ TXx— (x5 |

@ the UV amplitude is generally given by

Yoy = exp [ X F(@x+ + B(xs + X B-(€) + C(9)
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UV amplitude and flow equations

@ a flow of physically equivalent effective theories
std

<exp/6_F(e)O+ +B1()04 +0-B_(e))

Ae)
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UV amplitude and flow equations

@ a flow of physically equivalent effective theories
std

<exp/6_F(e)O+ +B1()04 +0-B_(e))

A(e)

@ flow equations from the Schrédinger equation —9. Pyv = HeaaPuv

V978 F = F(iv"ku)F + iv" K, — 2mF,
V9**0.B_ = F(iv"ku)B- — mB_,
V97#8.B4 = By (iv"ku)F — mB,

VIF0.C = T4 (i7" k) J - + O(s?),

H Irosni Isono Holographic Wilsonian RG — flow diagrams, fermions



flow equations and beta functions

@ expand F' in momentum (derivative expansion)

F(e,k) = Y fa(e)(ev"ku)" ™}

n=0

generally, F starts from k~*, which can be seen directly from on-shell
value of the action
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flow equations and beta functions

@ expand F' in momentum (derivative expansion)
F(e,k) =) fu(e)(ev k)"
n=0

generally, F starts from k~*, which can be seen directly from on-shell
value of the action

o flow equations for fo-f1

€defo = (1 — 2m)fo — fo
eaefl = 2f0_f1 — 2mf1
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flow diagram : pure AdS

b NS )]
NS
HINNNNIRRAR R ONI/a
‘i\\{\\\/ i
\\s\\\\\\\ o\ \\ W
05 \“Q\\\\\ /_‘\E\&lj/////’
N e
NN
NN
ST
o NN T

fixed points (in KW window : 0 < m < 1/2)
@ UV : fo = 0: standard quantization
@ IR: fo = 1 — 2m : alternative quantization
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flow diagram : extremal charged black hole

In the same way as the bosonic case, we regard the red shift factor H as a
new coupling and draw a flow diagram in foo-H




conclusion and open problems

what we have done

@ analyzed flow equations for extremal charged black holes and checked
that the possible four fixed points give us the correct mass dimensions.
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conclusion and open problems

what we have done

@ analyzed flow equations for extremal charged black holes and checked
that the possible four fixed points give us the correct mass dimensions.

@ extended holographic WRG to fermions by introducing generalized
coherent states.
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conclusion and open problems

We can partially understand the emergence of the semi-holographic action

- i i ~ —— 21
@ Assume the double-trace coupling F has a single pole F T iy
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conclusion and open problems

We can partially understand the emergence of the semi-holographic action
@ Assume the double-trace coupling F has a single pole F' ~ —

’Yﬁ(k—kF)u
@ hWRG equation
/ [d"X] (IR|U (e1r, €)X 4, x—)e! XX+ X=X~ (x /% |U(e, €0)|®)
= /[dzx] <exp/Y+0+ +5—X—>

= <exp/6_FO+ + --->Std

std

— ¥, F 'y_ +...
A &P /x+ xX- +

Ae)
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conclusion and open problems

We can partially understand the emergence of the semi-holographic action
@ Assume the double-trace coupling F has a single pole F' ~ —

’Yﬁ(k—kF)u
@ hWRG equation
/ [d*X] (IR|U (€1r, €) [X 4> x— Ye! XX+ TX=X= (x|, x_|U(e, €0)| )
= /[dzx] <exp/Y+0+ + 5—X—>
— std
= <exp/O_FO+ —|—>

@ the last expression becomes non-local around kr. In order to avoid this,
keep x of momentum in the neighbourhood of kr un-integrated out

std

— ¥, F 'y_ +...
A &P /x+ xX- +

Ae)

std

<exp/ X4+0+ +5—X—> eXP—/ X+ F 'x-
keESE A(e) kESE

= [1anyexpsM)+ [ 3,04 +0x = x4 (= kr)ux-
€SF

X -, X4+ €an be interpreted as emergent dynamical fermions
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conclusion and open problems

@ hWRG for interacting theories, dynamical gravity :

@ application to holographic fluid dynamics at the boundary and at the horizon
e understanding of a-function, c-function in terms of hWWRG

-
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conclusion and open problems

@ hWRG for interacting theories, dynamical gravity :

@ application to holographic fluid dynamics at the boundary and at the horizon
e understanding of a-function, c-function in terms of hWWRG

@ hWRG is now in the level of re-interpretation...
Can hWRG really shed new light on issues which cannot be understood
by conventional holographic techniques ??
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