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Motivation

The number of holographic models describing strongly coupled gauge theories,
either as conjectured exact duals or as effective descriptions, has proliferated
dramatically over the last few years.

More often than not one in fact defines (at least a sector of) the strongly coupled
field theory via some weakly coupled gravity/supergravity theory (e.g. Lifshitz
backgrounds, holographic superconductors).

This leads to the questions:

given a generic gravitational theory, is there a holographic dual?

if yes, then what is the dual?

In fact, I will not address either of these two questions in this talk!
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What I will discuss instead is how these questions can be addressed
systematically and in a very broad context.

In particular, given a gravitational theory, without assuming the existence and/or
the form of any potential holographic dual, I want to be able to know a priori:

Where would any potential dual “live”?

What would be the spectrum of gauge-invariant observables?

How would correlation functions of such observables look like?

What thermodynamic properties any potential dual would possess?

What I claim is that these questions can be answered algorithmically for generic
gravitational theories, without any presumption about the nature of the potential
holographic dual.

BUT HOW?
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The problem

Given a gravitational theory...

I want to formulate the gravitational dynamics as an “integration from infinity”
problem. i.e. I want to define the variational problem with boundary conditions at
infinity and to reconstruct the bulk dynamics from data specified at infinity.
(cf. Fefferman-Graham program for Euclidean AdS gravity.)

The potential dual field theory is assumed to “reside” on this infinity, where by
“reside” I simply mean that (a sector of) the symplectic space of field theory
observables is to be identified with the symplectic space of data at infinity, which
parameterize the bulk dynamics.

One can view this construction as an effective field theory (EFT) for gravity in
terms of data specified at infinity. There are numerous EFT approaches to gravity
dynamics in terms of different degrees of freedom, but I find this most natural in
the context of holography. (cf. Membrane Paradigm, Blackfolds etc.)

In the case of asymptotically AdS supergravity it is precisely this EFT description
that happens to coincide with the large-N , large ’t Hooft coupling of N = 4 super
Yang-Mills.
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Variational problems at infinity

Variational problems with boundary conditions set at infinity require some care!

Besides adding any Gibbons-Hawking boundary term, required to make the
variational problem well defined on a space of finite volume (i.e. with a cut-off) or
equivalently in order to ensure that the theory admits a radial Hamiltonian
description, the variational problem can always be made well defined by:

the field variations at infinity are restricted to arbitrary variations
within the space of asymptotic solutions of the equations of motion,

adding a further boundary term.

The boundary term, Sb, required on a cut-off surface is universal:

Sb = −S

where S is a solution of the radial Hamilton-Jacobi equation. (cf. [de Boer,
Verlinde, Verlinde ’99] for asymptotically AdS gravity.)
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Variational problem at infinity for point particle

This result is independent of holography or indeed gravity. We will derive it using a
very simple point particle example, but the same argument goes through for any
Hamiltonian system that admits a variational problem at infinity.

Consider a point particle described by the classical action

S =
∫ t
0 dt
′L =

∫ t
0 dt
′ ( 1

2
q̇2 − V (q)

)
We will take the potential to be unbounded from below as q →∞

q

V(q)
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More precisely, we demand that V (q)→ −∞ as q →∞ and that the particle
reaches q =∞ at infinite time, i.e. the integral

t− t0 =
∫ q
q0

dq′√
2(E−V (q′))

diverges as q →∞.

This condition ensures that even though the potential is unbounded from below,
the Hamiltonian is still self adjoint and so it can be used to define a unitary time
evolution operator.
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A generic variation of the action takes the form

δS = −
∫ t
0 dt
′ (q̈ + V ′(q)) δq + Lδt+ pδq

The usual Dirichlet BVP is set up by keeping the location of the boundary fixed,
i.e. t = to fixed, and requiring

δq|to = 0

However, if we want to set up the BVP at t =∞, setting δt = 0 at t =∞ does not
make sense.

So, unless L→ 0 as t→∞, the variational problem does not imply the equations
of motion whatever time-independent boundary conditions are imposed on (p, q).

Hence, the only admissible boundary conditions are time-dependent: δq ∝ δt
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In order to impose time-dependent asymptotic boundary conditions consistent
with the equations of motion we must restrict the space of paths q(t) to the space
of asymptotic, as t→∞, solutions of the equation of motion.

However, allowing for generic time-dependent boundary conditions within the
space of asymptotic solutions does not automatically ensure that Lδt+ pδq → 0
as t→∞ unless a boundary, Sb(q), term is added to the original action.
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Adding a boundary term Sb(q) a generic variation of the action takes the form:

δ(S+Sb) = −
∫ t
0 dt
′ (q̈ + V ′(q)) δq+

(
L+ Ṡb

)
δt+(p+S′b(q))δq

The variational problem is then well defined provided there exists a boundary term
Sb(q) such that when q asymptotically approaches generic solutions of the
equations of motion

d
dt

(S+Sb)
q→∞−−−−→ 0

Since q is asymptotically evaluated on-shell, we can replace the on-shell action S
in this expression with Hamilton’s principal function, S, i.e. a solution of the
Hamilton-Jacobi equation which is a function of q on the boundary

∂S
∂t

+H
(
∂S
∂q
, q, t

)
= 0

The required boundary term, Sb, therefore is in general given by

Sb = −S

where S is a solution of the Hamilton-Jacobi equation.
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Caveats...

The space of asymptotic solutions considered must support a well defined
symplectic form, i.e. both non-normalizable and normalizable modes must be
considered.

The solution S of the radial Hamilton-Jacobi equation is not unique. There are
generically discrete equivalent classes of solutions, with solutions within each
equivalence class being related continuously. The appropriate solution that must
be added as a boundary term corresponds to a specific equivalence class, but any
representative within the equivalence class serves equally well as a boundary
term.

In general Sb will be non-local in the transverse space, i.e. non-polynomial in
transverse derivatives.

If the Hamilton-Jacobi equation can be solved exactly, so much the better!
However this is usually practically impossible and indeed unnecessary.
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Algorithm for solving the Hamilton-Jacobi equation asymptotically...

Indeed, it suffices to solve the Hamilton-Jacobi equation in an asymptotic sense
and only up to certain order.

So, here is the algorithm:

1 Write down the radial Hamilton-Jacobi equation for the theory at hand.

2 Specify the leading asymptotic form of the general solutions of the
gravity equations - i.e. the non-normalizable modes.

3 Is this asymptotic form derivable from a Hamilton-Jacobi potential,
i.e.without transverse derivatives?

IF yes THEN the Hamilton-Jacobi equation can be systematically solved in a
derivative expansion.
IF not THEN trivialize the transverse derivatives à la KK, and GOTO step 1.
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The addition of this boundary term...

makes the variational problem at infinity well defined,

the on-shell action on arbitrary solutions of the equations of motion is finite,

induced fields are proportional to non-normalizable modes and the conjugate
canonical momenta are proportional to normalizable modes – i.e. we have a well
defined symplectic space of boundary data at infinity. This space can be identified
with the symplectic space of observables in a potential holographically dual theory.

The asymptotic solution of the Hamilton-Jacobi equation provides a derivation of
the generalized Fefferman-Graham expansions. In particular, it automatically
leads to the identification of the normalizable modes.
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Generic dilaton-axion system

Let us now apply this general algorithm to a generic dilaton-axion system of the
form

S = − 1
2κ2

∫
M dd+1x

√
g (R[g]− ∂µϕ∂µϕ− Z(ϕ)∂µχ∂µχ+ V (ϕ)) +GH

This action includes a large number of physically interesting examples, both
asymptotically locally AdS [Mateos & Trancanelli ’11], and non asymptotically
locally AdS, e.g. Improved Holographic QCD [Gursoy, Kiritsis ’07] and non
conformal branes [Wiseman & Withers ’08], [Kanitscheider, Skenderis, & Taylor
’08].
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Radial Hamiltonian formulation

In order to derive the radial Hamilton-Jacobi equation we start by the standard
ADM decomposition of the metric

ds2 = (N2 +NiN
i)dr2 + 2Nidrdx

i + γijdx
idxj

Substituting this metric into the above action leads to a Lagrangian for the induced
fields γij , N,N i, ϕ, χ on the radial slices Σr , with Hamiltonian

H =
∫
Σr

ddx
(
NH+NiHi

)
N and N i are Lagrange multipliers leading to the Hamiltonian and momentum
constraints

0 = H = 2κ2γ−
1
2

(
πijπ

j
i −

1

d− 1
π2 +

1

4
π2
ϕ +

1

4
Z−1(ϕ)π2

χ

)
+

1

2κ2

√
γ
(
R[γ]− ∂iϕ∂iϕ− Z(ϕ)∂iχ∂

iχ+ V (ϕ)
)
,

0 = Hi = −2Djπ
ij + πϕ∂

iϕ+ πχ∂
iχ.
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Gauge-fixing the Lagrange multipliers to N = 1, N i = 0, the canonical momenta
are related to the first radial derivatives of the induced fields as

πij ≡
δL

δγ̇ij
= −

1

2κ2

√
γ
(
Kγij −Kij

)
, Kij =

1

2
γ̇ij ,

πϕ ≡
δL

δϕ̇
=

1

κ2

√
γϕ̇,

πχ ≡
δL

δχ̇
=

1

κ2

√
γZ(ϕ)χ̇,

The Hamilton-Jacobi formulation of the dynamics amounts to writing the canonical
momenta as gradients

πij = δS
δγij

, πϕ = δS
δϕ
, πχ = δS

δχ
,

inserting these in the two constraints, and view the constraints as functional PDEs
for Hamilton’s principal function S(γ, ϕ, χ).
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Flow equations

Now that we have the Hamilton-Jacobi equation, it is important to pause for a
moment and take note of a crucial observation:

Every solution of the Hamilton-Jacobi equations defines a first order flow in
field space (cf. BPS equations, fake supergravity, Ricci flows):

γ̇ij = 4κ
2

(
γikγjl −

1

d− 1
γklγij

)
1
√
γ

δS
δγkl

,

ϕ̇ = κ
2 1
√
γ

δS
δϕ
,

χ̇ = κ
2
Z
−1

(ϕ)
1
√
γ

δS
δχ
.

The general solution of the Hamilton-Jacobi equation contains as many
integration functions as dynamical fields. Finding such a general solution
corresponds to integrating the second order equations once.

These flow equations are the key ingredient in deriving the generalized
Fefferman-Graham expansions. Given an asymptotic solution of the
Hamilton-Jacobi equation up to the order where the integration functions appear,
one can immediately write down the corresponding generalized
Fefferman-Graham expansions by making use of the above flow equations.
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Just to make it clear...

What the Hamilton-Jacobi formalism provides us with, therefore, is a machine that
is fed non-normalizable modes and spits out normalizable modes, or more
precisely the canonically conjugate variables in the symplectic space of general
boundary conditions.

These are exactly the quantities that would be identified with gauge-invariant
observables in any potential holographic dual.
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Asymptotic solution of the Hamilton-Jacobi equation

So, how do we actually solve the Hamilton-Jacobi equation?

To begin with, having identified the correct non-normalizable modes, the
Hamitlon-Jacobi equation admits a solution of the form

S(0) = 1
κ2

∫
Σr

ddx
√
γU(ϕ, χ)

where U(ϕ, χ) satisfies

(∂ϕU)2 + Z−1(ϕ)(∂χU)2 − d
d−1

U2 + V (ϕ) = 0

It is easy to show that any χ dependence of U(ϕ, χ) only corresponds to a finite
contribution to S and therefore we can take U(ϕ).
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We write

Sr =
∫
Σr

ddxL(γ, ϕ, χ)

and expand

S = S(0) + S(2) + S(4) + · · ·

in eigenfunctions of the operator

δγ =
∫
ddx2γij

δ
δγij

Inserting this expansion into the Hamilton-Jacobi equation leads to linear
equations for S(2n), n > 0.

In particular, applying the identity identity

πijδγij + πϕδϕ+ πχδχ = δL+ ∂iv
i(δγ, δϕ, δχ)

to the variation δγ and absorbing the total derivative terms into L(2n) we obtain

2π(2n) = (d− 2n)L(2n)
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The linear recursion equations for L(2n), n > 0 then become

U ′(ϕ) δ
δϕ

∫
ddxL(2n) −

(
d−2n
d−1

)
U(ϕ)L(2n) = R(2n), n > 0,

where the source terms are given by

R(2) = −
1

2κ2

√
γ
(
R[γ]− ∂iϕ∂iϕ− Z(ϕ)∂iχ∂

iχ
)
,

R(2n) = −2κ2γ−
1
2

n−1∑
m=1

(
π(2m)

i
jπ(2(n−m))

j
i −

1

d− 1
π(2m)π(2(n−m))

+
1

4
πϕ(2m)πϕ(2(n−m)) +

1

4
Z−1(ϕ)πχ(2m)πχ(2(n−m))

)
, n > 1

Only need to integrate with respect to ϕ.

Homogeneous solution contributes a finite piece and hence can be discarded.
Only inhomogeneous solution is relevant.
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Schematic diagram of the recursion

R(2n)

∫
−−−−−−−−−→ L(2n)

δ−−−−−−−−→ {π(2n)}y
{π(2n+2)}

δ←−−−−−−−− L(2n+2)

∫
←−−−−−−−−− R(2n+2)y

R(2n+4)

∫
−−−−−−−−−→ L(2n+4) . . .



Summary & Conclusions

We have an algorithmic procedure for constructing an EFT of any gravitational
theory in terms of a symplectic space of boundary data at infinity.

This symplectic space is identified with the symplectic space of (a sector of)
gauge invariant operators in any potential holographically dual theory.

For explicit results for general dilaton-axion gravity and applications to Improved
Holographic QCD see forthcoming paper later this week...
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