Un pave $\lambda \lambda$ ing the nove λ Hi $\gamma \gamma$ s me χ anism in $(2+1)$ d

Sunil Mukhi

Tata Institute of Fundamental Research

Sixth Crete Regional Conference on String Theory Milos, June 20-26, 2011

Outline

Introduction
Membrane field theories and the novel Higgs mechanism
Topological mass and NHM
Diagonalisability conditions
Two-field case
Multi-field case
Difference Chern-Simons and Hitchin equations
Conclusions

Introduction

- Gauge theories in $(2+1)$ d have some special features, notably the possibility of a first-order Chern-Simons kinetic term.

Introduction

- Gauge theories in $(2+1)$ d have some special features, notably the possibility of a first-order Chern-Simons kinetic term.
- In recent years this has been put to good use in the study of multiple membranes in M-theory.

Introduction

- Gauge theories in $(2+1)$ d have some special features, notably the possibility of a first-order Chern-Simons kinetic term.
- In recent years this has been put to good use in the study of multiple membranes in M-theory.
- A specific aspect of membrane field theories is a phenomenon wherein, by giving a vev to a certain scalar, the Chern-Simons nature of the theory is traded for Yang-Mills.

Introduction

- Gauge theories in $(2+1)$ d have some special features, notably the possibility of a first-order Chern-Simons kinetic term.
- In recent years this has been put to good use in the study of multiple membranes in M-theory.
- A specific aspect of membrane field theories is a phenomenon wherein, by giving a vev to a certain scalar, the Chern-Simons nature of the theory is traded for Yang-Mills.
- This phenomenon is known as the novel Higgs mechanism (NHM).

Introduction

- Gauge theories in $(2+1)$ d have some special features, notably the possibility of a first-order Chern-Simons kinetic term.
- In recent years this has been put to good use in the study of multiple membranes in M-theory.
- A specific aspect of membrane field theories is a phenomenon wherein, by giving a vev to a certain scalar, the Chern-Simons nature of the theory is traded for Yang-Mills.
- This phenomenon is known as the novel Higgs mechanism (NHM).
- It is useful in understanding many aspects of multiple membrane theories.

Introduction

- Gauge theories in $(2+1)$ d have some special features, notably the possibility of a first-order Chern-Simons kinetic term.
- In recent years this has been put to good use in the study of multiple membranes in M-theory.
- A specific aspect of membrane field theories is a phenomenon wherein, by giving a vev to a certain scalar, the Chern-Simons nature of the theory is traded for Yang-Mills.
- This phenomenon is known as the novel Higgs mechanism (NHM).
- It is useful in understanding many aspects of multiple membrane theories.
- It also bears an intriguing similarity to some well-known features of Chern-Simons theories in $(2+1)$ d, in particular topological mass generation.
- In this talk I will:
(i) summarise the relevance of NHM to membranes in M-theory,
(ii) explain the relation between NHM and the topological mass,
(iii) explore the most general conditions for NHM.
- In this talk I will:
(i) summarise the relevance of NHM to membranes in M-theory,
(ii) explain the relation between NHM and the topological mass,
(iii) explore the most general conditions for NHM.
- (Work in progress, to be discussed if there is time:)

The equations of motion of a difference Chern-Simons theory can be mapped, in a suitable gauge, to the famous Hitchin equations. After the NHM one gets a kind of deformation of the Hitchin equations.

Outline

Introduction

Membrane field theories and the novel Higgs mechanism
Topological mass and NHM
Diagonalisability conditions
Two-field case
Multi-field case
Difference Chern-Simons and Hitchin equations
Conclusions

Membrane field theories and the novel Higgs mechanism

- Following early work of [Gaiotto-Yin] and [Schwarz], it was argued by [Bagger-Lambert, Gustavsson] that multiple membranes in M-theory can be described by $(2+1)$ d field theories involving a Chern-Simons type gauge field.

Membrane field theories and the novel Higgs mechanism

- Following early work of [Gaiotto-Yin] and [Schwarz], it was argued by [Bagger-Lambert, Gustavsson] that multiple membranes in M-theory can be described by $(2+1) d$ field theories involving a Chern-Simons type gauge field.
- They proposed a gauge field $A_{\mu}{ }^{a b}$ with a Chern-Simons type action:

$$
\mathcal{L}_{C S}=\frac{1}{2}\left(A_{b}^{a} \wedge d \widetilde{A}_{a}^{b}+\frac{2}{3} A^{a}{ }_{b} \wedge \widetilde{A}_{c}^{b} \wedge \widetilde{A}_{a}^{c}\right)
$$

where $\widetilde{A}_{\mu}{ }^{b}{ }_{c} \equiv f^{a b}{ }_{c d} A_{\mu}{ }^{d}{ }_{a}, f^{a b c d}$ are the structure constants of a 3-algebra.

- With enough supersymmetry, the entire field theory is determined. For maximal $\mathcal{N}=8$ supersymmetry the field content is:

$$
\frac{n(n-1)}{2} \times\left(A_{\mu} ; \chi\right), \quad n \times(8 X ; 4 \psi)
$$

where A_{μ}, χ are non-propagating and n is related to the number of membranes. Here $X^{I}, I=1,2, \cdots 8$ are the transverse coordinates of the membrane.

- With enough supersymmetry, the entire field theory is determined. For maximal $\mathcal{N}=8$ supersymmetry the field content is:

$$
\frac{n(n-1)}{2} \times\left(A_{\mu} ; \chi\right), \quad n \times(8 X ; 4 \psi)
$$

where A_{μ}, χ are non-propagating and n is related to the number of membranes. Here $X^{I}, I=1,2, \cdots 8$ are the transverse coordinates of the membrane.

- Introducing the covariant derivative:

$$
D_{\mu} X_{a}^{I}=\partial_{\mu} X_{a}^{I}-\widetilde{A}_{\mu}{ }^{b}{ }_{a} X_{b}^{I}
$$

the bosonic part of the BLG action is:

$$
\frac{k}{2 \pi}\left(\mathcal{L}_{C S}-\frac{1}{2} D_{\mu} X^{I} \cdot D^{\mu} X^{I}-\frac{1}{12}\left(f^{a b c d} X_{a}^{I} X_{b}^{J} X_{c}^{K}\right)^{2}\right)
$$

where k is the level of the Chern-Simons term.

- The 3-algebra conditions on $f^{a b c d}$ turn out to be so restrictive that the only solution is:

$$
f^{a b c d}=\epsilon^{a b c d}, \quad a, b, \cdots \in 1,2,3,4
$$

- The 3-algebra conditions on $f^{a b c d}$ turn out to be so restrictive that the only solution is:

$$
f^{a b c d}=\epsilon^{a b c d}, \quad a, b, \cdots \in 1,2,3,4
$$

- In this case there are six fields $A_{\mu}^{a b}$ which can be broken up into two triplet gauge fields:

$$
\begin{aligned}
A_{\mu}^{a 4} & =\frac{1}{2} C_{\mu}^{a}, \\
\epsilon^{a}{ }_{b c} A_{\mu}^{b c} & =\frac{1}{2} B_{\mu}^{a}
\end{aligned}
$$

where $a, b, c \cdots \in 1,2,3$.

- The 3-algebra conditions on $f^{a b c d}$ turn out to be so restrictive that the only solution is:

$$
f^{a b c d}=\epsilon^{a b c d}, \quad a, b, \cdots \in 1,2,3,4
$$

- In this case there are six fields $A_{\mu}^{a b}$ which can be broken up into two triplet gauge fields:

$$
\begin{aligned}
A_{\mu}^{a 4} & =\frac{1}{2} C_{\mu}^{a} \\
\epsilon^{a}{ }_{b c} A_{\mu}^{b c} & =\frac{1}{2} B_{\mu}^{a}
\end{aligned}
$$

where $a, b, c \cdots \in 1,2,3$.

- The 3-algebra Chern-Simons term now becomes:

$$
\sim \quad \frac{1}{2}\left(B^{a} \wedge F^{a}(C)+\frac{2}{3} \epsilon_{a b c} B^{a} \wedge B^{b} \wedge B^{c}\right)
$$

- Making the same $3+1$ split on the scalars, we have:

$$
\begin{aligned}
D X^{I a} & =d X^{I a}+\varepsilon_{b c}^{a} C^{b} X^{I c}+B_{\mu}^{a} X^{I 4} \\
D X^{I 4} & =d X^{I 4}-B^{a} X^{I a}
\end{aligned}
$$

- Making the same $3+1$ split on the scalars, we have:

$$
\begin{aligned}
D X^{I a} & =d X^{I a}+\varepsilon_{b c}^{a} C^{b} X^{I c}+B_{\mu}^{a} X^{I 4} \\
D X^{I 4} & =d X^{I 4}-B^{a} X^{I a}
\end{aligned}
$$

- Now giving a vev $X^{I=8,4}=v$ gives a mass term for the B_{μ} gauge field, so altogether:

$$
\sim k\left(-\frac{1}{2} v^{2} B_{\mu}^{a} B^{\mu a}+\frac{1}{2} B^{a} \wedge F^{a}(C)+\frac{1}{3} \epsilon_{a b c} B^{a} \wedge B^{b} \wedge B^{c}\right)
$$

- Making the same $3+1$ split on the scalars, we have:

$$
\begin{aligned}
D X^{I a} & =d X^{I a}+\varepsilon_{b c}^{a} C^{b} X^{I c}+B_{\mu}^{a} X^{I 4} \\
D X^{I 4} & =d X^{I 4}-B^{a} X^{I a}
\end{aligned}
$$

- Now giving a vev $X^{I=8,4}=v$ gives a mass term for the B_{μ} gauge field, so altogether:

$$
\sim k\left(-\frac{1}{2} v^{2} B_{\mu}^{a} B^{\mu a}+\frac{1}{2} B^{a} \wedge F^{a}(C)+\frac{1}{3} \epsilon_{a b c} B^{a} \wedge B^{b} \wedge B^{c}\right)
$$

- The field B is algebraic and we can self-consistently integrate it out by initially neglecting the cubic term:

$$
B={\frac{k}{v^{2}}}^{*} F(C)+\mathcal{O}\left(\frac{1}{v^{4}}\right)
$$

- Inserting this back we get an $S U(2)$ Yang-Mills theory with the 7 remaining scalars, and the fermions, in the adjoint (also X^{8} disappears):

$$
\frac{k}{v^{2}} \operatorname{tr}\left\{-\frac{1}{4} \boldsymbol{F} \wedge^{*} \boldsymbol{F}-\frac{1}{2} D_{\mu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{i}+\frac{1}{4}\left[\boldsymbol{X}^{i}, \boldsymbol{X}^{j}\right]^{2}+\cdots\right\}
$$

where $\boldsymbol{F}, \boldsymbol{X}$ are now 2×2 matrices.

- Inserting this back we get an $S U(2)$ Yang-Mills theory with the 7 remaining scalars, and the fermions, in the adjoint (also X^{8} disappears):

$$
\frac{k}{v^{2}} \operatorname{tr}\left\{-\frac{1}{4} \boldsymbol{F} \wedge^{*} \boldsymbol{F}-\frac{1}{2} D_{\mu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{i}+\frac{1}{4}\left[\boldsymbol{X}^{i}, \boldsymbol{X}^{j}\right]^{2}+\cdots\right\}
$$

where $\boldsymbol{F}, \boldsymbol{X}$ are now 2×2 matrices.

- The dots represent fermion terms and also corrections suppressed by inverse powers of v^{2}.
- Inserting this back we get an $S U(2)$ Yang-Mills theory with the 7 remaining scalars, and the fermions, in the adjoint (also X^{8} disappears):

$$
\frac{k}{v^{2}} \operatorname{tr}\left\{-\frac{1}{4} \boldsymbol{F} \wedge^{*} \boldsymbol{F}-\frac{1}{2} D_{\mu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{i}+\frac{1}{4}\left[\boldsymbol{X}^{i}, \boldsymbol{X}^{j}\right]^{2}+\cdots\right\}
$$

where $\boldsymbol{F}, \boldsymbol{X}$ are now 2×2 matrices.

- The dots represent fermion terms and also corrections suppressed by inverse powers of v^{2}.
- We see that v / \sqrt{k} plays the role of $g_{Y M}$.
- The Chern-Simons action can be written in a form that has now become very familiar. Under:

$$
\boldsymbol{B}=\frac{1}{2}\left(\boldsymbol{A}^{1}-\boldsymbol{A}^{2}\right), \quad \boldsymbol{C}=\frac{1}{2}\left(\boldsymbol{A}^{1}+\boldsymbol{A}^{2}\right)
$$

the Lagrangian:

$$
\operatorname{tr}\left(\boldsymbol{B} \wedge \boldsymbol{F}(\boldsymbol{C})+\frac{1}{3} \boldsymbol{B} \wedge \boldsymbol{B} \wedge \boldsymbol{B}\right)
$$

becomes:

$$
\begin{aligned}
& \sim \frac{1}{2} \operatorname{tr}\left(\boldsymbol{A}^{1} \wedge d \boldsymbol{A}^{1}+\frac{2}{3} \boldsymbol{A}^{1} \wedge \boldsymbol{A}^{1} \wedge \boldsymbol{A}^{1}\right. \\
&\left.-\boldsymbol{A}^{2} \wedge d \boldsymbol{A}^{2}-\frac{2}{3} \boldsymbol{A}^{2} \wedge \boldsymbol{A}^{2} \wedge \boldsymbol{A}^{2}\right)
\end{aligned}
$$

- The Chern-Simons action can be written in a form that has now become very familiar. Under:

$$
\boldsymbol{B}=\frac{1}{2}\left(\boldsymbol{A}^{1}-\boldsymbol{A}^{2}\right), \quad \boldsymbol{C}=\frac{1}{2}\left(\boldsymbol{A}^{1}+\boldsymbol{A}^{2}\right)
$$

the Lagrangian:

$$
\operatorname{tr}\left(\boldsymbol{B} \wedge \boldsymbol{F}(\boldsymbol{C})+\frac{1}{3} \boldsymbol{B} \wedge \boldsymbol{B} \wedge \boldsymbol{B}\right)
$$

becomes:

$$
\begin{aligned}
& \sim \frac{1}{2} \operatorname{tr}\left(\boldsymbol{A}^{1} \wedge d \boldsymbol{A}^{1}+\frac{2}{3} \boldsymbol{A}^{1} \wedge \boldsymbol{A}^{1} \wedge \boldsymbol{A}^{1}\right. \\
&\left.-\boldsymbol{A}^{2} \wedge d \boldsymbol{A}^{2}-\frac{2}{3} \boldsymbol{A}^{2} \wedge \boldsymbol{A}^{2} \wedge \boldsymbol{A}^{2}\right)
\end{aligned}
$$

- Here $\boldsymbol{A}^{1}, \boldsymbol{A}^{2}$ are $S U(2)$ gauge fields and the scalar fields are in the bi-fundamental representation of $S U(2) \times S U(2)$.
- The Chern-Simons action can be written in a form that has now become very familiar. Under:

$$
\boldsymbol{B}=\frac{1}{2}\left(\boldsymbol{A}^{1}-\boldsymbol{A}^{2}\right), \quad \boldsymbol{C}=\frac{1}{2}\left(\boldsymbol{A}^{1}+\boldsymbol{A}^{2}\right)
$$

the Lagrangian:

$$
\operatorname{tr}\left(\boldsymbol{B} \wedge \boldsymbol{F}(\boldsymbol{C})+\frac{1}{3} \boldsymbol{B} \wedge \boldsymbol{B} \wedge \boldsymbol{B}\right)
$$

becomes:

$$
\begin{aligned}
& \sim \frac{1}{2} \operatorname{tr}\left(\boldsymbol{A}^{1} \wedge d \boldsymbol{A}^{1}+\frac{2}{3} \boldsymbol{A}^{1} \wedge \boldsymbol{A}^{1} \wedge \boldsymbol{A}^{1}\right. \\
&\left.-\boldsymbol{A}^{2} \wedge d \boldsymbol{A}^{2}-\frac{2}{3} \boldsymbol{A}^{2} \wedge \boldsymbol{A}^{2} \wedge \boldsymbol{A}^{2}\right)
\end{aligned}
$$

- Here $\boldsymbol{A}^{1}, \boldsymbol{A}^{2}$ are $S U(2)$ gauge fields and the scalar fields are in the bi-fundamental representation of $S U(2) \times S U(2)$.
- The covariant derivative is then:

$$
D \boldsymbol{X}=d \boldsymbol{X}-\boldsymbol{A}^{1} \boldsymbol{X}+\boldsymbol{X}^{T} \boldsymbol{A}^{2}
$$

- $G \times G$ difference-Chern-Simons theories have become the standard way to understand M -theory membranes in various contexts, typically on orbifolds. The level k defines the order of the orbifold group.
- $G \times G$ difference-Chern-Simons theories have become the standard way to understand M -theory membranes in various contexts, typically on orbifolds. The level k defines the order of the orbifold group.
- As long as there are bi-fundamental scalars, the NHM always gives rise to Yang-Mills theory.
- $G \times G$ difference-Chern-Simons theories have become the standard way to understand M -theory membranes in various contexts, typically on orbifolds. The level k defines the order of the orbifold group.
- As long as there are bi-fundamental scalars, the NHM always gives rise to Yang-Mills theory.
- Here we focus on $\mathcal{N}=8$ [BLG] and $\mathcal{N}=6[A B J M, A B J]$ theories.
- $G \times G$ difference-Chern-Simons theories have become the standard way to understand M -theory membranes in various contexts, typically on orbifolds. The level k defines the order of the orbifold group.
- As long as there are bi-fundamental scalars, the NHM always gives rise to Yang-Mills theory.
- Here we focus on $\mathcal{N}=8$ [BLG] and $\mathcal{N}=6[A B J M, A B J]$ theories.
- In this context the NHM has provided a few different illuminations about membranes and M-theory, which I will now briefly review.
(i) Proof that both BLG and ABJM theories really do describe multiple membranes.
(i) Proof that both BLG and ABJM theories really do describe multiple membranes.
- With maximal or near-maximal supersymmetry:

$$
\left.\mathcal{L}_{d i f f-C S}\right|_{v}=\frac{k}{v^{2}} \mathcal{L}_{S Y M}+\mathcal{O}\left(\frac{k}{v^{4}}\right)
$$

where the first term on the RHS is $\mathcal{N}=8$ supersymmetric Yang-Mills theory and, as noted, v / \sqrt{k} plays the role of $g_{\text {YM }}$.
(i) Proof that both BLG and ABJM theories really do describe multiple membranes.

- With maximal or near-maximal supersymmetry:

$$
\left.\mathcal{L}_{\text {diff-CS }}\right|_{v}=\frac{k}{v^{2}} \mathcal{L}_{S Y M}+\mathcal{O}\left(\frac{k}{v^{4}}\right)
$$

where the first term on the RHS is $\mathcal{N}=8$ supersymmetric Yang-Mills theory and, as noted, v / \sqrt{k} plays the role of $g_{Y M}$.

- If we take $v \rightarrow \infty$ then the higher-order terms drop out and we find that:

$$
\left.\mathcal{L}_{\text {diff-CS }}\right|_{v \rightarrow \infty}=\lim _{g_{Y M} \rightarrow \infty} \frac{1}{g_{Y M}^{2}} \mathcal{L}_{S Y M}
$$

The RHS is the strongly coupled limit of D2-branes, which is by definition the theory of multiple membranes.
(i) Proof that both BLG and ABJM theories really do describe multiple membranes.

- With maximal or near-maximal supersymmetry:

$$
\left.\mathcal{L}_{\text {diff-CS }}\right|_{v}=\frac{k}{v^{2}} \mathcal{L}_{S Y M}+\mathcal{O}\left(\frac{k}{v^{4}}\right)
$$

where the first term on the RHS is $\mathcal{N}=8$ supersymmetric Yang-Mills theory and, as noted, v / \sqrt{k} plays the role of $g_{Y M}$.

- If we take $v \rightarrow \infty$ then the higher-order terms drop out and we find that:

$$
\left.\mathcal{L}_{\text {diff-CS }}\right|_{v \rightarrow \infty}=\lim _{g_{Y M} \rightarrow \infty} \frac{1}{g_{Y M}^{2}} \mathcal{L}_{S Y M}
$$

The RHS is the strongly coupled limit of D2-branes, which is by definition the theory of multiple membranes.

- This amounts to a proof that somewhere on its moduli space, and therefore presumably everywhere, the [BLG,ABJM] and probably many other theories describe multiple membranes.
(ii) Compactification by large quivers.
(ii) Compactification by large quivers.
- The NHM was originally worked out at fixed level k. If we carry out the same procedure and take $v \rightarrow \infty, k \rightarrow \infty$ keeping v / \sqrt{k} fixed, then:

$$
\left.\mathcal{L}_{\text {diff-CS }}\right|_{v}=\frac{k}{v^{2}} \mathcal{L}_{S Y M}+\mathcal{O}\left(\frac{k}{v^{4}}\right)+\cdots \longrightarrow \frac{k}{v^{2}} \mathcal{L}_{S Y M}
$$

(ii) Compactification by large quivers.

- The NHM was originally worked out at fixed level k. If we carry out the same procedure and take $v \rightarrow \infty, k \rightarrow \infty$ keeping v / \sqrt{k} fixed, then:

$$
\left.\mathcal{L}_{\text {diff-CS }}\right|_{v}=\frac{k}{v^{2}} \mathcal{L}_{S Y M}+\mathcal{O}\left(\frac{k}{v^{4}}\right)+\cdots \longrightarrow \frac{k}{v^{2}} \mathcal{L}_{S Y M}
$$

- So this time we get the D2-brane at finite coupling, i.e. we have managed to "compactify" the theory!
(ii) Compactification by large quivers.
- The NHM was originally worked out at fixed level k. If we carry out the same procedure and take $v \rightarrow \infty, k \rightarrow \infty$ keeping v / \sqrt{k} fixed, then:

$$
\left.\mathcal{L}_{d i f f-C S}\right|_{v}=\frac{k}{v^{2}} \mathcal{L}_{S Y M}+\mathcal{O}\left(\frac{k}{v^{4}}\right)+\cdots \longrightarrow \frac{k}{v^{2}} \mathcal{L}_{S Y M}
$$

- So this time we get the D2-brane at finite coupling, i.e. we have managed to "compactify" the theory!
- This is explained by analogy with deconstruction. Again, it works equally well for BLG and ABJM.

(iii) To compute derivative corrections.
(iii) To compute derivative corrections.
- The leading higher-derivative corrections on D-brane field theories are well-known.
(iii) To compute derivative corrections.
- The leading higher-derivative corrections on D-brane field theories are well-known.
- To find the leading derivative corrections for the BLG theory, we simply wrote the most general 3-algebra expression at that order, Higgsed the theory and compared to D2-branes.
(iii) To compute derivative corrections.
- The leading higher-derivative corrections on D-brane field theories are well-known.
- To find the leading derivative corrections for the BLG theory, we simply wrote the most general 3-algebra expression at that order, Higgsed the theory and compared to D2-branes.
- All coefficients were uniquely determined by this procedure.
(iii) To compute derivative corrections.
- The leading higher-derivative corrections on D-brane field theories are well-known.
- To find the leading derivative corrections for the BLG theory, we simply wrote the most general 3-algebra expression at that order, Higgsed the theory and compared to D2-branes.
- All coefficients were uniquely determined by this procedure.
- Presumably the same procedure can (and should) be carried out for ABJM theory.
(iv) To understand the case of different levels.
(iv) To understand the case of different levels.
- [Gaiotto-Tomasiello] studied the $\mathcal{N}=6$ theory in the bifundamental form but with different levels:

$$
\frac{k_{1}}{2 \pi} S_{C S}\left(A_{+}\right)+\frac{k_{2}}{2 \pi} S_{C S}\left(A_{-}\right)
$$

They argued that $k_{1}+k_{2}$ corresponds in the dual type IIA theory on $A d S_{4} \times C P^{3}$ to a Romans mass.
(iv) To understand the case of different levels.

- [Gaiotto-Tomasiello] studied the $\mathcal{N}=6$ theory in the bifundamental form but with different levels:

$$
\frac{k_{1}}{2 \pi} S_{C S}\left(A_{+}\right)+\frac{k_{2}}{2 \pi} S_{C S}\left(A_{-}\right)
$$

They argued that $k_{1}+k_{2}$ corresponds in the dual type IIA theory on $A d S_{4} \times C P^{3}$ to a Romans mass.

- The NHM confirms this proposal: for unequal levels, it creates a Yang-Mills theory plus a residual Chern-Simons theory of level $k_{1}+k_{2}$.
(iv) To understand the case of different levels.
- [Gaiotto-Tomasiello] studied the $\mathcal{N}=6$ theory in the bifundamental form but with different levels:

$$
\frac{k_{1}}{2 \pi} S_{C S}\left(A_{+}\right)+\frac{k_{2}}{2 \pi} S_{C S}\left(A_{-}\right)
$$

They argued that $k_{1}+k_{2}$ corresponds in the dual type IIA theory on $A d S_{4} \times C P^{3}$ to a Romans mass.

- The NHM confirms this proposal: for unequal levels, it creates a Yang-Mills theory plus a residual Chern-Simons theory of level $k_{1}+k_{2}$.
- The latter reproduces the coupling $\int F_{0} S_{C S}(A)$ on a D2-brane in the presence of the Romans mass.

Outline

Introduction

Membrane field theories and the novel Higgs mechanism
Topological mass and NHM
Diagonalisability conditions
Two-field case
Multi-field case
Difference Chern-Simons and Hitchin equations
Conclusions

Topological mass and NHM

- Nearly three decades ago, [Deser et al] observed that Yang-Mills gauge fields in $2+1$ dimensions acquire a topological mass when a Chern-Simons interaction is added:

$$
S=S_{Y M}+S_{C S}
$$

Topological mass and NHM

- Nearly three decades ago, [Deser et al] observed that Yang-Mills gauge fields in $2+1$ dimensions acquire a topological mass when a Chern-Simons interaction is added:

$$
S=S_{Y M}+S_{C S}
$$

- The propagating modes have a single degree of freedom with spin +1 but no corresponding spin -1 state.

Topological mass and NHM

- Nearly three decades ago, [Deser et al] observed that Yang-Mills gauge fields in $2+1$ dimensions acquire a topological mass when a Chern-Simons interaction is added:

$$
S=S_{Y M}+S_{C S}
$$

- The propagating modes have a single degree of freedom with spin +1 but no corresponding spin -1 state.
- This is possible because Chern-Simons theory is parity violating.
- Subsequently a different model called the "self-dual" theory was considered [Townsend et al]:

$$
S=S_{C S}+S_{\text {mass }}
$$

The explicit mass term can arise from the vev of a Higgs field.

- Subsequently a different model called the "self-dual" theory was considered [Townsend et al]:

$$
S=S_{C S}+S_{\text {mass }}
$$

The explicit mass term can arise from the vev of a Higgs field.

- Though the two Lagrangians look quite different, they both correspond to massive, parity-violating theories.
- Subsequently a different model called the "self-dual" theory was considered [Townsend et al]:

$$
S=S_{C S}+S_{\text {mass }}
$$

The explicit mass term can arise from the vev of a Higgs field.

- Though the two Lagrangians look quite different, they both correspond to massive, parity-violating theories.
- In fact it was shown that the two theories are equivalent:

$$
S_{C S}+S_{\text {mass }} \sim S_{Y M}+S_{C S}
$$

- Subsequently a different model called the "self-dual" theory was considered [Townsend et al]:

$$
S=S_{C S}+S_{\text {mass }}
$$

The explicit mass term can arise from the vev of a Higgs field.

- Though the two Lagrangians look quite different, they both correspond to massive, parity-violating theories.
- In fact it was shown that the two theories are equivalent:

$$
S_{C S}+S_{\text {mass }} \sim S_{Y M}+S_{C S}
$$

- In the above equivalence, the mass on the LHS becomes the Yang-Mills coupling on the RHS.
- By contrast, the NHM involves a pair of gauge fields having Chern-Simons terms with opposite signs, as well as an explicit mass term of a specific form (possibly arising via a Higgs mechanism). The theory is equivalent to a (classically massless) Yang-Mills theory:

$$
S_{C S}^{1}-S_{C S}^{2}+S_{m a s s}^{1,2} \sim S_{Y M}
$$

- By contrast, the NHM involves a pair of gauge fields having Chern-Simons terms with opposite signs, as well as an explicit mass term of a specific form (possibly arising via a Higgs mechanism). The theory is equivalent to a (classically massless) Yang-Mills theory:

$$
S_{C S}^{1}-S_{C S}^{2}+S_{m a s s}^{1,2} \sim S_{Y M}
$$

- Again, the mass transmutes into the coupling constant of the Yang-Mills theory. But there is no mass term or Chern-Simons term on the RHS.
- By contrast, the NHM involves a pair of gauge fields having Chern-Simons terms with opposite signs, as well as an explicit mass term of a specific form (possibly arising via a Higgs mechanism). The theory is equivalent to a (classically massless) Yang-Mills theory:

$$
S_{C S}^{1}-S_{C S}^{2}+S_{m a s s}^{1,2} \sim S_{Y M}
$$

- Again, the mass transmutes into the coupling constant of the Yang-Mills theory. But there is no mass term or Chern-Simons term on the RHS.
- We will now examine these equivalences in a little more detail.
- By contrast, the NHM involves a pair of gauge fields having Chern-Simons terms with opposite signs, as well as an explicit mass term of a specific form (possibly arising via a Higgs mechanism). The theory is equivalent to a (classically massless) Yang-Mills theory:

$$
S_{C S}^{1}-S_{C S}^{2}+S_{m a s s}^{1,2} \sim S_{Y M}
$$

- Again, the mass transmutes into the coupling constant of the Yang-Mills theory. But there is no mass term or Chern-Simons term on the RHS.
- We will now examine these equivalences in a little more detail.
- We will not require supersymmetry. Also, since we want to understand the spectrum of the theory, we work at the linearised level.
- The Lagrangian:

$$
\mathcal{L}_{1}=\frac{1}{2} d A \wedge{ }^{*} d A-\frac{1}{2} m A \wedge d A
$$

is the prototype (Abelian) topologically massive theory.

- The Lagrangian:

$$
\mathcal{L}_{1}=\frac{1}{2} d A \wedge^{*} d A-\frac{1}{2} m A \wedge d A
$$

is the prototype (Abelian) topologically massive theory.

- The equations of motion are:

$$
d^{*} d A=m d A
$$

- The Lagrangian:

$$
\mathcal{L}_{1}=\frac{1}{2} d A \wedge^{*} d A-\frac{1}{2} m A \wedge d A
$$

is the prototype (Abelian) topologically massive theory.

- The equations of motion are:

$$
d^{*} d A=m d A
$$

- This theory has a single on-shell degree of freedom that is massive and has spin +1 . If we change the sign of the mass term we instead get spin -1 .
- On the other hand, the Lagrangian:

$$
\mathcal{L}_{2}=\frac{1}{2} A \wedge d A+\frac{1}{2} m A \wedge^{*} A
$$

is said to be self-dual. The equations of motion are:

$$
{ }^{*} d A=m A
$$

which equates the gauge potential to the (dual) field strength.

- On the other hand, the Lagrangian:

$$
\mathcal{L}_{2}=\frac{1}{2} A \wedge d A+\frac{1}{2} m A \wedge^{*} A
$$

is said to be self-dual. The equations of motion are:

$$
{ }^{*} d A=m A
$$

which equates the gauge potential to the (dual) field strength.

- Comparing the two Lagrangians we see that \mathcal{L}_{1} is gauge-invariant while \mathcal{L}_{2} does not have a gauge symmetry.
- On the other hand, the Lagrangian:

$$
\mathcal{L}_{2}=\frac{1}{2} A \wedge d A+\frac{1}{2} m A \wedge^{*} A
$$

is said to be self-dual. The equations of motion are:

$$
{ }^{*} d A=m A
$$

which equates the gauge potential to the (dual) field strength.

- Comparing the two Lagrangians we see that \mathcal{L}_{1} is gauge-invariant while \mathcal{L}_{2} does not have a gauge symmetry.
- A related point is that \mathcal{L}_{1} has a smooth massless limit while \mathcal{L}_{2} becomes purely topological and thereby loses a degree of freedom as $m \rightarrow 0$.
- On the other hand, the Lagrangian:

$$
\mathcal{L}_{2}=\frac{1}{2} A \wedge d A+\frac{1}{2} m A \wedge^{*} A
$$

is said to be self-dual. The equations of motion are:

$$
{ }^{*} d A=m A
$$

which equates the gauge potential to the (dual) field strength.

- Comparing the two Lagrangians we see that \mathcal{L}_{1} is gauge-invariant while \mathcal{L}_{2} does not have a gauge symmetry.
- A related point is that \mathcal{L}_{1} has a smooth massless limit while \mathcal{L}_{2} becomes purely topological and thereby loses a degree of freedom as $m \rightarrow 0$.
- In \mathcal{L}_{2}, if the mass term comes from a Higgs field then of course the full theory has gauge invariance realised in the Higgs mode.
- The two Lagrangians \mathcal{L}_{1} and \mathcal{L}_{2} give equivalent theories. Classically, this is shown as follows. First,

$$
{ }^{*} d A=m A \quad \Longrightarrow \quad d^{*} d A=m d A
$$

$$
\text { so } \mathcal{L}_{2} \Longrightarrow \mathcal{L}_{1}
$$

- The two Lagrangians \mathcal{L}_{1} and \mathcal{L}_{2} give equivalent theories. Classically, this is shown as follows. First,

$$
{ }^{*} d A=m A \quad \Longrightarrow \quad d^{*} d A=m d A
$$

$$
\text { so } \mathcal{L}_{2} \Longrightarrow \mathcal{L}_{1}
$$

- For the converse,

$$
\begin{aligned}
d^{*} d A=m d A & \Longrightarrow d\left({ }^{*} d A-m A\right)=0 \\
& \Longrightarrow{ }^{*} d A-m A=d \lambda
\end{aligned}
$$

and a field re-definition

$$
A \rightarrow A-\frac{1}{m} d \lambda
$$

gives \mathcal{L}_{2}.

- Now let us compare the above phenomenon with the novel Higgs mechanism.
- Now let us compare the above phenomenon with the novel Higgs mechanism.
- For this we first work in the basis where the CS term is off-diagonal. Thus consider two gauge fields B, C with the Lagrangian:

$$
\mathcal{L}_{1}=k\left(2 B \wedge d C+m B \wedge^{*} B\right)
$$

- Now let us compare the above phenomenon with the novel Higgs mechanism.
- For this we first work in the basis where the CS term is off-diagonal. Thus consider two gauge fields B, C with the Lagrangian:

$$
\mathcal{L}_{1}=k\left(2 B \wedge d C+m B \wedge^{*} B\right)
$$

- Being algebraic, B can be integrated out, upon which the Lagrangian reduces to:

$$
\mathcal{L}_{2}=\frac{k}{m} d C \wedge{ }^{*} d C
$$

- Now let us compare the above phenomenon with the novel Higgs mechanism.
- For this we first work in the basis where the CS term is off-diagonal. Thus consider two gauge fields B, C with the Lagrangian:

$$
\mathcal{L}_{1}=k\left(2 B \wedge d C+m B \wedge^{*} B\right)
$$

- Being algebraic, B can be integrated out, upon which the Lagrangian reduces to:

$$
\mathcal{L}_{2}=\frac{k}{m} d C \wedge^{*} d C
$$

- While \mathcal{L}_{1} has the form of a generalised topologically massive theory, \mathcal{L}_{2} is instead a massless Maxwell Lagrangian.
- Whenever the explicit mass term arises from a Higgs mechanism, the single degree of freedom of a Higgs scalar gets traded for the single degree of freedom of a massless vector.
- Whenever the explicit mass term arises from a Higgs mechanism, the single degree of freedom of a Higgs scalar gets traded for the single degree of freedom of a massless vector.
- Now let us consider \mathcal{L}_{1} in the difference-Chern-Simons basis, by writing:

$$
\begin{aligned}
& A^{1}=C+B \\
& A^{2}=C-B
\end{aligned}
$$

after which it becomes:

$$
\mathcal{L}_{1}=k\left(\frac{1}{2} A^{1} \wedge d A^{1}-\frac{1}{2} A^{2} \wedge d A^{2}+\frac{1}{4} m\left(A^{1}-A^{2}\right) \wedge^{*}\left(A^{1}-A^{2}\right)\right)
$$

- Whenever the explicit mass term arises from a Higgs mechanism, the single degree of freedom of a Higgs scalar gets traded for the single degree of freedom of a massless vector.
- Now let us consider \mathcal{L}_{1} in the difference-Chern-Simons basis, by writing:

$$
\begin{aligned}
& A^{1}=C+B \\
& A^{2}=C-B
\end{aligned}
$$

after which it becomes:

$$
\mathcal{L}_{1}=k\left(\frac{1}{2} A^{1} \wedge d A^{1}-\frac{1}{2} A^{2} \wedge d A^{2}+\frac{1}{4} m\left(A^{1}-A^{2}\right) \wedge^{*}\left(A^{1}-A^{2}\right)\right)
$$

- In this basis there is a non-diagonal mass term:

$$
m_{I J} \sim\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

- We see that the NHM bears some resemblance to topological mass generation.
- We see that the NHM bears some resemblance to topological mass generation.
- More precisely it leads to topological mass non-generation...!
- We see that the NHM bears some resemblance to topological mass generation.
- More precisely it leads to topological mass non-generation...!
- The crucial new ingredients are to have more than one gauge field, a difference of two Chern-Simons actions, and a suitable non-diagonal mass term.

Outline

```
Introduction
Membrane field theories and the novel Higgs mechanism
Topological mass and NHM
```

Diagonalisability conditions
Two-field case
Multi-field case
Difference Chern-Simons and Hitchin equations
Conclusions

Diagonalisability conditions

- Now let us start to analyse the general conditions under which the novel Higgs mechanism (NHM) can occur.

Diagonalisability conditions

- Now let us start to analyse the general conditions under which the novel Higgs mechanism (NHM) can occur.
- A necessary (but not sufficient) condition for this comes from a conflict between the simultaneous diagonalisability of the kinetic and mass terms.

Diagonalisability conditions

- Now let us start to analyse the general conditions under which the novel Higgs mechanism (NHM) can occur.
- A necessary (but not sufficient) condition for this comes from a conflict between the simultaneous diagonalisability of the kinetic and mass terms.
- This phenomenon is peculiar to Chern-Simons gauge theories with a mass term and does not have an analogue in scalar or Maxwell-type vector theories.
- Consider a collection of vector fields $A^{I}, I=1,2, \cdots n$ described by the most general abelian Chern-Simons Lagrangian with a mass term:

$$
\mathcal{L}=\frac{1}{2} k_{I J} A^{(I)} \wedge d A^{(J)}+\frac{1}{2} m_{I J} A^{(I)} \wedge^{*} A^{(J)}
$$

- Consider a collection of vector fields $A^{I}, I=1,2, \cdots n$ described by the most general abelian Chern-Simons Lagrangian with a mass term:

$$
\mathcal{L}=\frac{1}{2} k_{I J} A^{(I)} \wedge d A^{(J)}+\frac{1}{2} m_{I J} A^{(I)} \wedge^{*} A^{(J)}
$$

- Both $k_{I J}$ and $m_{I J}$ are constant real symmetric matrices.
- Consider a collection of vector fields $A^{I}, I=1,2, \cdots n$ described by the most general abelian Chern-Simons Lagrangian with a mass term:

$$
\mathcal{L}=\frac{1}{2} k_{I J} A^{(I)} \wedge d A^{(J)}+\frac{1}{2} m_{I J} A^{(I)} \wedge^{*} A^{(J)}
$$

- Both $k_{I J}$ and $m_{I J}$ are constant real symmetric matrices.
- $k_{I J}$ is taken to be non-degenerate, while $m_{I J}$ is allowed to have zero eigenvalues.
- Consider a collection of vector fields $A^{I}, I=1,2, \cdots n$ described by the most general abelian Chern-Simons Lagrangian with a mass term:

$$
\mathcal{L}=\frac{1}{2} k_{I J} A^{(I)} \wedge d A^{(J)}+\frac{1}{2} m_{I J} A^{(I)} \wedge^{*} A^{(J)}
$$

- Both $k_{I J}$ and $m_{I J}$ are constant real symmetric matrices.
- $k_{I J}$ is taken to be non-degenerate, while $m_{I J}$ is allowed to have zero eigenvalues.
- Let us now try to bring this action into standard form.
- For comparison, we first consider a generic free scalar field theory with Lagrangian:

$$
-\frac{1}{2} g_{I J} \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{J}-\frac{1}{2}\left(m^{2}\right)_{I J} \phi^{I} \phi^{J}
$$

where $\phi^{i}, I=1,2, \cdots, n$ are real scalar fields.

- For comparison, we first consider a generic free scalar field theory with Lagrangian:

$$
-\frac{1}{2} g_{I J} \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{J}-\frac{1}{2}\left(m^{2}\right)_{I J} \phi^{I} \phi^{J}
$$

where $\phi^{i}, I=1,2, \cdots, n$ are real scalar fields.

- Here $g_{I J}$ and $\left(m^{2}\right)_{I J}$ are constant real symmetric matrices, and $g_{I J}$ is positive-definite (otherwise the theory has ghosts).
- For comparison, we first consider a generic free scalar field theory with Lagrangian:

$$
-\frac{1}{2} g_{I J} \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{J}-\frac{1}{2}\left(m^{2}\right)_{I J} \phi^{I} \phi^{J}
$$

where $\phi^{i}, I=1,2, \cdots, n$ are real scalar fields.

- Here $g_{I J}$ and $\left(m^{2}\right)_{I J}$ are constant real symmetric matrices, and $g_{I J}$ is positive-definite (otherwise the theory has ghosts).
- To bring the Lagrangian into its standard form, first perform an orthogonal transformation on ϕ^{I} to diagonalise $g_{I J}$, which then takes the form $\operatorname{diag}\left(g_{1}, g_{2}, \cdots, g_{n}\right)$ with $g_{I}>0$ for all I.
- For comparison, we first consider a generic free scalar field theory with Lagrangian:

$$
-\frac{1}{2} g_{I J} \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{J}-\frac{1}{2}\left(m^{2}\right)_{I J} \phi^{I} \phi^{J}
$$

where $\phi^{i}, I=1,2, \cdots, n$ are real scalar fields.

- Here $g_{I J}$ and $\left(m^{2}\right)_{I J}$ are constant real symmetric matrices, and $g_{I J}$ is positive-definite (otherwise the theory has ghosts).
- To bring the Lagrangian into its standard form, first perform an orthogonal transformation on ϕ^{I} to diagonalise $g_{I J}$, which then takes the form $\operatorname{diag}\left(g_{1}, g_{2}, \cdots, g_{n}\right)$ with $g_{I}>0$ for all I.
- Next one re-scales the fields:

$$
\phi^{I} \rightarrow \frac{\phi^{I}}{\sqrt{g_{I}}}
$$

so that the kinetic form has the identity metric $\delta_{I J}$.

- Finally one performs another orthogonal transformation on ϕ^{I} that diagonalises m^{2} while preserving the kinetic term, ending up with:

$$
-\frac{1}{2} \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{I}-\frac{1}{2} m_{I}^{2} \phi^{I} \phi^{I}
$$

with some m_{I} possibly equal to 0 .

- Finally one performs another orthogonal transformation on ϕ^{I} that diagonalises m^{2} while preserving the kinetic term, ending up with:

$$
-\frac{1}{2} \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{I}-\frac{1}{2} m_{I}^{2} \phi^{I} \phi^{I}
$$

with some m_{I} possibly equal to 0 .

- Thus the theory has been reduced to a collection of independent fields, some massive and others massless (some of the masses can be tachyonic as long as the full potential is bounded below).
- If we try to apply the analogous procedure to a general Chern-Simons-mass theory, we find a rather different result.
- If we try to apply the analogous procedure to a general Chern-Simons-mass theory, we find a rather different result.
- Upon diagonalising $k_{I J}$, it turns into $\operatorname{diag}\left(k_{1}, k_{2}, \cdots, k_{n}\right)$ but the eigenvalues k_{i} are not required to be positive. The theory with negative eigenvalues, or both signs of eigenvalues, is perfectly consistent.
- If we try to apply the analogous procedure to a general Chern-Simons-mass theory, we find a rather different result.
- Upon diagonalising $k_{I J}$, it turns into $\operatorname{diag}\left(k_{1}, k_{2}, \cdots, k_{n}\right)$ but the eigenvalues k_{i} are not required to be positive. The theory with negative eigenvalues, or both signs of eigenvalues, is perfectly consistent.
- In fact, as we just saw, M2-brane field theories have levels of both signs, which ensures that parity is conserved (similar actions arise for the Chern-Simons formulation of 3d gravity).
- If we try to apply the analogous procedure to a general Chern-Simons-mass theory, we find a rather different result.
- Upon diagonalising $k_{I J}$, it turns into $\operatorname{diag}\left(k_{1}, k_{2}, \cdots, k_{n}\right)$ but the eigenvalues k_{i} are not required to be positive. The theory with negative eigenvalues, or both signs of eigenvalues, is perfectly consistent.
- In fact, as we just saw, M2-brane field theories have levels of both signs, which ensures that parity is conserved (similar actions arise for the Chern-Simons formulation of 3d gravity).
- To be completely general we therefore assume $k_{I J}$ has p negative and q positive eigenvalues with $p+q=n$.
- Since the A^{I} are real, the best we can do after diagonalising $k_{I J}$ is to re-scale:

$$
A^{I} \rightarrow \frac{A^{I}}{\sqrt{\left|k_{I}\right|}}
$$

- Since the A^{I} are real, the best we can do after diagonalising $k_{I J}$ is to re-scale:

$$
A^{I} \rightarrow \frac{A^{I}}{\sqrt{\left|k_{I}\right|}}
$$

- Then the action reduces to:

$$
\mathcal{L}=\frac{1}{2} \eta_{I J} A^{(I)} \wedge d A^{(J)}+\frac{1}{2} m_{I J} A^{(I)} \wedge^{*} A^{(J)}
$$

where $\eta_{I J}$ is the Lorentzian metric preserved by $O(p, q)$.

- Since the A^{I} are real, the best we can do after diagonalising $k_{I J}$ is to re-scale:

$$
A^{I} \rightarrow \frac{A^{I}}{\sqrt{\left|k_{I}\right|}}
$$

- Then the action reduces to:

$$
\mathcal{L}=\frac{1}{2} \eta_{I J} A^{(I)} \wedge d A^{(J)}+\frac{1}{2} m_{I J} A^{(I)} \wedge^{*} A^{(J)}
$$

where $\eta_{I J}$ is the Lorentzian metric preserved by $O(p, q)$.

- Hence the linear transformations $A^{I} \rightarrow \Lambda_{I J} A^{J}$ which preserve the kinetic term are given by matrices $\Lambda_{I J}$ satisfying:

$$
\Lambda^{T} \eta \Lambda=\eta
$$

namely the $O(p, q)$ Lorentz transformations.

- The mass matrix can therefore be transformed only as:

$$
m \rightarrow \Lambda^{T} m \Lambda, \quad \Lambda \in O(p, q)
$$

- The mass matrix can therefore be transformed only as:

$$
m \rightarrow \Lambda^{T} m \Lambda, \quad \Lambda \in O(p, q)
$$

- In general this is not sufficient to diagonalise m, and this is why the novel Higgs mechanism is able to arise.
- The mass matrix can therefore be transformed only as:

$$
m \rightarrow \Lambda^{T} m \Lambda, \quad \Lambda \in O(p, q)
$$

- In general this is not sufficient to diagonalise m, and this is why the novel Higgs mechanism is able to arise.
- Therefore in the basis where $k_{I J}$ is diagonal, we start by seeking the conditions on $m_{I J}$ such that it can be diagonalised by a Lorentz transformation.
- The mass matrix can therefore be transformed only as:

$$
m \rightarrow \Lambda^{T} m \Lambda, \quad \Lambda \in O(p, q)
$$

- In general this is not sufficient to diagonalise m, and this is why the novel Higgs mechanism is able to arise.
- Therefore in the basis where $k_{I J}$ is diagonal, we start by seeking the conditions on $m_{I J}$ such that it can be diagonalised by a Lorentz transformation.
- Whenever this is possible, the theory will reduce to a collection of decoupled Chern-Simons actions with definite masses, and there will be no novel Higgs mechanism.
- The transformation law of the matrix $m_{I J}$ is that of a second-rank symmetric tensor under Lorentz transformations.
- The transformation law of the matrix $m_{I J}$ is that of a second-rank symmetric tensor under Lorentz transformations.
- Therefore this is analogous to the question of whether the stress-energy tensor $T_{\mu \nu}$ of a field theory can be diagonalised by Lorentz transformations in a $(p+q)$-dimensional space of signature (p, q).
- The transformation law of the matrix $m_{I J}$ is that of a second-rank symmetric tensor under Lorentz transformations.
- Therefore this is analogous to the question of whether the stress-energy tensor $T_{\mu \nu}$ of a field theory can be diagonalised by Lorentz transformations in a $(p+q)$-dimensional space of signature (p, q).
- This has been analysed in the GR literature. The possibilities are categorised as algebraically general and algebraically special, with the latter having sub-cases.
- The transformation law of the matrix $m_{I J}$ is that of a second-rank symmetric tensor under Lorentz transformations.
- Therefore this is analogous to the question of whether the stress-energy tensor $T_{\mu \nu}$ of a field theory can be diagonalised by Lorentz transformations in a $(p+q)$-dimensional space of signature (p, q).
- This has been analysed in the GR literature. The possibilities are categorised as algebraically general and algebraically special, with the latter having sub-cases.
- As a necessary condition, we will see that only the algebraically special cases can have an NHM.

Outline

```
Introduction
Membrane field theories and the novel Higgs mechanism
Topological mass and NHM
Diagonalisability conditions
```

Two-field case
Multi-field case
Difference Chern-Simons and Hitchin equations
Conclusions

Two-field case: Solution of diagonalisability conditions

- Let us look at a simple example first in which we take $p=q=1$.

Two-field case: Solution of diagonalisability conditions

- Let us look at a simple example first in which we take $p=q=1$.
- Recall that we are working in a basis where the kinetic term has been diagonalised and scaled, so $k_{I J}=(-1,1)$.

Two-field case: Solution of diagonalisability conditions

- Let us look at a simple example first in which we take $p=q=1$.
- Recall that we are working in a basis where the kinetic term has been diagonalised and scaled, so $k_{I J}=(-1,1)$.
- In this simple example one can explicitly find the diagonalisability conditions.

Two-field case: Solution of diagonalisability conditions

- Let us look at a simple example first in which we take $p=q=1$.
- Recall that we are working in a basis where the kinetic term has been diagonalised and scaled, so $k_{I J}=(-1,1)$.
- In this simple example one can explicitly find the diagonalisability conditions.
- We simply ask what is the most general 2×2 matrix that can be obtained from a diagonal matrix by a Lorentz boost.
- In terms of components:

$$
m_{I J}=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

these conditions turn out to be:

$$
2|b|<|a+c|
$$

- In terms of components:

$$
m_{I J}=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

these conditions turn out to be:

$$
2|b|<|a+c|
$$

- Theories that exhibit the novel Higgs mechanism must therefore fail to satisfy this inequality. As a check we notice that the mass matrix we originally displayed in an example,

$$
m_{I J} \sim\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

just barely fails to satisfy the above inequality.

- The above condition can be reformulated in terms of eigenvalues of the (non-symmetric) matrix

$$
(\eta m)^{I}{ }_{J}=\eta^{I K} m_{K J}=\left(\begin{array}{ll}
-a & b \\
-b & c
\end{array}\right)
$$

- The above condition can be reformulated in terms of eigenvalues of the (non-symmetric) matrix

$$
(\eta m)^{I}{ }_{J}=\eta^{I K} m_{K J}=\left(\begin{array}{ll}
-a & b \\
-b & c
\end{array}\right)
$$

- Since this has one upper and one lower index, it can be thought of as a linear transformation and one can ask for its eigenvectors and eigenvalues.
- The above condition can be reformulated in terms of eigenvalues of the (non-symmetric) matrix

$$
(\eta m)^{I}{ }_{J}=\eta^{I K} m_{K J}=\left(\begin{array}{ll}
-a & b \\
-b & c
\end{array}\right)
$$

- Since this has one upper and one lower index, it can be thought of as a linear transformation and one can ask for its eigenvectors and eigenvalues.
- The analogue of this question for $T_{\mu \nu}$ in general relativity is well-studied in $(3+1)$ d and the possible cases classified (see for example the book of [Stephani et all]).
- The above condition can be reformulated in terms of eigenvalues of the (non-symmetric) matrix

$$
(\eta m)^{I}{ }_{J}=\eta^{I K} m_{K J}=\left(\begin{array}{ll}
-a & b \\
-b & c
\end{array}\right)
$$

- Since this has one upper and one lower index, it can be thought of as a linear transformation and one can ask for its eigenvectors and eigenvalues.
- The analogue of this question for $T_{\mu \nu}$ in general relativity is well-studied in $(3+1)$ d and the possible cases classified (see for example the book of [Stephani et all]).
- We can adapt this classification to $(1+1)$ d.
- In $1+1$ dimensions there are precisely three possibilities:
(i) Eigenvalues Two distinct, real
(ii) Two coincident
(iii) Complex-conjugate pair

Eigenvectors
Two distinct, real (one space-like, one time-like) One
Complex-conjugate pair

- In $1+1$ dimensions there are precisely three possibilities:
(i) Eigenvalues
(ii) Two coincident
Eigenvectors
Two distinct, real (one space-like, one time-like)
(iii) Complex-conjugate pair Complex-conjugate pair
- The last two cases are termed algebraically special.
- In $1+1$ dimensions there are precisely three possibilities:

Eigenvalues
(i) Two distinct, real
(ii) Two coincident
(iii) Complex-conjugate pair

Eigenvectors

 Two distinct, real (one space-like, one time-like) OneComplex-conjugate pair

- The last two cases are termed algebraically special.
- Case (i) allows us to make an $S O(1,1)$ matrix:

$$
\Lambda=\left(\begin{array}{ll}
v_{t} & v_{s}
\end{array}\right)
$$

where v_{t}, v_{s} are the orthonormalised eigenvectors, the first one time-like and the second space-like. Clearly Λ diagonalises ηm by a similarity transformation:

$$
\Lambda^{-1} \eta m \Lambda=\eta m_{\mathrm{diag}}
$$

where we have labelled the diagonal matrix as $\eta m_{\text {diag }}$.

- Noting that $\Lambda^{-1}=\eta \Lambda^{T} \eta$, we see that:

$$
\Lambda^{T} m \Lambda=m_{\mathrm{diag}}
$$

as desired. Thus the algebraically general case does not admit an NHM.

- Noting that $\Lambda^{-1}=\eta \Lambda^{T} \eta$, we see that:

$$
\Lambda^{T} m \Lambda=m_{\mathrm{diag}}
$$

as desired. Thus the algebraically general case does not admit an NHM.

- The algebraically special cases do not permit diagonalisation of ηm. In these cases the novel Higgs mechanism may in principle occur, though more analysis is needed to see if it actually occurs.
- Noting that $\Lambda^{-1}=\eta \Lambda^{T} \eta$, we see that:

$$
\Lambda^{T} m \Lambda=m_{\mathrm{diag}}
$$

as desired. Thus the algebraically general case does not admit an NHM.

- The algebraically special cases do not permit diagonalisation of $\eta \mathrm{m}$. In these cases the novel Higgs mechanism may in principle occur, though more analysis is needed to see if it actually occurs.
- As a confirmation of this picture, one can check explicitly that the above three cases correspond to:
(i) $2|b|<|a+c|$
(ii) $2|b|=|a+c|$
(iii) $2|b|>|a+c|$
- Noting that $\Lambda^{-1}=\eta \Lambda^{T} \eta$, we see that:

$$
\Lambda^{T} m \Lambda=m_{\mathrm{diag}}
$$

as desired. Thus the algebraically general case does not admit an NHM.

- The algebraically special cases do not permit diagonalisation of $\eta \mathrm{m}$. In these cases the novel Higgs mechanism may in principle occur, though more analysis is needed to see if it actually occurs.
- As a confirmation of this picture, one can check explicitly that the above three cases correspond to:

$$
\begin{aligned}
\text { (i) } 2|b| & <|a+c| \\
\text { (ii) } 2|b| & =|a+c| \\
\text { (iii) } 2|b| & >|a+c|
\end{aligned}
$$

- As we have already seen by direct computation, only the first case admits diagonalisation of $m_{I J}$ by a Lorentz transformation.

Two-field case: Sufficient conditions for NHM

- To find sufficient conditions for the NHM in the two-field case, we must examine cases (ii) and (iii) above.

Two-field case: Sufficient conditions for NHM

- To find sufficient conditions for the NHM in the two-field case, we must examine cases (ii) and (iii) above.
- It turns out the basis in which $k_{I J}$ is diagonal is not the most convenient. Instead, the useful basis is the one in which $k_{I J}$ is purely off-diagonal.

Two-field case: Sufficient conditions for NHM

- To find sufficient conditions for the NHM in the two-field case, we must examine cases (ii) and (iii) above.
- It turns out the basis in which $k_{I J}$ is diagonal is not the most convenient. Instead, the useful basis is the one in which $k_{I J}$ is purely off-diagonal.
- This is just the light-cone basis, in which the Lorentzian space is taken to be spanned by two independent null vectors and the metric on field space therefore takes the form:

$$
k_{I J}=k\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- Suppose that in this basis the mass matrix is given by:

$$
m=\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right)
$$

- Suppose that in this basis the mass matrix is given by:

$$
m=\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right)
$$

- The Lagrangian is then:

$$
\mathcal{L}=k A^{1} \wedge d A^{2}+\frac{1}{2} \alpha A^{1} \wedge^{*} A^{1}+\beta A^{1} \wedge^{*} A^{2}+\frac{1}{2} \gamma A^{2} \wedge^{*} A^{2}
$$

- Suppose that in this basis the mass matrix is given by:

$$
m=\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right)
$$

- The Lagrangian is then:

$$
\mathcal{L}=k A^{1} \wedge d A^{2}+\frac{1}{2} \alpha A^{1} \wedge^{*} A^{1}+\beta A^{1} \wedge^{*} A^{2}+\frac{1}{2} \gamma A^{2} \wedge^{*} A^{2}
$$

- The equations of motion are:

$$
\begin{aligned}
k d A^{2}+\alpha^{*} A^{1}+\beta^{*} A^{2} & =0 \\
k d A^{1}+\beta^{*} A^{1}+\gamma^{*} A^{2} & =0
\end{aligned}
$$

- Suppose that in this basis the mass matrix is given by:

$$
m=\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right)
$$

- The Lagrangian is then:

$$
\mathcal{L}=k A^{1} \wedge d A^{2}+\frac{1}{2} \alpha A^{1} \wedge^{*} A^{1}+\beta A^{1} \wedge^{*} A^{2}+\frac{1}{2} \gamma A^{2} \wedge^{*} A^{2}
$$

- The equations of motion are:

$$
\begin{aligned}
k d A^{2}+\alpha^{*} A^{1}+\beta^{*} A^{2} & =0 \\
k d A^{1}+\beta^{*} A^{1}+\gamma^{*} A^{2} & =0
\end{aligned}
$$

- If $\alpha \neq 0$ then the first equation can be solved for A^{1}. Inserting the solution back into the action, we find:

$$
\mathcal{L}=\frac{k^{2}}{2 \alpha} d A^{2} \wedge^{*} d A^{2}-\frac{\beta k}{\alpha} A^{2} \wedge d A^{2}+\frac{1}{2}\left(\gamma-\frac{\beta^{2}}{\alpha}\right) A^{2} \wedge^{*} A^{2}
$$

- Suppose that in this basis the mass matrix is given by:

$$
m=\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right)
$$

- The Lagrangian is then:

$$
\mathcal{L}=k A^{1} \wedge d A^{2}+\frac{1}{2} \alpha A^{1} \wedge^{*} A^{1}+\beta A^{1} \wedge^{*} A^{2}+\frac{1}{2} \gamma A^{2} \wedge^{*} A^{2}
$$

- The equations of motion are:

$$
\begin{aligned}
k d A^{2}+\alpha^{*} A^{1}+\beta^{*} A^{2} & =0 \\
k d A^{1}+\beta^{*} A^{1}+\gamma^{*} A^{2} & =0
\end{aligned}
$$

- If $\alpha \neq 0$ then the first equation can be solved for A^{1}. Inserting the solution back into the action, we find:

$$
\mathcal{L}=\frac{k^{2}}{2 \alpha} d A^{2} \wedge^{*} d A^{2}-\frac{\beta k}{\alpha} A^{2} \wedge d A^{2}+\frac{1}{2}\left(\gamma-\frac{\beta^{2}}{\alpha}\right) A^{2} \wedge^{*} A^{2}
$$

- The resulting theory has a massless propagating gauge field if and only if $\beta=\gamma=0$.
- To arrive at this action we assumed that $\alpha \neq 0$, but of course we could instead assume $\gamma \neq 0$ and eliminate A^{2} in the same manner.
- To arrive at this action we assumed that $\alpha \neq 0$, but of course we could instead assume $\gamma \neq 0$ and eliminate A^{2} in the same manner.
- Thus the final condition for the novel Higgs mechanism in the two-field case is that one of α, γ be nonzero and the other one, along with β, vanish.

Outline

```
Introduction
Membrane field theories and the novel Higgs mechanism
Topological mass and NHM
Diagonalisability conditions
Two-field case
```

Multi-field case
Difference Chern-Simons and Hitchin equations
Conclusions

Multi-field case: Diagonalisability conditions

- The general diagonalisability condition can be stated very explicitly following a mathematical result due to [Waterhouse]:

Multi-field case: Diagonalisability conditions

- The general diagonalisability condition can be stated very explicitly following a mathematical result due to [Waterhouse]: Theorem: Two real quadratic forms $A_{i j}$ and $B_{i j}$ can be simultaneously diagonalised by a change of basis if and only if they have no common zeros along the diagonal in any basis.

Multi-field case: Diagonalisability conditions

- The general diagonalisability condition can be stated very explicitly following a mathematical result due to [Waterhouse]: Theorem: Two real quadratic forms $A_{i j}$ and $B_{i j}$ can be simultaneously diagonalised by a change of basis if and only if they have no common zeros along the diagonal in any basis.
- For us the two matrices are $\eta_{I J}$ and $m_{I J}$. The above theorem suggests choosing a maximally off-diagonal basis for the former. If we have p timelike and q spacelike directions with $p<q$ (the analysis is similar for $p \geq q$) we can bring η to the form:

$$
\eta_{I J}=\left(\begin{array}{ccc}
0 & \mathbb{I}_{p} & 0 \\
\mathbb{I}_{p} & 0 & 0 \\
0 & 0 & \mathbb{I}_{q-p}
\end{array}\right)
$$

- Applying the theorem quoted above, $m_{I J}$ will be diagonalisable in this basis if it does not have any zeroes on the diagonal.
- Applying the theorem quoted above, $m_{I J}$ will be diagonalisable in this basis if it does not have any zeroes on the diagonal.
- Therefore a necessary (but not sufficient) condition for the NHM is that $m_{I J}$ in this basis has at least one zero along the diagonal.

Multi-field case: Sufficient conditions for NHM

- Sufficient conditions can be found by following the same procedure as in the two-field case. For simplicity let us take $p=q$.

Multi-field case: Sufficient conditions for NHM

- Sufficient conditions can be found by following the same procedure as in the two-field case. For simplicity let us take $p=q$.
- In the basis for $\eta_{I J}$ above, we divide the $A^{(I)}, I=1,2, \cdots, 2 p$ into two sets:

$$
\begin{aligned}
A^{i} & =B^{i}, i=1,2, \cdots, p \\
A^{p+i} & =C^{i}, i=1,2, \cdots, p
\end{aligned}
$$

Multi-field case: Sufficient conditions for NHM

- Sufficient conditions can be found by following the same procedure as in the two-field case. For simplicity let us take $p=q$.
- In the basis for $\eta_{I J}$ above, we divide the $A^{(I)}, I=1,2, \cdots, 2 p$ into two sets:

$$
\begin{aligned}
A^{i} & =B^{i}, i=1,2, \cdots, p \\
A^{p+i} & =C^{i}, i=1,2, \cdots, p
\end{aligned}
$$

- Then the free Lagrangian takes the form:

$$
\mathcal{L}=B^{i} \wedge d C_{i}+\frac{1}{2} \alpha_{i j} B^{i} \wedge^{*} B^{j}+\beta_{i j} B^{i} \wedge^{*} C^{j}+\frac{1}{2} \gamma_{i j} C^{i} \wedge^{*} C^{j}
$$

Multi-field case: Sufficient conditions for NHM

- Sufficient conditions can be found by following the same procedure as in the two-field case. For simplicity let us take $p=q$.
- In the basis for $\eta_{I J}$ above, we divide the $A^{(I)}, I=1,2, \cdots, 2 p$ into two sets:

$$
\begin{aligned}
A^{i} & =B^{i}, i=1,2, \cdots, p \\
A^{p+i} & =C^{i}, i=1,2, \cdots, p
\end{aligned}
$$

- Then the free Lagrangian takes the form:

$$
\mathcal{L}=B^{i} \wedge d C_{i}+\frac{1}{2} \alpha_{i j} B^{i} \wedge^{*} B^{j}+\beta_{i j} B^{i} \wedge^{*} C^{j}+\frac{1}{2} \gamma_{i j} C^{i} \wedge^{*} C^{j}
$$

- The corresponding equations of motion are:

$$
\begin{aligned}
d C_{i}+\alpha_{i j}{ }^{*} B^{j}+\beta_{i j}{ }^{*} C^{j} & =0 \\
d B_{i}+\beta_{i j}{ }^{*} B^{j}+\gamma_{i j}{ }^{*} C^{j} & =0
\end{aligned}
$$

- Now suppose the matrix $\alpha_{i j}$ is invertible. In that case we can solve the first equation for B^{i} and insert this back into the original Lagrangian to get:

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2} \alpha_{i j}^{-1} d C^{i} \wedge{ }^{*} d C^{j}-\left(\alpha^{-1} \beta\right)_{i j} C^{i} \wedge d C^{j} \\
& +\frac{1}{2}\left(\gamma-\beta \alpha^{-1} \beta\right)_{i j} C^{i} \wedge^{*} C^{j}
\end{aligned}
$$

- Now suppose the matrix $\alpha_{i j}$ is invertible. In that case we can solve the first equation for B^{i} and insert this back into the original Lagrangian to get:

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2} \alpha_{i j}^{-1} d C^{i} \wedge{ }^{*} d C^{j}-\left(\alpha^{-1} \beta\right)_{i j} C^{i} \wedge d C^{j} \\
& +\frac{1}{2}\left(\gamma-\beta \alpha^{-1} \beta\right)_{i j} C^{i} \wedge^{*} C^{j}
\end{aligned}
$$

- The Chern-Simons term vanishes for every zero eigenvector of β. Moreover if such an eigenvector is a simultaneous zero eigenvector of γ then the mass term also vanishes.
- Now suppose the matrix $\alpha_{i j}$ is invertible. In that case we can solve the first equation for B^{i} and insert this back into the original Lagrangian to get:

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2} \alpha_{i j}^{-1} d C^{i} \wedge{ }^{*} d C^{j}-\left(\alpha^{-1} \beta\right)_{i j} C^{i} \wedge d C^{j} \\
& +\frac{1}{2}\left(\gamma-\beta \alpha^{-1} \beta\right)_{i j} C^{i} \wedge^{*} C^{j}
\end{aligned}
$$

- The Chern-Simons term vanishes for every zero eigenvector of β. Moreover if such an eigenvector is a simultaneous zero eigenvector of γ then the mass term also vanishes.
- We conclude that there is one massless propagating vector field for every simultaneous zero eigenvector of the matrices $\beta_{i j}$ and $\gamma_{i j}$, under the condition that $\alpha_{i j}$ is invertible.
- Now suppose the matrix $\alpha_{i j}$ is invertible. In that case we can solve the first equation for B^{i} and insert this back into the original Lagrangian to get:

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2} \alpha_{i j}^{-1} d C^{i} \wedge{ }^{*} d C^{j}-\left(\alpha^{-1} \beta\right)_{i j} C^{i} \wedge d C^{j} \\
& +\frac{1}{2}\left(\gamma-\beta \alpha^{-1} \beta\right)_{i j} C^{i} \wedge^{*} C^{j}
\end{aligned}
$$

- The Chern-Simons term vanishes for every zero eigenvector of β. Moreover if such an eigenvector is a simultaneous zero eigenvector of γ then the mass term also vanishes.
- We conclude that there is one massless propagating vector field for every simultaneous zero eigenvector of the matrices $\beta_{i j}$ and $\gamma_{i j}$, under the condition that $\alpha_{i j}$ is invertible.
- As in the two-field case, the roles of $\alpha_{i j}$ and $\gamma_{i j}$ can be interchanged.

Outline

Introduction
Membrane field theories and the novel Higgs mechanism
Topological mass and NHM
Diagonalisability conditions
Two-field case
Multi-field case
Difference Chern-Simons and Hitchin equations
Conclusions

Difference Chern-Simons and Hitchin equations

- We now return to the equations of motion of the non-Abelian difference-Chern-Simons theory. (So in the following, all fields will be matrices.)

Difference Chern-Simons and Hitchin equations

- We now return to the equations of motion of the non-Abelian difference-Chern-Simons theory. (So in the following, all fields will be matrices.)
- Our analysis of the NHM relied on an approximate solution of these equations as a series in inverse powers of the Higgs vev, but it would be nicer to find solutions to the full nonlinear equations.

Difference Chern-Simons and Hitchin equations

- We now return to the equations of motion of the non-Abelian difference-Chern-Simons theory. (So in the following, all fields will be matrices.)
- Our analysis of the NHM relied on an approximate solution of these equations as a series in inverse powers of the Higgs vev, but it would be nicer to find solutions to the full nonlinear equations.
- In this connection, a curious mathematical observation ([in collaboration with David Tong]) is that before turning on a Higgs vev, the equations can be recast in a suitable gauge as the famous Hitchin equations.

Difference Chern-Simons and Hitchin equations

- We now return to the equations of motion of the non-Abelian difference-Chern-Simons theory. (So in the following, all fields will be matrices.)
- Our analysis of the NHM relied on an approximate solution of these equations as a series in inverse powers of the Higgs vev, but it would be nicer to find solutions to the full nonlinear equations.
- In this connection, a curious mathematical observation ([in collaboration with David Tong]) is that before turning on a Higgs vev, the equations can be recast in a suitable gauge as the famous Hitchin equations.
- Therefore the equations one gets after giving a Higgs vev might perhaps be thought of as some deformation of the Hitchin system.
- We start with the usual difference action:

$$
\begin{aligned}
& L_{d i f f-C S} \sim \operatorname{tr}\left(A^{1} \wedge d A^{1}+\frac{2}{3} A^{1} \wedge A^{1} \wedge A^{1}\right. \\
& \left.-A^{2} \wedge d A^{2}-\frac{2}{3} A^{2} \wedge A^{2} \wedge A^{2}\right)
\end{aligned}
$$

with the infinitesimal gauge symmetries:

$$
\delta A^{1}=d \Lambda_{1}+\left[A^{1}, \Lambda_{1}\right], \quad \delta A^{2}=d \Lambda_{2}+\left[A^{2}, \Lambda_{2}\right]
$$

- We start with the usual difference action:

$$
\begin{aligned}
L_{d i f f-C S} \sim \operatorname{tr}\left(A^{1} \wedge d A^{1}\right. & +\frac{2}{3} A^{1} \wedge A^{1} \wedge A^{1} \\
& \left.-A^{2} \wedge d A^{2}-\frac{2}{3} A^{2} \wedge A^{2} \wedge A^{2}\right)
\end{aligned}
$$

with the infinitesimal gauge symmetries:

$$
\delta A^{1}=d \Lambda_{1}+\left[A^{1}, \Lambda_{1}\right], \quad \delta A^{2}=d \Lambda_{2}+\left[A^{2}, \Lambda_{2}\right]
$$

- Upon changing variables:

$$
B=\frac{1}{2}\left(A^{1}-A^{2}\right), \quad C=\frac{1}{2}\left(A^{1}+A^{2}\right)
$$

we have seen that the action becomes:

$$
\sim \operatorname{tr}\left(B \wedge F(C)+\frac{1}{3} B \wedge B \wedge B\right)
$$

where:

$$
F(C)=d C+C \wedge C
$$

- We start with the usual difference action:

$$
\begin{aligned}
L_{d i f f-C S} \sim \operatorname{tr}\left(A^{1} \wedge d A^{1}\right. & +\frac{2}{3} A^{1} \wedge A^{1} \wedge A^{1} \\
& \left.-A^{2} \wedge d A^{2}-\frac{2}{3} A^{2} \wedge A^{2} \wedge A^{2}\right)
\end{aligned}
$$

with the infinitesimal gauge symmetries:

$$
\delta A^{1}=d \Lambda_{1}+\left[A^{1}, \Lambda_{1}\right], \quad \delta A^{2}=d \Lambda_{2}+\left[A^{2}, \Lambda_{2}\right]
$$

- Upon changing variables:

$$
B=\frac{1}{2}\left(A^{1}-A^{2}\right), \quad C=\frac{1}{2}\left(A^{1}+A^{2}\right)
$$

we have seen that the action becomes:

$$
\sim \operatorname{tr}\left(B \wedge F(C)+\frac{1}{3} B \wedge B \wedge B\right)
$$

where:

$$
F(C)=d C+C \wedge C
$$

- In these variables, the gauge transformations are:

$$
\begin{aligned}
\delta B & =d \Lambda_{B}+\left[C, \Lambda_{B}\right]+\left[B, \Lambda_{C}\right] \\
\delta C & =d \Lambda_{C}+\left[C, \Lambda_{C}\right]+\left[B, \Lambda_{B}\right]
\end{aligned}
$$

- The equations of motion for this theory are:

$$
\begin{aligned}
F(C)+B \wedge B & =0 \\
D^{C} B \equiv d B+[C, B] & =0
\end{aligned}
$$

- The equations of motion for this theory are:

$$
\begin{aligned}
F(C)+B \wedge B & =0 \\
D^{C} B \equiv d B+[C, B] & =0
\end{aligned}
$$

- In components, the first equation gives us the three equations:

$$
\begin{aligned}
& F(C)_{12}+\left[B_{1}, B_{2}\right]=0 \\
& F(C)_{20}+\left[B_{2}, B_{0}\right]=0 \\
& F(C)_{01}+\left[B_{0}, B_{1}\right]=0
\end{aligned}
$$

- The equations of motion for this theory are:

$$
\begin{aligned}
F(C)+B \wedge B & =0 \\
D^{C} B \equiv d B+[C, B] & =0
\end{aligned}
$$

- In components, the first equation gives us the three equations:

$$
\begin{aligned}
& F(C)_{12}+\left[B_{1}, B_{2}\right]=0 \\
& F(C)_{20}+\left[B_{2}, B_{0}\right]=0 \\
& F(C)_{01}+\left[B_{0}, B_{1}\right]=0
\end{aligned}
$$

- We now fix the B gauge transformations by choosing

$$
B_{0}=0 \quad \text { and } \quad D^{C} \cdot B \equiv \partial_{i} B_{i}+\left[C_{i}, B_{i}\right]=0
$$

- The equations of motion for this theory are:

$$
\begin{aligned}
F(C)+B \wedge B & =0 \\
D^{C} B \equiv d B+[C, B] & =0
\end{aligned}
$$

- In components, the first equation gives us the three equations:

$$
\begin{aligned}
& F(C)_{12}+\left[B_{1}, B_{2}\right]=0 \\
& F(C)_{20}+\left[B_{2}, B_{0}\right]=0 \\
& F(C)_{01}+\left[B_{0}, B_{1}\right]=0
\end{aligned}
$$

- We now fix the B gauge transformations by choosing

$$
B_{0}=0 \quad \text { and } \quad D^{C} \cdot B \equiv \partial_{i} B_{i}+\left[C_{i}, B_{i}\right]=0
$$

- Since this gauge condition depends on both A^{1} and A^{2}, it has the effect of coupling the two formerly decoupled systems.
- Setting $B_{0}=0$ reduces the last two equations above to

$$
F(C)_{0 i}=0
$$

- Setting $B_{0}=0$ reduces the last two equations above to

$$
F(C)_{0 i}=0
$$

- Next we fix the gauge for C by choosing $C_{0}=0$. Combined with $F(C)_{0 i}=0$, this implies that $\dot{C}_{i}=0$, so the space components $C_{i}, i=1,2$ are time-independent.
- Setting $B_{0}=0$ reduces the last two equations above to

$$
F(C)_{0 i}=0
$$

- Next we fix the gauge for C by choosing $C_{0}=0$. Combined with $F(C)_{0 i}=0$, this implies that $\dot{C}_{i}=0$, so the space components $C_{i}, i=1,2$ are time-independent.
- Returning to the second equation and using the vanishing of B_{0} and C_{0}, we have:

$$
\partial_{0} B_{i}=0, \quad D_{1}^{C} B_{2}-D_{2}^{C} B_{1}=0
$$

- Setting $B_{0}=0$ reduces the last two equations above to

$$
F(C)_{0 i}=0
$$

- Next we fix the gauge for C by choosing $C_{0}=0$. Combined with $F(C)_{0 i}=0$, this implies that $\dot{C}_{i}=0$, so the space components $C_{i}, i=1,2$ are time-independent.
- Returning to the second equation and using the vanishing of B_{0} and C_{0}, we have:

$$
\partial_{0} B_{i}=0, \quad D_{1}^{C} B_{2}-D_{2}^{C} B_{1}=0
$$

- From the first of these equations, the space components $B_{i}, i=1,2$ are also time-independent.
- Thus we have finally reduced the system to four quantities $C_{i}, B_{i}, i=1,2$. One of the equations they satisfy is:

$$
F(C)_{12}+\left[B_{1}, B_{2}\right]=0
$$

- Thus we have finally reduced the system to four quantities $C_{i}, B_{i}, i=1,2$. One of the equations they satisfy is:

$$
F(C)_{12}+\left[B_{1}, B_{2}\right]=0
$$

- Next we define $z=x^{1}+i x^{2}$ and $\Phi=B_{1}-i B_{2}$. Consider:

$$
D_{\bar{z}}^{C} \Phi \sim\left(D_{1}^{C}+i D_{2}^{C}\right)\left(B_{1}-i B_{2}\right)
$$

For this to vanish, we must have:

$$
D_{1}^{C} B_{1}+D_{2}^{C} B_{2}=0=D_{1}^{C} B_{2}-D_{2}^{C} B_{1}
$$

- Thus we have finally reduced the system to four quantities $C_{i}, B_{i}, i=1,2$. One of the equations they satisfy is:

$$
F(C)_{12}+\left[B_{1}, B_{2}\right]=0
$$

- Next we define $z=x^{1}+i x^{2}$ and $\Phi=B_{1}-i B_{2}$. Consider:

$$
D_{\bar{z}}^{C} \Phi \sim\left(D_{1}^{C}+i D_{2}^{C}\right)\left(B_{1}-i B_{2}\right)
$$

For this to vanish, we must have:

$$
D_{1}^{C} B_{1}+D_{2}^{C} B_{2}=0=D_{1}^{C} B_{2}-D_{2}^{C} B_{1}
$$

- The first of these equations is the gauge condition we imposed on B while the second is the remaining equation of motion.
- Thus we have finally reduced the system to four quantities $C_{i}, B_{i}, i=1,2$. One of the equations they satisfy is:

$$
F(C)_{12}+\left[B_{1}, B_{2}\right]=0
$$

- Next we define $z=x^{1}+i x^{2}$ and $\Phi=B_{1}-i B_{2}$. Consider:

$$
D_{\bar{z}}^{C} \Phi \sim\left(D_{1}^{C}+i D_{2}^{C}\right)\left(B_{1}-i B_{2}\right)
$$

For this to vanish, we must have:

$$
D_{1}^{C} B_{1}+D_{2}^{C} B_{2}=0=D_{1}^{C} B_{2}-D_{2}^{C} B_{1}
$$

- The first of these equations is the gauge condition we imposed on B while the second is the remaining equation of motion.
- Hence at the end, the quantities $C_{i}, \Phi, \bar{\Phi}$ depend on the space variables x^{1}, x^{2} or equivalently z, \bar{z} and satisfy:

$$
\begin{aligned}
F(C)_{12} & =\frac{i}{2}[\Phi, \bar{\Phi}] \\
D_{\bar{z}}^{C} \Phi & =D_{z}^{C} \bar{\Phi}=0
\end{aligned}
$$

These are precisely the Hitchin equations.

- Next, consider the Higgsed system.
- Next, consider the Higgsed system.
- The Lagrangian is:

$$
4 k \operatorname{tr}\left(B \wedge F(C)+\frac{1}{3} B \wedge B \wedge B-\frac{1}{4} v^{2} B \wedge^{*} B\right)
$$

- Next, consider the Higgsed system.
- The Lagrangian is:

$$
4 k \operatorname{tr}\left(B \wedge F(C)+\frac{1}{3} B \wedge B \wedge B-\frac{1}{4} v^{2} B \wedge^{*} B\right)
$$

- Earlier we integrated out B by treating the middle term perturbatively. Now we examine the full equations.
- Next, consider the Higgsed system.
- The Lagrangian is:

$$
4 k \operatorname{tr}\left(B \wedge F(C)+\frac{1}{3} B \wedge B \wedge B-\frac{1}{4} v^{2} B \wedge^{*} B\right)
$$

- Earlier we integrated out B by treating the middle term perturbatively. Now we examine the full equations.
- These are:

$$
{\frac{v^{2}}{2}}^{*} B=F(C)+B \wedge B
$$

- Next, consider the Higgsed system.
- The Lagrangian is:

$$
4 k \operatorname{tr}\left(B \wedge F(C)+\frac{1}{3} B \wedge B \wedge B-\frac{1}{4} v^{2} B \wedge^{*} B\right)
$$

- Earlier we integrated out B by treating the middle term perturbatively. Now we examine the full equations.
- These are:

$$
\frac{v^{2}}{2} * B=F(C)+B \wedge B
$$

- In components, they can be written:

$$
\begin{aligned}
& F(C)_{12}+\left[B_{1}, B_{2}\right]=\frac{v^{2}}{2} B_{0} \\
& F(C)_{20}+\left[B_{2}, B_{0}\right]=\frac{v^{2}}{2} B_{1} \\
& F(C)_{01}+\left[B_{0}, B_{1}\right]=\frac{v^{2}}{2} B_{2}
\end{aligned}
$$

- These equations are still invariant under the C-gauge transformations, with $\Lambda_{B}=0$. One can use these to set $C_{0}=0$.
- These equations are still invariant under the C-gauge transformations, with $\Lambda_{B}=0$. One can use these to set $C_{0}=0$.
- Though we cannot now set $B_{0}=0$ by a gauge choice, we can instead solve for it using the first equation. Thus again the dynamical variables are $B_{1}, B_{2}, C_{1}, C_{2}$. However they all depend on time.
- These equations are still invariant under the C-gauge transformations, with $\Lambda_{B}=0$. One can use these to set $C_{0}=0$.
- Though we cannot now set $B_{0}=0$ by a gauge choice, we can instead solve for it using the first equation. Thus again the dynamical variables are $B_{1}, B_{2}, C_{1}, C_{2}$. However they all depend on time.
- The last two equations are:

$$
\begin{aligned}
\dot{C}_{2} & =\left[B_{2}, B_{0}\right]-\frac{v^{2}}{2} B_{1} \\
\dot{C}_{1} & =\left[B_{1}, B_{0}\right]+\frac{v^{2}}{2} B_{2}
\end{aligned}
$$

and they determine the time-dependence of C_{1}, C_{2}.

- These equations are still invariant under the C-gauge transformations, with $\Lambda_{B}=0$. One can use these to set $C_{0}=0$.
- Though we cannot now set $B_{0}=0$ by a gauge choice, we can instead solve for it using the first equation. Thus again the dynamical variables are $B_{1}, B_{2}, C_{1}, C_{2}$. However they all depend on time.
- The last two equations are:

$$
\begin{aligned}
\dot{C}_{2} & =\left[B_{2}, B_{0}\right]-\frac{v^{2}}{2} B_{1} \\
\dot{C}_{1} & =\left[B_{1}, B_{0}\right]+\frac{v^{2}}{2} B_{2}
\end{aligned}
$$

and they determine the time-dependence of C_{1}, C_{2}.

- And... we have to leave the story here!

Outline

Introduction
Membrane field theories and the novel Higgs mechanism
Topological mass and NHM
Diagonalisability conditions
Two-field case
Multi-field case
Difference Chern-Simons and Hitchin equations
Conclusions

Conclusions

- We saw that in $2+1$ dimensions, with more than one Chern-Simons gauge field and a carefully chosen Lagrangian, the Higgs mechanism operates in a novel way.

Conclusions

- We saw that in $2+1$ dimensions, with more than one Chern-Simons gauge field and a carefully chosen Lagrangian, the Higgs mechanism operates in a novel way.
- A topological Chern-Simons gauge field absorbs a single degree of freedom and becomes a dynamical but (classically) massless Yang-Mills gauge field.

Conclusions

- We saw that in $2+1$ dimensions, with more than one Chern-Simons gauge field and a carefully chosen Lagrangian, the Higgs mechanism operates in a novel way.
- A topological Chern-Simons gauge field absorbs a single degree of freedom and becomes a dynamical but (classically) massless Yang-Mills gauge field.
- This phenomenon is possible only because of the possibility of indefinite signature Chern-Simons terms.

Conclusions

- We saw that in $2+1$ dimensions, with more than one Chern-Simons gauge field and a carefully chosen Lagrangian, the Higgs mechanism operates in a novel way.
- A topological Chern-Simons gauge field absorbs a single degree of freedom and becomes a dynamical but (classically) massless Yang-Mills gauge field.
- This phenomenon is possible only because of the possibility of indefinite signature Chern-Simons terms.
- It has implications for multiple membranes in M-theory, and should have more general implications for the dynamics of gauge theories in $(2+1) d$.

Conclusions

- We saw that in $2+1$ dimensions, with more than one Chern-Simons gauge field and a carefully chosen Lagrangian, the Higgs mechanism operates in a novel way.
- A topological Chern-Simons gauge field absorbs a single degree of freedom and becomes a dynamical but (classically) massless Yang-Mills gauge field.
- This phenomenon is possible only because of the possibility of indefinite signature Chern-Simons terms.
- It has implications for multiple membranes in M-theory, and should have more general implications for the dynamics of gauge theories in $(2+1) d$.
- It would also be interesting to see if analogous results hold in $(2+1) d$ gravity, given that topological mass generation can occur there and the action is of difference-Chern-Simons form.
$\epsilon v \chi \alpha \rho \iota \sigma \tau \omega ́!$

