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Introduction

I Gauge theories in (2 + 1)d have some special features, notably
the possibility of a first-order Chern-Simons kinetic term.

I In recent years this has been put to good use in the study of
multiple membranes in M-theory.

I A specific aspect of membrane field theories is a phenomenon
wherein, by giving a vev to a certain scalar, the Chern-Simons
nature of the theory is traded for Yang-Mills.

I This phenomenon is known as the novel Higgs mechanism
(NHM).

I It is useful in understanding many aspects of multiple
membrane theories.

I It also bears an intriguing similarity to some well-known
features of Chern-Simons theories in (2+1)d, in particular
topological mass generation.
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I In this talk I will:

(i) summarise the relevance of NHM to membranes in
M-theory,

(ii) explain the relation between NHM and the topological
mass,

(iii) explore the most general conditions for NHM.

I (Work in progress, to be discussed if there is time:)
The equations of motion of a difference Chern-Simons theory
can be mapped, in a suitable gauge, to the famous Hitchin
equations. After the NHM one gets a kind of deformation of
the Hitchin equations.
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Membrane field theories and the novel Higgs mechanism

I Following early work of [Gaiotto-Yin] and [Schwarz], it was
argued by [Bagger-Lambert, Gustavsson] that multiple
membranes in M-theory can be described by (2+1)d field
theories involving a Chern-Simons type gauge field.

I They proposed a gauge field Aµ
ab with a Chern-Simons type

action:

LCS = 1
2

(
Aab ∧ dÃb a + 2

3A
a
b ∧ Ãb c ∧ Ãc a

)
where Ãµ

b
c ≡ fabcdAµ

d
a, fabcd are the structure constants

of a 3-algebra.
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I With enough supersymmetry, the entire field theory is
determined. For maximal N = 8 supersymmetry the field
content is:

n(n−1)
2 × (Aµ;χ), n× (8X; 4ψ)

where Aµ, χ are non-propagating and n is related to the
number of membranes. Here XI , I = 1, 2, · · · 8 are the
transverse coordinates of the membrane.

I Introducing the covariant derivative:

DµX
I
a = ∂µX

I
a − Ãµ b aXI

b

the bosonic part of the BLG action is:

k

2π

(
LCS − 1

2DµX
I ·DµXI − 1

12

(
fabcdXI

aX
J
b X

K
c

)2
)

where k is the level of the Chern-Simons term.
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I The 3-algebra conditions on fabcd turn out to be so restrictive
that the only solution is:

fabcd = εabcd, a, b, · · · ∈ 1, 2, 3, 4

I In this case there are six fields Aµ
ab which can be broken up

into two triplet gauge fields:

Aa4
µ = 1

2C
a
µ,

εabcA
bc
µ = 1

2B
a
µ

where a, b, c · · · ∈ 1, 2, 3.

I The 3-algebra Chern-Simons term now becomes:

∼ 1
2

(
Ba ∧ F a(C) + 2

3 εabcB
a ∧Bb ∧Bc

)



I The 3-algebra conditions on fabcd turn out to be so restrictive
that the only solution is:

fabcd = εabcd, a, b, · · · ∈ 1, 2, 3, 4

I In this case there are six fields Aµ
ab which can be broken up

into two triplet gauge fields:

Aa4
µ = 1

2C
a
µ,

εabcA
bc
µ = 1

2B
a
µ

where a, b, c · · · ∈ 1, 2, 3.

I The 3-algebra Chern-Simons term now becomes:

∼ 1
2

(
Ba ∧ F a(C) + 2

3 εabcB
a ∧Bb ∧Bc

)



I The 3-algebra conditions on fabcd turn out to be so restrictive
that the only solution is:

fabcd = εabcd, a, b, · · · ∈ 1, 2, 3, 4

I In this case there are six fields Aµ
ab which can be broken up

into two triplet gauge fields:

Aa4
µ = 1

2C
a
µ,

εabcA
bc
µ = 1

2B
a
µ

where a, b, c · · · ∈ 1, 2, 3.

I The 3-algebra Chern-Simons term now becomes:

∼ 1
2

(
Ba ∧ F a(C) + 2

3 εabcB
a ∧Bb ∧Bc

)



I Making the same 3 + 1 split on the scalars, we have:

DXI a = dXI a + εabcC
bXI c +Ba

µX
I 4

DXI 4 = dXI 4 −BaXI a

I Now giving a vev XI=8, 4 = v gives a mass term for the Bµ
gauge field, so altogether:

∼ k
(
−1

2v
2Ba

µB
µa + 1

2B
a ∧ F a(C) + 1

3εabcB
a ∧Bb ∧Bc

)
I The field B is algebraic and we can self-consistently integrate

it out by initially neglecting the cubic term:

B =
k

v2
∗F (C) +O

(
1

v4

)



I Making the same 3 + 1 split on the scalars, we have:

DXI a = dXI a + εabcC
bXI c +Ba

µX
I 4

DXI 4 = dXI 4 −BaXI a

I Now giving a vev XI=8, 4 = v gives a mass term for the Bµ
gauge field, so altogether:

∼ k
(
−1

2v
2Ba

µB
µa + 1

2B
a ∧ F a(C) + 1

3εabcB
a ∧Bb ∧Bc

)

I The field B is algebraic and we can self-consistently integrate
it out by initially neglecting the cubic term:

B =
k

v2
∗F (C) +O

(
1

v4

)



I Making the same 3 + 1 split on the scalars, we have:

DXI a = dXI a + εabcC
bXI c +Ba

µX
I 4

DXI 4 = dXI 4 −BaXI a

I Now giving a vev XI=8, 4 = v gives a mass term for the Bµ
gauge field, so altogether:

∼ k
(
−1

2v
2Ba

µB
µa + 1

2B
a ∧ F a(C) + 1

3εabcB
a ∧Bb ∧Bc

)
I The field B is algebraic and we can self-consistently integrate

it out by initially neglecting the cubic term:

B =
k

v2
∗F (C) +O

(
1

v4

)



I Inserting this back we get an SU(2) Yang-Mills theory with
the 7 remaining scalars, and the fermions, in the adjoint (also
X8 disappears):

k

v2
tr

{
−1

4
F ∧ ∗F − 1

2DµX
iDµXi + 1

4 [Xi,Xj ]2 + · · ·
}

where F ,X are now 2× 2 matrices.

I The dots represent fermion terms and also corrections
suppressed by inverse powers of v2.

I We see that v/
√
k plays the role of gYM.
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I The Chern-Simons action can be written in a form that has
now become very familiar. Under:

B = 1
2(A1 −A2), C = 1

2(A1 + A2)

the Lagrangian:

tr
(
B ∧ F (C) + 1

3B ∧B ∧B
)

becomes:

∼ 1
2 tr
(
A1 ∧ dA1 + 2

3A
1 ∧A1 ∧A1

−A2 ∧ dA2 − 2
3A

2 ∧A2 ∧A2
)

I Here A1,A2 are SU(2) gauge fields and the scalar fields are
in the bi-fundamental representation of SU(2)× SU(2).

I The covariant derivative is then:

DX = dX −A1X + XTA2
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I G×G difference-Chern-Simons theories have become the
standard way to understand M-theory membranes in various
contexts, typically on orbifolds. The level k defines the order
of the orbifold group.

I As long as there are bi-fundamental scalars, the NHM always
gives rise to Yang-Mills theory.

I Here we focus on N = 8 [BLG] and N = 6 [ABJM,ABJ]

theories.

I In this context the NHM has provided a few different
illuminations about membranes and M-theory, which I will
now briefly review.
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(i) Proof that both BLG and ABJM theories really do describe
multiple membranes.

I With maximal or near-maximal supersymmetry:

Ldiff−CS
∣∣∣
v

=
k

v2
LSYM +O

(
k

v4

)
where the first term on the RHS is N = 8 supersymmetric
Yang-Mills theory and, as noted, v/

√
k plays the role of gYM.

I If we take v →∞ then the higher-order terms drop out and
we find that:

Ldiff−CS
∣∣∣
v→∞

= lim
gYM→∞

1

g2
YM

LSYM

The RHS is the strongly coupled limit of D2-branes, which is
by definition the theory of multiple membranes.

I This amounts to a proof that somewhere on its moduli space,
and therefore presumably everywhere, the [BLG,ABJM] and
probably many other theories describe multiple membranes.



(i) Proof that both BLG and ABJM theories really do describe
multiple membranes.

I With maximal or near-maximal supersymmetry:

Ldiff−CS
∣∣∣
v

=
k

v2
LSYM +O

(
k

v4

)
where the first term on the RHS is N = 8 supersymmetric
Yang-Mills theory and, as noted, v/

√
k plays the role of gYM.

I If we take v →∞ then the higher-order terms drop out and
we find that:

Ldiff−CS
∣∣∣
v→∞

= lim
gYM→∞

1

g2
YM

LSYM

The RHS is the strongly coupled limit of D2-branes, which is
by definition the theory of multiple membranes.

I This amounts to a proof that somewhere on its moduli space,
and therefore presumably everywhere, the [BLG,ABJM] and
probably many other theories describe multiple membranes.



(i) Proof that both BLG and ABJM theories really do describe
multiple membranes.

I With maximal or near-maximal supersymmetry:

Ldiff−CS
∣∣∣
v

=
k

v2
LSYM +O

(
k

v4

)
where the first term on the RHS is N = 8 supersymmetric
Yang-Mills theory and, as noted, v/

√
k plays the role of gYM.

I If we take v →∞ then the higher-order terms drop out and
we find that:

Ldiff−CS
∣∣∣
v→∞

= lim
gYM→∞

1

g2
YM

LSYM

The RHS is the strongly coupled limit of D2-branes, which is
by definition the theory of multiple membranes.

I This amounts to a proof that somewhere on its moduli space,
and therefore presumably everywhere, the [BLG,ABJM] and
probably many other theories describe multiple membranes.



(i) Proof that both BLG and ABJM theories really do describe
multiple membranes.

I With maximal or near-maximal supersymmetry:

Ldiff−CS
∣∣∣
v

=
k

v2
LSYM +O

(
k

v4

)
where the first term on the RHS is N = 8 supersymmetric
Yang-Mills theory and, as noted, v/

√
k plays the role of gYM.

I If we take v →∞ then the higher-order terms drop out and
we find that:

Ldiff−CS
∣∣∣
v→∞

= lim
gYM→∞

1

g2
YM

LSYM

The RHS is the strongly coupled limit of D2-branes, which is
by definition the theory of multiple membranes.

I This amounts to a proof that somewhere on its moduli space,
and therefore presumably everywhere, the [BLG,ABJM] and
probably many other theories describe multiple membranes.



(ii) Compactification by large quivers.

I The NHM was originally worked out at fixed level k. If we
carry out the same procedure and take v →∞, k →∞
keeping v/

√
k fixed, then:

Ldiff−CS
∣∣∣
v

=
k

v2
LSYM +O

(
k

v4

)
+ · · · −→ k

v2
LSYM

I So this time we get the D2-brane at finite coupling, i.e. we
have managed to “compactify” the theory!

I This is explained by analogy with deconstruction. Again, it
works equally well for BLG and ABJM.

_

k
v22π__

k

v  k
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(iii) To compute derivative corrections.

I The leading higher-derivative corrections on D-brane field
theories are well-known.

I To find the leading derivative corrections for the BLG theory,
we simply wrote the most general 3-algebra expression at that
order, Higgsed the theory and compared to D2-branes.

I All coefficients were uniquely determined by this procedure.

I Presumably the same procedure can (and should) be carried
out for ABJM theory.
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(iv) To understand the case of different levels.

I [Gaiotto-Tomasiello] studied the N = 6 theory in the
bifundamental form but with different levels:

k1

2π
SCS(A+) +

k2

2π
SCS(A−)

They argued that k1 + k2 corresponds in the dual type IIA
theory on AdS4 × CP 3 to a Romans mass.

I The NHM confirms this proposal: for unequal levels, it creates
a Yang-Mills theory plus a residual Chern-Simons theory of
level k1 + k2.

I The latter reproduces the coupling
∫
F0 SCS(A) on a

D2-brane in the presence of the Romans mass.
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Topological mass and NHM

I Nearly three decades ago, [Deser et al] observed that
Yang-Mills gauge fields in 2+1 dimensions acquire a
topological mass when a Chern-Simons interaction is added:

S = SYM + SCS

I The propagating modes have a single degree of freedom with
spin +1 but no corresponding spin −1 state.

I This is possible because Chern-Simons theory is parity
violating.
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I Subsequently a different model called the “self-dual” theory
was considered [Townsend et al]:

S = SCS + Smass

The explicit mass term can arise from the vev of a Higgs field.

I Though the two Lagrangians look quite different, they both
correspond to massive, parity-violating theories.

I In fact it was shown that the two theories are equivalent:

SCS + Smass ∼ SYM + SCS

I In the above equivalence, the mass on the LHS becomes the
Yang-Mills coupling on the RHS.
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I By contrast, the NHM involves a pair of gauge fields having
Chern-Simons terms with opposite signs, as well as an explicit
mass term of a specific form (possibly arising via a Higgs
mechanism). The theory is equivalent to a (classically
massless) Yang-Mills theory:

S1
CS − S2

CS + S1,2
mass ∼ SYM

I Again, the mass transmutes into the coupling constant of the
Yang-Mills theory. But there is no mass term or Chern-Simons
term on the RHS.

I We will now examine these equivalences in a little more detail.

I We will not require supersymmetry. Also, since we want to
understand the spectrum of the theory, we work at the
linearised level.
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I The Lagrangian:

L1 =
1

2
dA ∧ ∗dA− 1

2
mA ∧ dA

is the prototype (Abelian) topologically massive theory.

I The equations of motion are:

d ∗dA = mdA

I This theory has a single on-shell degree of freedom that is
massive and has spin +1. If we change the sign of the mass
term we instead get spin −1.
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I On the other hand, the Lagrangian:

L2 =
1

2
A ∧ dA+

1

2
mA ∧ ∗A

is said to be self-dual. The equations of motion are:

∗dA = mA

which equates the gauge potential to the (dual) field strength.

I Comparing the two Lagrangians we see that L1 is
gauge-invariant while L2 does not have a gauge symmetry.

I A related point is that L1 has a smooth massless limit while
L2 becomes purely topological and thereby loses a degree of
freedom as m→ 0.

I In L2, if the mass term comes from a Higgs field then of
course the full theory has gauge invariance realised in the
Higgs mode.



I On the other hand, the Lagrangian:

L2 =
1

2
A ∧ dA+

1

2
mA ∧ ∗A

is said to be self-dual. The equations of motion are:

∗dA = mA

which equates the gauge potential to the (dual) field strength.

I Comparing the two Lagrangians we see that L1 is
gauge-invariant while L2 does not have a gauge symmetry.

I A related point is that L1 has a smooth massless limit while
L2 becomes purely topological and thereby loses a degree of
freedom as m→ 0.

I In L2, if the mass term comes from a Higgs field then of
course the full theory has gauge invariance realised in the
Higgs mode.



I On the other hand, the Lagrangian:

L2 =
1

2
A ∧ dA+

1

2
mA ∧ ∗A

is said to be self-dual. The equations of motion are:

∗dA = mA

which equates the gauge potential to the (dual) field strength.

I Comparing the two Lagrangians we see that L1 is
gauge-invariant while L2 does not have a gauge symmetry.

I A related point is that L1 has a smooth massless limit while
L2 becomes purely topological and thereby loses a degree of
freedom as m→ 0.

I In L2, if the mass term comes from a Higgs field then of
course the full theory has gauge invariance realised in the
Higgs mode.



I On the other hand, the Lagrangian:

L2 =
1

2
A ∧ dA+

1

2
mA ∧ ∗A

is said to be self-dual. The equations of motion are:

∗dA = mA

which equates the gauge potential to the (dual) field strength.

I Comparing the two Lagrangians we see that L1 is
gauge-invariant while L2 does not have a gauge symmetry.

I A related point is that L1 has a smooth massless limit while
L2 becomes purely topological and thereby loses a degree of
freedom as m→ 0.

I In L2, if the mass term comes from a Higgs field then of
course the full theory has gauge invariance realised in the
Higgs mode.



I The two Lagrangians L1 and L2 give equivalent theories.
Classically, this is shown as follows. First,

∗dA = mA =⇒ d ∗dA = mdA

so L2 =⇒ L1.

I For the converse,

d ∗dA = mdA =⇒ d (∗dA−mA) = 0

=⇒ ∗dA−mA = dλ

and a field re-definition

A→ A− 1

m
dλ

gives L2.
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I Now let us compare the above phenomenon with the novel
Higgs mechanism.

I For this we first work in the basis where the CS term is
off-diagonal. Thus consider two gauge fields B,C with the
Lagrangian:

L1 = k (2B ∧ dC +mB ∧ ∗B)

I Being algebraic, B can be integrated out, upon which the
Lagrangian reduces to:

L2 =
k

m
dC ∧ ∗dC

I While L1 has the form of a generalised topologically massive
theory, L2 is instead a massless Maxwell Lagrangian.
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I Whenever the explicit mass term arises from a Higgs
mechanism, the single degree of freedom of a Higgs scalar gets
traded for the single degree of freedom of a massless vector.

I Now let us consider L1 in the difference-Chern-Simons basis,
by writing:

A1 = C +B

A2 = C −B

after which it becomes:

L1 = k
(

1
2A

1∧dA1− 1
2A

2∧dA2 + 1
4m(A1−A2)∧∗(A1−A2)

)
I In this basis there is a non-diagonal mass term:

mIJ ∼
(

1 −1
−1 1

)
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I We see that the NHM bears some resemblance to topological
mass generation.

I More precisely it leads to topological mass non-generation...!

I The crucial new ingredients are to have more than one gauge
field, a difference of two Chern-Simons actions, and a suitable
non-diagonal mass term.



I We see that the NHM bears some resemblance to topological
mass generation.

I More precisely it leads to topological mass non-generation...!

I The crucial new ingredients are to have more than one gauge
field, a difference of two Chern-Simons actions, and a suitable
non-diagonal mass term.



I We see that the NHM bears some resemblance to topological
mass generation.

I More precisely it leads to topological mass non-generation...!

I The crucial new ingredients are to have more than one gauge
field, a difference of two Chern-Simons actions, and a suitable
non-diagonal mass term.



Outline

Introduction

Membrane field theories and the novel Higgs mechanism

Topological mass and NHM

Diagonalisability conditions

Two-field case

Multi-field case

Difference Chern-Simons and Hitchin equations

Conclusions



Diagonalisability conditions

I Now let us start to analyse the general conditions under which
the novel Higgs mechanism (NHM) can occur.

I A necessary (but not sufficient) condition for this comes from
a conflict between the simultaneous diagonalisability of the
kinetic and mass terms.

I This phenomenon is peculiar to Chern-Simons gauge theories
with a mass term and does not have an analogue in scalar or
Maxwell-type vector theories.
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I Consider a collection of vector fields AI , I = 1, 2, · · ·n
described by the most general abelian Chern-Simons
Lagrangian with a mass term:

L =
1

2
kIJA

(I) ∧ dA(J) +
1

2
mIJA

(I) ∧ ∗A(J)

I Both kIJ and mIJ are constant real symmetric matrices.

I kIJ is taken to be non-degenerate, while mIJ is allowed to
have zero eigenvalues.

I Let us now try to bring this action into standard form.
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I For comparison, we first consider a generic free scalar field
theory with Lagrangian:

−1

2
gIJ∂µφ

I∂µφJ − 1

2
(m2)IJφ

IφJ

where φi, I = 1, 2, · · · , n are real scalar fields.

I Here gIJ and (m2)IJ are constant real symmetric matrices,
and gIJ is positive-definite (otherwise the theory has ghosts).

I To bring the Lagrangian into its standard form, first perform
an orthogonal transformation on φI to diagonalise gIJ , which
then takes the form diag(g1, g2, · · · , gn) with gI > 0 for all I.

I Next one re-scales the fields:

φI → φI
√
gI

so that the kinetic form has the identity metric δIJ .
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I Finally one performs another orthogonal transformation on φI

that diagonalises m2 while preserving the kinetic term, ending
up with:

−1

2
∂µφ

I∂µφI − 1

2
m2
Iφ

IφI

with some mI possibly equal to 0.

I Thus the theory has been reduced to a collection of
independent fields, some massive and others massless (some
of the masses can be tachyonic as long as the full potential is
bounded below).
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I If we try to apply the analogous procedure to a general
Chern-Simons-mass theory, we find a rather different result.

I Upon diagonalising kIJ , it turns into diag(k1, k2, · · · , kn) but
the eigenvalues ki are not required to be positive. The theory
with negative eigenvalues, or both signs of eigenvalues, is
perfectly consistent.

I In fact, as we just saw, M2-brane field theories have levels of
both signs, which ensures that parity is conserved (similar
actions arise for the Chern-Simons formulation of 3d gravity).

I To be completely general we therefore assume kIJ has p
negative and q positive eigenvalues with p+ q = n.
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I Since the AI are real, the best we can do after diagonalising
kIJ is to re-scale:

AI → AI√
|kI |

I Then the action reduces to:

L =
1

2
ηIJA

(I) ∧ dA(J) +
1

2
mIJA

(I) ∧ ∗A(J)

where ηIJ is the Lorentzian metric preserved by O(p, q).

I Hence the linear transformations AI → ΛIJA
J which preserve

the kinetic term are given by matrices ΛIJ satisfying:

ΛT ηΛ = η

namely the O(p, q) Lorentz transformations.
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I The mass matrix can therefore be transformed only as:

m→ ΛTmΛ, Λ ∈ O(p, q)

I In general this is not sufficient to diagonalise m, and this is
why the novel Higgs mechanism is able to arise.

I Therefore in the basis where kIJ is diagonal, we start by
seeking the conditions on mIJ such that it can be
diagonalised by a Lorentz transformation.

I Whenever this is possible, the theory will reduce to a
collection of decoupled Chern-Simons actions with definite
masses, and there will be no novel Higgs mechanism.
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second-rank symmetric tensor under Lorentz transformations.

I Therefore this is analogous to the question of whether the
stress-energy tensor Tµν of a field theory can be diagonalised
by Lorentz transformations in a (p+ q)-dimensional space of
signature (p, q).

I This has been analysed in the GR literature. The possibilities
are categorised as algebraically general and algebraically
special, with the latter having sub-cases.

I As a necessary condition, we will see that only the
algebraically special cases can have an NHM.
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Two-field case: Solution of diagonalisability conditions

I Let us look at a simple example first in which we take
p = q = 1.

I Recall that we are working in a basis where the kinetic term
has been diagonalised and scaled, so kIJ = (−1, 1).

I In this simple example one can explicitly find the
diagonalisability conditions.

I We simply ask what is the most general 2× 2 matrix that can
be obtained from a diagonal matrix by a Lorentz boost.
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I In terms of components:

mIJ =

(
a b
b c

)
these conditions turn out to be:

2 |b| < |a+ c|

I Theories that exhibit the novel Higgs mechanism must
therefore fail to satisfy this inequality. As a check we notice
that the mass matrix we originally displayed in an example,

mIJ ∼
(

1 −1
−1 1

)
just barely fails to satisfy the above inequality.
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I The above condition can be reformulated in terms of
eigenvalues of the (non-symmetric) matrix

(ηm)IJ = ηIKmKJ =

(
−a b
−b c

)

I Since this has one upper and one lower index, it can be
thought of as a linear transformation and one can ask for its
eigenvectors and eigenvalues.

I The analogue of this question for Tµν in general relativity is
well-studied in (3+1)d and the possible cases classified (see
for example the book of [Stephani et al]).

I We can adapt this classification to (1+1)d.
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I In 1+1 dimensions there are precisely three possibilities:

Eigenvalues Eigenvectors

(i) Two distinct, real Two distinct, real (one
space-like, one time-like)

(ii) Two coincident One
(iii) Complex-conjugate pair Complex-conjugate pair

I The last two cases are termed algebraically special.

I Case (i) allows us to make an SO(1, 1) matrix:

Λ =
(
vt vs

)
where vt, vs are the orthonormalised eigenvectors, the first one
time-like and the second space-like. Clearly Λ diagonalises
ηm by a similarity transformation:

Λ−1 ηmΛ = ηmdiag

where we have labelled the diagonal matrix as ηmdiag.
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I Noting that Λ−1 = ηΛT η, we see that:

ΛTmΛ = mdiag

as desired. Thus the algebraically general case does not admit
an NHM.

I The algebraically special cases do not permit diagonalisation
of ηm. In these cases the novel Higgs mechanism may in
principle occur, though more analysis is needed to see if it
actually occurs.

I As a confirmation of this picture, one can check explicitly that
the above three cases correspond to:

(i) 2|b| < |a+ c|
(ii) 2|b| = |a+ c|
(iii) 2|b| > |a+ c|

I As we have already seen by direct computation, only the first
case admits diagonalisation of mIJ by a Lorentz
transformation.
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Two-field case: Sufficient conditions for NHM

I To find sufficient conditions for the NHM in the two-field
case, we must examine cases (ii) and (iii) above.

I It turns out the basis in which kIJ is diagonal is not the most
convenient. Instead, the useful basis is the one in which kIJ is
purely off-diagonal.

I This is just the light-cone basis, in which the Lorentzian space
is taken to be spanned by two independent null vectors and
the metric on field space therefore takes the form:

kIJ = k

(
0 1
1 0

)
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I Suppose that in this basis the mass matrix is given by:

m =

(
α β
β γ

)

I The Lagrangian is then:

L = kA1 ∧ dA2 + 1
2αA

1 ∧ ∗A1 + βA1 ∧ ∗A2 + 1
2γA

2 ∧ ∗A2

I The equations of motion are:

kdA2 + α ∗A1 + β ∗A2 = 0

kdA1 + β ∗A1 + γ ∗A2 = 0

I If α 6= 0 then the first equation can be solved for A1.
Inserting the solution back into the action, we find:

L =
k2

2α
dA2 ∧ ∗dA2 − βk

α
A2 ∧ dA2 + 1

2

(
γ − β2

α

)
A2 ∧ ∗A2

I The resulting theory has a massless propagating gauge field if
and only if β = γ = 0.
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I To arrive at this action we assumed that α 6= 0, but of course
we could instead assume γ 6= 0 and eliminate A2 in the same
manner.

I Thus the final condition for the novel Higgs mechanism in the
two-field case is that one of α, γ be nonzero and the other
one, along with β, vanish.
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Multi-field case: Diagonalisability conditions

I The general diagonalisability condition can be stated very
explicitly following a mathematical result due to [Waterhouse]:

Theorem: Two real quadratic forms Aij and Bij can be
simultaneously diagonalised by a change of basis if and only if
they have no common zeros along the diagonal in any basis.

I For us the two matrices are ηIJ and mIJ . The above theorem
suggests choosing a maximally off-diagonal basis for the
former. If we have p timelike and q spacelike directions with
p < q (the analysis is similar for p ≥ q) we can bring η to the
form:

ηIJ =

 0 IIp 0
IIp 0 0
0 0 IIq−p


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I Applying the theorem quoted above, mIJ will be
diagonalisable in this basis if it does not have any zeroes on
the diagonal.

I Therefore a necessary (but not sufficient) condition for the
NHM is that mIJ in this basis has at least one zero along the
diagonal.
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Multi-field case: Sufficient conditions for NHM

I Sufficient conditions can be found by following the same
procedure as in the two-field case. For simplicity let us take
p = q.

I In the basis for ηIJ above, we divide the A(I), I = 1, 2, · · · , 2p
into two sets:

Ai = Bi, i = 1, 2, · · · , p
Ap+i = Ci, i = 1, 2, · · · , p

I Then the free Lagrangian takes the form:

L = Bi ∧ dCi + 1
2αijB

i ∧ ∗Bj + βijB
i ∧ ∗Cj + 1

2γijC
i ∧ ∗Cj

I The corresponding equations of motion are:

dCi + αij
∗Bj + βij

∗Cj = 0

dBi + βij
∗Bj + γij

∗Cj = 0
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I Now suppose the matrix αij is invertible. In that case we can
solve the first equation for Bi and insert this back into the
original Lagrangian to get:

L = 1
2α
−1
ij dC

i ∧ ∗dCj − (α−1β)ijC
i ∧ dCj

+ 1
2

(
γ − βα−1β

)
ij
Ci ∧ ∗Cj

I The Chern-Simons term vanishes for every zero eigenvector of
β. Moreover if such an eigenvector is a simultaneous zero
eigenvector of γ then the mass term also vanishes.

I We conclude that there is one massless propagating vector
field for every simultaneous zero eigenvector of the matrices
βij and γij , under the condition that αij is invertible.

I As in the two-field case, the roles of αij and γij can be
interchanged.
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Difference Chern-Simons and Hitchin equations

I We now return to the equations of motion of the non-Abelian
difference-Chern-Simons theory. (So in the following, all fields
will be matrices.)

I Our analysis of the NHM relied on an approximate solution of
these equations as a series in inverse powers of the Higgs vev,
but it would be nicer to find solutions to the full nonlinear
equations.

I In this connection, a curious mathematical observation ([in

collaboration with David Tong]) is that before turning on a
Higgs vev, the equations can be recast in a suitable gauge as
the famous Hitchin equations.

I Therefore the equations one gets after giving a Higgs vev
might perhaps be thought of as some deformation of the
Hitchin system.
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I We start with the usual difference action:

Ldiff−CS ∼ tr
(
A1 ∧ dA1 + 2

3A
1 ∧A1 ∧A1

−A2 ∧ dA2 − 2
3A

2 ∧A2 ∧A2
)

with the infinitesimal gauge symmetries:

δA1 = dΛ1 + [A1,Λ1], δA2 = dΛ2 + [A2,Λ2]

I Upon changing variables:

B = 1
2(A1 −A2), C = 1

2(A1 +A2)

we have seen that the action becomes:

∼ tr
(
B ∧ F (C) + 1

3B ∧B ∧B
)

where:
F (C) = dC + C ∧ C

I In these variables, the gauge transformations are:

δB = dΛB + [C,ΛB] + [B,ΛC ]

δC = dΛC + [C,ΛC ] + [B,ΛB]
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I The equations of motion for this theory are:

F (C) +B ∧B = 0

DCB ≡ dB + [C,B] = 0

I In components, the first equation gives us the three equations:

F (C)12 + [B1, B2] = 0

F (C)20 + [B2, B0] = 0

F (C)01 + [B0, B1] = 0

I We now fix the B gauge transformations by choosing

B0 = 0 and DC ·B ≡ ∂iBi + [Ci, Bi] = 0

I Since this gauge condition depends on both A1 and A2, it has
the effect of coupling the two formerly decoupled systems.
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I Setting B0 = 0 reduces the last two equations above to

F (C)0i = 0

I Next we fix the gauge for C by choosing C0 = 0. Combined
with F (C)0i = 0, this implies that Ċi = 0, so the space
components Ci, i = 1, 2 are time-independent.

I Returning to the second equation and using the vanishing of
B0 and C0, we have:

∂0Bi = 0, DC
1B2 −DC

2B1 = 0

I From the first of these equations, the space components
Bi, i = 1, 2 are also time-independent.
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I Thus we have finally reduced the system to four quantities
Ci, Bi, i = 1, 2. One of the equations they satisfy is:

F (C)12 + [B1, B2] = 0

I Next we define z = x1 + ix2 and Φ = B1 − iB2. Consider:

DC
z̄Φ ∼ (DC

1 + iDC
2)(B1 − iB2)

For this to vanish, we must have:

DC
1B1 +DC

2B2 = 0 = DC
1B2 −DC

2B1

I The first of these equations is the gauge condition we imposed
on B while the second is the remaining equation of motion.

I Hence at the end, the quantities Ci,Φ, Φ̄ depend on the space
variables x1, x2 or equivalently z, z̄ and satisfy:

F (C)12 =
i

2
[Φ, Φ̄]

DC
z̄Φ = DC

zΦ̄ = 0

These are precisely the Hitchin equations.
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I Next, consider the Higgsed system.

I The Lagrangian is:

4k tr
(
B ∧ F (C) + 1

3B ∧B ∧B −
1
4v

2B ∧ ∗B
)

I Earlier we integrated out B by treating the middle term
perturbatively. Now we examine the full equations.

I These are:
v2

2
∗B = F (C) +B ∧B

I In components, they can be written:

F (C)12 + [B1, B2] = v2

2 B0

F (C)20 + [B2, B0] = v2

2 B1

F (C)01 + [B0, B1] = v2

2 B2
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I These equations are still invariant under the C-gauge
transformations, with ΛB = 0. One can use these to set
C0 = 0.

I Though we cannot now set B0 = 0 by a gauge choice, we can
instead solve for it using the first equation. Thus again the
dynamical variables are B1, B2, C1, C2. However they all
depend on time.

I The last two equations are:

Ċ2 = [B2, B0]− v2

2 B1

Ċ1 = [B1, B0] + v2

2 B2

and they determine the time-dependence of C1, C2.

I And... we have to leave the story here!
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Conclusions

I We saw that in 2+1 dimensions, with more than one
Chern-Simons gauge field and a carefully chosen Lagrangian,
the Higgs mechanism operates in a novel way.

I A topological Chern-Simons gauge field absorbs a single
degree of freedom and becomes a dynamical but (classically)
massless Yang-Mills gauge field.

I This phenomenon is possible only because of the possibility of
indefinite signature Chern-Simons terms.

I It has implications for multiple membranes in M-theory, and
should have more general implications for the dynamics of
gauge theories in (2+1)d.

I It would also be interesting to see if analogous results hold in
(2+1)d gravity, given that topological mass generation can
occur there and the action is of difference-Chern-Simons form.
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