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OVERVIEW & MOTIVATION
            supersymmetric gauge theories can be geometrically engineered in type IIA setup. For SU(N) theoris 
with different matter multiplets the internal space is a toric Calabi-Yau 3fold, i.e., (refined) topological vertex 
can be employed.

N = 2

R3,1

P1
base

AN−1

K3

}toric geometry 
can be encoded 
in toric diagrams

5.2 Some facts about the geometric engineering of SU(N) theories

In this section we briefly review the toric geometries that engineer N = 2 SU(N)
theories. We first recall that the SU(N) theory with Nf = 2N can be engineered by
the following toric geometry

Figure 4: The toric version of SU(N) with Nf = 2Nc.

The partion function for this geometry (which agrees with the Nekrasov instanton
partition) can be computed by gluing the left and right parts (each of which is a strip)
along the dotted line using the refined topological vertex (see e.g. [20] for a discussion).

Each of the two strips in the above geometry is related to special case of the TN

theory. This follows from the fact that in Gaiotto’s language the SU(N) theory with
Nf = 2N theory is obtained via compactification on a sphere C with four punctures
(two basic U(1) punctures and two full SU(N) punctures). In the weakly coupled
degeneration limit where C splits into two spheres, each sphere has one basic and two
full punctures (one full puncture comes from the degeneration of the thin neck). Each
spehere corresponds to a degenerate TN theory with one basic U(1) puncture and two
full SU(N) punctures. We will refer to this theory as T̃N . Via the AGT conjecture,
the T̃N theory is related to a (chiral) AN−1 Toda three-point function with one of the
three primary fields of a special type [4].

Let us give some details for the T̃2 case. The relevant toric strip diagram for T̃2 is
given in figure 5.

The partition function for this strip is

Z ′
eT2

=
∞∏

i,j=1

(1−Q1 q−ρit−ρj )(1−Qf q−ρit−ρj )(1−Q2 q−ρit−ρj )(1−Q1QfQ2 q−ρit−ρj )

(1 − Q1Qf q−ρi+1/2t−ρj−1/2)(1 − QfQ2 q−ρi−1/2t−ρj+1/2)
.

(5.12)

Clearly this partition function for the T̃2 geometry does not agree with the one for the
T2 geometry (5.3) (the closed topological vertex), even though in this case all three
punctures are of the same type (basic). The latter geometry treats all punctures on
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As a first check we analyse the T2 case using the refined topological vertex to
compute the topological string partition function of the toric geometry in figure 1.
The partition function for this geometry in the unrefined case was first computed in
[45] (see also [46]).

Figure 2: Closed topological vertex with a choice of preferred direction.

Using the notation and preferred direction as in figure 2, the partition function for
the T2 geometry, sometimes called the closed topological vertex, can be computed8

Z ′
T2

=
∑

λ

(−Q1)
|λ|q

‖λ‖2

2 t
‖λt‖2

2 Z̃λ(t, q)Z̃λt(q, t)
∞∏

i,j=1

(1−Q2 q−ρj t−λt
j−ρi)(1−Q3 q−λj−ρit−ρj )

(1 − Q2Q3 q−ρi−1/2t−ρj+1/2)

=
∞∏

i,j=1

(1 − Q1 q−ρit−ρj )(1 − Q2 q−ρit−ρj )(1 − Q3 q−ρit−ρj )(1 − Q1Q2Q3 q−ρit−ρj )

(1−Q1Q2 q−ρi+
1
2 t−ρj−

1
2 )(1−Q1Q3 q−ρi+

1
2 t−ρj−

1
2 )(1−Q2Q3 q−ρi−

1
2 t−ρj+

1
2 )

,

=
∞∏

i,j=1

(1−Q1Q2 qρi+
1
2 t−ρj−

1
2 )(1−Q1Q3 qρi+

1
2 t−ρj−

1
2 )(1−Q2Q3 qρi−

1
2 t−ρj+

1
2 )

(1 − Q1 qρit−ρj )(1 − Q2 qρit−ρj )(1 − Q3 qρit−ρj )(1 − Q1Q2Q3 qρit−ρj )
, (5.3)

where in the final equality we have used the analytic continuation

∞∏

i,j=1

(1 − Qq−ρit−ρj ) =
∞∏

i,j=1

(1 − Qq−ρitρj )−1. (5.4)

The product expressions in (5.3) have a clear interpretation in terms of contributions
coming from wrapping various combinations of the three 2-cycles with Kähler classes
Qi.

There exists an alternative way to obtain topological string partition functions using
a relation to statistical models of crystal melting [47]. In this approach one also obtains

8The equivalence of the product representation with the refined vertex computation has been
verified up to fifth order in each Kähler parameter with the aid of a computer code. Our expression
also reduces to the result in [45] when q = t as required for consistency.
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RESULTS & OVERVIEW
The B-model topological recursion can be used to compute CFT correlation function with 
degenerate insertions

the partition function in the presence of a surface operators

beyond the semi-classical limit taken by AGGTV, exact in    , perturbative in

explicit computations can be made

The B-model computation can be mirrored to the A-model, i.e., the (refined) topological vertex 
can be used

valid only at the large volume limit

exact in     , perturbative in

explicit computations can be made 

α′

α′

gs

gs



RESULTS & OVERVIEW

The Conformal theory approach is based on AGT and AGGTV conjectures and is a new 
approach to ‘perform’ gauge theory computations 

relates the gauge theory with a surface operator insertion to a quiver gauge theory without a surface operator in 
a particular limit

has the contributions from the conventional instantons as well as ‘two-dimensional’ instantons due the presence 
of surface operators

All of the A-B-C approaches give results consistent with each other



OUTLINE

AGT & AGGTV

Remodeling & B-model computations

Refined topological vertex & A-model computations

Conformal field theory computations



AGT & AGGTV



AGT
N = 2A large class of 4d superconformal gauge theories with              supersymmetry is constructed by Gaiotto 

starting with 6d                    superconformal            type theories upon compactifying on a Riemann surface C. N = (2, 0) AN−1

The space of coupling constants is identified with the (universal cover) of the moduli space of complex 
structures of the punctured Riemann surface C. 

This construction can be realized in M-theory by wrapping a M5-brane on a Riemann surface with 
punctures, such as on a sphere with 4 punctures. In the IR, the world volume theory will give rise to the 
gauge theory.

A single M5-brane wrapping a sphere with 4 punctures will give rise to SU(2) theory with 4 hypermultiplets 
supported on the punctures.

M2-branes can on M5-branes, and depending on the embedding, they can introduce 2d  defects in the 4d 
transverse space. In the gauge theory, it introduces breaking of the gauge group in a smaller group over the 
defect. 



AGT
AGT conjecture states that the instanton part of the LMNS partition function of SU(2) quiver theory with 
matter can be identified with the Virasoro conformal blocks of Liouville theory on a sphere or a torus

External momenta Mass of the matter multiplets

Internal momenta Coulomb branch parameters

Central charge Deformation parameters



AGT
AGT defined the quadratic differential by

In the semi-classical limit, i.e.,                       , the Seiberg-Witten curve of the theory is obtained: ε1,2 ! ai, mi

This limit is checked using

is a small loop around the a-th puncture 

is a cycle around the long thin i-th neckγi

βa

∮

γi

√
ψ2(z)→

∮

γi

xdz = ai

∮

βa

√
ψ2(z)→

∮

βa

xdz = ma

x2 = ψSW
2 (z)

ψ2(z)dz2 =
〈T (z)

∏
iOi(zi)〉

〈
∏

iOi(zi)〉



AGGTV
AGGTV argue for SU(2) theory with four hypermultiplets, the inclusion of a surface operator is given by 

The degenerate fields satisfy the following null state condition
(
L2
−1 + b2L−2

)
V−b/2 = 0

The null state condition combined with the AGT relation leads to

(∂zG0)2 + ψ2(z) = 0 or equivalently G0(z) =
∫ z

x(z′)dz′

z

∂2
z 〈α1|Vα2(1)Vα3(ζ)V−b/2(z)|α4〉 + b2〈α1|Vα2(1)Vα3(ζ)T (z)V−b/2(z)|α4〉 = 0

D!c amplitude
AV

Z =
〈
α1|Vα2(1)Vα3(ζ)V−b/2(z)|α4 + b/2

〉

〈α1|Vα2(1)Vα3(ζ)|α4〉
= e−

b
! G0(z)+b2G1(z)+b3!G2(z)+O(!2)



REMODELLING & B-MODEL 
COMPUTATIONS



REMODELING THE B-MODEL
Topological recursion (Eynard & Orantin) is developed to solve the loop equations of matrix models in a 
systematic way. This method uses the spectral curve of the matrix model together with the basic ingredients 
associated to the curve and creates differentials in a recursive way

These differentials can be integrated to obtain genus g open k-point amplitudes

W(g)
k (z1, . . . , zk)dp1 . . . dpk

A(g)
k (z1, . . . , zk) =

∫ z1

· · ·
∫ zk

dp1 . . . dpk W(g)
k (z1, . . . , zk)

These amplitudes can be organized into the partition function (for one insertion)

Znull(z)
∣∣
Q=0

= exp
[ ∑

g,k

!2g−2+k 1
k!

A(g)
k (z, · · · , z)

]

= exp
[1
!A(0)

1 (z)+
1
2!

A(0)
2 (z, z)+!

(
A(1)

1 (z) +
1
3!

A(0)
3 (z, z, z)

)
+ · · ·

]

G0(z)
∣∣∣
ε1+ε2=0

G1(z)
∣∣∣
ε1+ε2=0

G2(z)
∣∣∣
ε1+ε2=0



REMODELING THE B-MODEL
The amplitudes can be easily generalized to multiple insertions

A(g)
j (z, . . . , z)→

k∑

i1,...,ij=1

A(g)
j (zi1 , . . . , zij )

We checked explicitly that indeed this generalization works by comparing with the AGGTV computation

G1(z)→ G1(z1, z2)
∣∣
ε1+ε2=0

= A(0)
2 (z1, z2) +

1
2
(A(0)

2 (z1, z1) + A(0)
2 (z2, z2))

We focused on two theories,      theory and SU(2) theory with four flavors.       theory is a free theory with 
four hypermultiplets and is also used in Gaiotto’s construction as a building block for generalized quiver 
theories.  

T2 T2



REMODELING THE B-MODEL
Let us focus on      theory more closely. According to the remodeling T2

W(0)
1 (z1)dz1 = λSW (z1)

where we use the Seiberg-Witten differential coming from the M-theory description. We compute 1-, 2- and 
3-functions using this differential

A(0)
1 (z) = α1 log(z) +

−α2
0 + α2

1 + α2
2

2α1
z − (α4

0 − 3α4
1 − 6α2

1α
2
2 + α4

2 + 2α2
0(α2

1 − α2
2))

16α3
1

z2 + · · ·

The computation of higher point function, even at genus g=0, is more involved and requires the Bergman 
kernel

W(0)
2 (z1, z2) dz1dz2 = B(z1, z2)−

dz1dz2

2(z1 − z2)2

A(0)
2 (z1, z2) =

α4
0 + (α2

1 − α2
2)2 − 2α2

0(α2
1 + α2

2)
16α4

1

z1z2+

+
(α2

0 + α2
1 − α2

2)(α2
0α

2
1 + (α2

1 − α2
2)2 − 2α2

0(α2
1 + α2

2))
32α6

1

(z2
1z2 + z1z

2
2) + · · ·

and gives



REMODELING THE B-MODEL

A(0)
3 (z1, z2, z3) =

(α2
0 − α2

2)(α4
0 + (α2

1 − α2
2)2 − 2α2

0(α2
1 + α2

2)
α7

1

z1z2z3 + · · ·

We computed the 3-point function at genus g=0, and one point function at genus g=1. The 
corresponding differentials are quite involved but after integrating

and

A(1)
1 (z) =

α4
0 + (α2

1 − α2
2)2 − 2α2

0(α2
1 + α2

2)
32α5

1

z2+

+
(3α2

1 + 5(α2
0 − α2

2)2)(α4
0 + (α2

1 − α2
2)2 − 2α2

0(α2
1 + α2

2)
96α7

1

z3 + · · ·

After plugging in these results in the proposed way we found complete agreement with our computations 
based on AGGTV



REFINED TOPOLOGICAL VERTEX 
&

A-MODEL COMPUTATION



TOPOLOGICAL VERTEX

Divide the toric diagram into 
trivalent vertices

Compute the amplitude of each 
vertex

Glue the amplitudes with 
appropriate propagators to obtain 
the full amplitude

Z(V1, V2, V3) =
∑

λ,µ,ν

Cλµν trλV1 trµV2 trνV3

Vi = P exp
[∮

A

]
I,AKMV



REFINED TOPOLOGICAL VERTEX

F =
∑

β∈H2(X,Z)

∞∑

k=1

∑

jL

(−1)2jLN jL

β e−kTβ

(
q−2jLk + . . . + q+2jLk

k(qk/2 − q−k/2)2

)
, q = eigs

According to the Gopakumar&Vafa formulation of the topological string theory, the free energy can be 
written in following form

The refinement (Hollowood, Iqbal & Vafa) of this form is motivated by the LMSN partition function

F =
∑

β∈H2(X,Z)

∞∑

k=1

∑

jL,jR

e−kTβ

(−1)2jL+2jRN (jL,jR)
β

(
(t q)−kjL + . . . + (t q)+kjL

) ((
t
q

)−kjR

+ . . . +
(

t
q

)+kjR
)

k(qk/2 − q−k/2)(tk/2 − t−k/2)

with                 denoting the degeneracy of particles of spin                                                                     coming 
from a specific curve      in M-theory compactification down to 5d. 

q = eiε1 , and t = e−iε2

ε1 + ε2 = 0

N (jL,jR)
β

(jL, jR) ∈ SU(2)L × SU(2)R # SO(4)
β



CHIRAL TODA 3-POINT FUNCTIONS
Benini, Benvenuti & Tachikawa proposed that a certain N-junction (web-diagram of N NS5,D5 and (1-1) 5-
branes) in type IIB describe the 5d version of       . The dual diagrams turn out to be toric diagrams of 
certain Calabi-Yau 3folds.
N=2

As a first check we analyse the T2 case using the refined topological vertex to
compute the topological string partition function of the toric geometry in figure 1.
The partition function for this geometry in the unrefined case was first computed in
[45] (see also [46]).

Q1

Q3
Q2

Figure 2: Closed topological vertex with a choice of preferred direction.

Using the notation and preferred direction as in figure 2, the partition function for
the T2 geometry, sometimes called the closed topological vertex, can be computed8

Z ′
T2

=
∑

λ

(−Q1)
|λ|q

‖λ‖2

2 t
‖λt‖2

2 Z̃λ(t, q)Z̃λt(q, t)
∞∏

i,j=1

(1−Q2 q−ρj t−λt
j−ρi)(1−Q3 q−λj−ρit−ρj )

(1 − Q2Q3 q−ρi−1/2t−ρj+1/2)

=
∞∏

i,j=1

(1 − Q1 q−ρit−ρj )(1 − Q2 q−ρit−ρj )(1 − Q3 q−ρit−ρj )(1 − Q1Q2Q3 q−ρit−ρj )

(1−Q1Q2 q−ρi+
1
2 t−ρj−

1
2 )(1−Q1Q3 q−ρi+

1
2 t−ρj−

1
2 )(1−Q2Q3 q−ρi−

1
2 t−ρj+

1
2 )

,

=
∞∏

i,j=1

(1−Q1Q2 qρi+
1
2 t−ρj−

1
2 )(1−Q1Q3 qρi+

1
2 t−ρj−

1
2 )(1−Q2Q3 qρi−

1
2 t−ρj+

1
2 )

(1 − Q1 qρit−ρj )(1 − Q2 qρit−ρj )(1 − Q3 qρit−ρj )(1 − Q1Q2Q3 qρit−ρj )
, (5.3)

where in the final equality we have used the analytic continuation

∞∏

i,j=1

(1 − Qq−ρit−ρj ) =
∞∏

i,j=1

(1 − Qq−ρitρj )−1. (5.4)

The product expressions in (5.3) have a clear interpretation in terms of contributions
coming from wrapping various combinations of the three 2-cycles with Kähler classes
Qi.

There exists an alternative way to obtain topological string partition functions using
a relation to statistical models of crystal melting [47]. In this approach one also obtains

8The equivalence of the product representation with the refined vertex computation has been
verified up to fifth order in each Kähler parameter with the aid of a computer code. Our expression
also reduces to the result in [45] when q = t as required for consistency.
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The refined topological string partition function is (up to the refined MacMahon factor)

This expression is the q-deformed version of the Liouville theory chiral 3-point function

Z =
∞∏

i,j=1

(1−Q1Q2 qρi+ 1
2 t−ρj− 1

2 )(1−Q1Q3 qρi+ 1
2 t−ρj− 1

2 )(1−Q2Q3 qρi− 1
2 t−ρj+ 1

2 )
(1−Q1 qρit−ρj )(1−Q2 qρit−ρj )(1−Q3 qρit−ρj )(1−Q1Q2Q3 qρit−ρj )

Q = e−2Rm, qρi = e2R(i− 1
2 )ε1 and tρj = e−2R(j− 1

2 )ε2Choosing                                                                                          , and taking the limit            , the partition 
function can be written in terms of Barnes double gamma function

R→ 0

Γ2(−α1 + α2 + α3)Γ2(α1 − α2 + α3)Γ2(α1 + α2 − α3)Γ2(α1 + α2 + α3 −Q)
Γ2(Q/2)Γ2(2α1)Γ2(2α2)Γ2(2α3)

Chiral 3-point 
function of the 
Liouville theory

Γ2(x) ≡ Γ2(x|ε1, ε2) ∝
∞∏

i,j=0

(x + i ε1 + j ε2)−1

TN



CHIRAL TODA 3-POINT FUNCTIONS
Although this approach can be continued to higher rank, the computations are not only technically more 
involved but also the general 3-point functions of higher rank Toda theories are not known to compare with 
and 4d limit is very subtle.

T3

Hence there is a natural definition of a chiral three–point function in the Liouville
theory as the “square root” of (5.11). We see that this expression agrees with the
numerator in (5.10). Let us also mention that in [23] the three-point function was
analysed from the matrix model perspective, essentially obtaining the same expression
as in (5.10) (modulo some subtle points that still need to be clarified).

Finally, we observe that if one chooses δ = 1 in (5.5), then the resulting expression
for the partition function precisely agrees with the chiral three-point function in (6.21)-
(6.22) in [51].

For the higher rank TN cases the situation is much more involved. For instance,
consider the T3 theory. In this case the toric diagram is

Figure 3: The toric diagram for the T3 geometry.

In the four-dimensional limit this theory should reduce [2] to the E6 theory first
constructed in [52]. Not much is known about this strongly-coupled theory (see however
[53] for a recent result). It is easy to see that the toric diagram in figure 3 corresponds
to an SU(2) theory with Nf = 5 in d = 5. This connection is not surprising since it was
argued in [54] that the 5d SU(2) theory with Nf = 5 is related to a five-dimensional
version of the E6 theory.

It is technically difficult to study the above toric T3 geometry. But as a first
consistency check one can verify that the total number of independent Kähler classes
in the toric geometry agrees with the counting of parameters in the Toda three-point
functions in section 3.4. However, one obstacle is that the corresponding three-point
functions on the Toda side are not known. Even though an explicit product formula is
not possible (because of the presence of a non-trivial four-cycle in the geometry), one
can still write down the vertex computation for the above geometry. But, it is not clear
what (if anything) the result should correspond to in the A2 Toda theory. It may be
that the patch in moduli space where the vertex computation is applicable is not the
relevant patch for the comparison with the Toda result. Furthermore, to get results in
the usual Toda theory (rather than in some q-deformed version) one should take the
limit to four dimensions which may be subtle for this theory.
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However, to get more insight we can consult Gaiotto’s construction

SU(N) withNf = 2N

5.2 Some facts about the geometric engineering of SU(N) theories

In this section we briefly review the toric geometries that engineer N = 2 SU(N)
theories. We first recall that the SU(N) theory with Nf = 2N can be engineered by
the following toric geometry

Figure 4: The toric version of SU(N) with Nf = 2Nc.

The partion function for this geometry (which agrees with the Nekrasov instanton
partition) can be computed by gluing the left and right parts (each of which is a strip)
along the dotted line using the refined topological vertex (see e.g. [20] for a discussion).

Each of the two strips in the above geometry is related to special case of the TN

theory. This follows from the fact that in Gaiotto’s language the SU(N) theory with
Nf = 2N theory is obtained via compactification on a sphere C with four punctures
(two basic U(1) punctures and two full SU(N) punctures). In the weakly coupled
degeneration limit where C splits into two spheres, each sphere has one basic and two
full punctures (one full puncture comes from the degeneration of the thin neck). Each
spehere corresponds to a degenerate TN theory with one basic U(1) puncture and two
full SU(N) punctures. We will refer to this theory as T̃N . Via the AGT conjecture,
the T̃N theory is related to a (chiral) AN−1 Toda three-point function with one of the
three primary fields of a special type [4].

Let us give some details for the T̃2 case. The relevant toric strip diagram for T̃2 is
given in figure 5.

The partition function for this strip is

Z ′
eT2

=
∞∏

i,j=1

(1−Q1 q−ρit−ρj )(1−Qf q−ρit−ρj )(1−Q2 q−ρit−ρj )(1−Q1QfQ2 q−ρit−ρj )

(1 − Q1Qf q−ρi+1/2t−ρj−1/2)(1 − QfQ2 q−ρi−1/2t−ρj+1/2)
.

(5.12)

Clearly this partition function for the T̃2 geometry does not agree with the one for the
T2 geometry (5.3) (the closed topological vertex), even though in this case all three
punctures are of the same type (basic). The latter geometry treats all punctures on
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Strips



CHIRAL TODA 3-POINT FUNCTIONS
We can compute the topological string partition function explicitly using the refined topological vertex

Qf,1
Q1 Q2

QN

Figure 7: Surface operator in T̃N

where the Kähler parameters Qα,β are:

Qαiαj = Qij (5.27)

Qαiβj = QijQj

Qβiαj = QijQ
−1
i ,

Qβiβj = QijQ
−1
i Qj ,

with Qij =
∏j−1

k=i QkQf,k.
We insert m branes on one of the external legs. In the strip language, this corre-

sponds to setting all the representations trivial except one, say α1 = α. As before we
can show that the coefficients Ck(α, •) match the q-shifted factorials in the definition
of the q-deformed hypergeometric function. Notice that there are r = N factors in
the numerator and s = N − 1 in the denominator. Finally the prefactor sα can be
reproduced following the argument given above.

We close this section by sketching how to extend the above results to the refined
case. The starting point is the refined strip partition function for the T̃N geometry
[57]:

Kα1α2...
β1β2... =

∏

a

[
q

‖αa‖2

2 t
‖βa‖2

2 Z̃αa(t, q)Z̃βa(q,t)

]

×
∞∏

i,j=1

∏

1≤a≤b≤N

(
1 − Qαaβb

t−αt
a,i+j−1/2q−βt

b,j+i−1/2
) ∏

1≤a<b≤N

(
1 − Qβaαb

t−βa,i+j−1/2q−αb,j+i−1/2
)

×
∏

1≤a<b≤N

(
1 − Qαaαb

t−αt
a,i+jq−αb,j+i−1

)−1 (
1 − Qβaβb

t−βa,i+j−1q−βt
b,j+i

)−1

, (5.28)

where Z̃ν(t, q) =
∏

s∈ν(1 − ta(s)+1q$(s))−1. We set all the representations trivial except
one, say βN = β. To match to the qt-deformed hypergeometric (5.20), we need to
normalize the above amplitude by the closed one, in this way we are left with N
factors in the numerator and N − 1 in the denominator, as in the unrefined case.
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Let us focus on N=2 and compare with     , at first they do not agree 

T̃N

T2

Z ′eT2
=

∞∏

i,j=1

(1−Q1 q−ρit−ρj )(1−Qf q−ρit−ρj )(1−Q2 q−ρit−ρj )(1−Q1QfQ2 q−ρit−ρj )
(1−Q1Qf q−ρi+1/2t−ρj−1/2)(1−QfQ2 q−ρi−1/2t−ρj+1/2)

"= ZT2

However, we are allowed to rescale each vertex operators by an arbitrary function of their momenta and 
AGT is not sensitive to this rescaling, i.e.,      strip also agrees with the chiral 3-point function. T̃2

This geometry allows to compute open topological string amplitudes in the presence of toric branes



TORIC BRANES ON THE STRIP
We can insert a single toric brane on one of the external legs of the strip and label it with partition of a 
single column 

Qf,1
Q1 Q2

α

QN

Figure 7: Surface operator in T̃N

where the Kähler parameters Qα,β are:

Qαiαj = Qij (5.27)

Qαiβj = QijQj

Qβiαj = QijQ
−1
i ,

Qβiβj = QijQ
−1
i Qj ,

with Qij =
∏j−1

k=i QkQf,k.
We insert m branes on one of the external legs. In the strip language, this corre-

sponds to setting all the representations trivial except one, say α1 = α. As before we
can show that the coefficients Ck(α, •) match the q-shifted factorials in the definition
of the q-deformed hypergeometric function. Notice that there are r = N factors in
the numerator and s = N − 1 in the denominator. Finally the prefactor sα can be
reproduced following the argument given above.

We close this section by sketching how to extend the above results to the refined
case. The starting point is the refined strip partition function for the T̃N geometry
[57]:

Kα1α2...
β1β2... =
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a

[
q

‖αa‖2

2 t
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2 Z̃αa(t, q)Z̃βa(q,t)

]

×
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∏
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) ∏
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(
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)

×
∏
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(
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t−αt
a,i+jq−αb,j+i−1

)−1 (
1 − Qβaβb

t−βa,i+j−1q−βt
b,j+i

)−1

, (5.28)

where Z̃ν(t, q) =
∏

s∈ν(1 − ta(s)+1q$(s))−1. We set all the representations trivial except
one, say βN = β. To match to the qt-deformed hypergeometric (5.20), we need to
normalize the above amplitude by the closed one, in this way we are left with N
factors in the numerator and N − 1 in the denominator, as in the unrefined case.
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T̃N with a brane

For N=2, in the unrefined case we recover (in the 4d limit) the conformal block with three primary and one 
degenerate operator insertions

Zopen(z) =
∞∑

n=0

znZ(n)(Q1, Q2, Qf , q) Z(n)(Q1, Q2, Qf , q) =
n∏

k=1

(1−Q1 qk)(1−Q1Q2Qf qk)
(1− qk)(1−Q1Qf qk)with

This computation is generalized to the refined case with multiple surface operator insertions as previously 
anticipated by Gukov

}
In the 4d limit, this gives 3 Pochhammer symbols

}

In the 4d limit, this gives the hypergeometric function 2F1



CONFORMAL FIELD THEORY 
APPROACH



CFT APPROACH
The instanton counting needs to be extended to include surface operators for a full fledged gauge theory 
understanding of AGGTV. We still can gain some insight using AGT & AGGTV together from CFT’s.

In the perturbative approach, for SU(2) with four hypermultiplets, AGGTV tells us to look at 

〈α1|Vα2 |σ〉〈σ|Vα3 |α4 + b/2〉〈α4 + b/2|V−b/2|α4〉 = 〈α1|Vα2 |σ〉〈σ|Vα|σ̃〉〈σ̃|Vα3 |α4〉|σ̃=α4+b/2,α3=−b/2

Through AGT this 5-point function is 
related to                             quiver gauge 
theory 

SU(2)× SU(2)
These restrictions can be 
translated into gauge theory

This can be generalized immediately to higher rank, i.e., SU(N)× SU(N)
∞∑

!=0

∑

"Y

y|"Y |z!
2∏

n,m=1

∏

s∈Yn

[E(â1
n, Yn, W, s)−m4 − ε]

∏3
f=1 P (â1

n, Yn, s,mf )
E(â1

n − â1
m, Yn, Ym, s)[E(â1

n − â1
m, Yn, Ym, s)− ε]

×
∏

t∈W

[−E(−â1
m, W, Ym, t)−m4]

[m4 −m3 + ε + ε2 (p− 1)][ε2 p]
4d 2d



CFT APPROACH
We can focus on the terms with           then we obtain the usual instanton expansion of SU(N) theory.  ! = 0

We can also focus on the terms with               then we reproduce ‘2d instanton part’ |!Y | = 0

Z2d inst =
∞∑

!=0

(A1)!(A2)!

(B1)!

z!

!!

Note the agreement with the topological vertex computation

Dimofte, Gukov & Hollands and Taki proposed a bubbling description supporting this CFT approach 



CONCLUSION

The B-model topological recursion can be used to compute CFT correlation function with 
degenerate insertions

The A-model computations are mirror of the B-model, and the (refined) topological vertex can 
be used

The Conformal theory approach is based on AGT and AGGTV conjecture and a new approach to 
‘perform’ gauge theory computations 
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