Supersymmetric Heterotic Backgrounds

George Papadopoulos

King's College London

5th Regional Meeting on String Theory, Crete, June 2009

Work in collaboration with

Jan Gutowski and Ulf Gran

Heterotic	<i>N</i> = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	00000000000	000	00	O	
Motivation					

- ► AdS/CFT
- ► CFT, (conformal deformations)
- String, M-theory compactifications with or without fluxes
- Black hole physics, (Mathur's proposal)
- M-theory, (supersymmetry algebra)
- Geometry; special geometric structures

There is a need for constructing increasingly general supersymmetric backgrounds.

Heterotic	<i>N</i> = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	00000000000	000	00	O	
Outline					

- Solve the Killing spinor equations of the heterotic supergravity in all cases
- ► Give all 1/2 and 1/4 supersymmetric solutions of the heterotic supergravity
- Worldvolume theory and conformal deformations of $AdS_3 \times S^3$
- A uniqueness theorem for fuzzballs
- Report on the status of the classification in type II
- Puzzle with the M-theory supersymmetry algebra

Heterotic	<i>N</i> = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	00000000000	000	00	O	
Method					

Originally the supersymmetric solutions 4-D Einstein-Maxwell supergravity have been found using twistor methods, [Tod].

The Killing spinor equations (KSEs) of simple 5-D supergravity have been solved using the Killing spinor form bi-linears, closely related to G-structures, [Gauntlett, Gutowski, Hull, Pakis, Reall].

Throughout, the Spinorial Geometry method to solving KSEs is used, [Gillard, Gran, GP].

This is based on the gauge symmetry of KSEs and a description of spinors in terms of forms.

Heterotic	<i>N</i> = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	00000000000	000	00	O	
Killing s	pinor equations				

The Killing spinor equations of Heterotic supergravities are

$$\mathcal{D}\epsilon = \hat{\nabla}\epsilon = \nabla\epsilon + \frac{1}{2}H\epsilon + \mathcal{O}(\alpha') = 0 , \quad \mathcal{F}\epsilon = F\epsilon + \mathcal{O}(\alpha') = 0 ,$$
$$\mathcal{A}\epsilon = d\Phi\epsilon - \frac{1}{2}H\epsilon + \mathcal{O}(\alpha') = 0$$

These are valid up to 2-loops in the sigma model calculation. It is convenient to solve them in the order

gravitino \rightarrow gaugino \rightarrow dilatino

The gravitino and gaugino have a straightforward Lie algebra interpretation while the solution of the gaugino is more involved. All have been solved [Gran, Lohrmann, GP; hep-th/0510176], [Gran, Roest, Sloane, GP; hep-th/0703143].

Heterotic	<i>N</i> = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	00000000000	000	00	O	

Gravitino and dilatino

The gravitino Killing spinor equation is

$$\mathcal{D}\epsilon = \hat{
abla}\epsilon =
abla\epsilon + rac{1}{2}H\epsilon = 0$$

where $\hat{\nabla}$ is a metric connection with skew-symmetric torsion *H*, and so for generic backgrounds

$$\operatorname{hol}(\hat{\nabla}) = G = \operatorname{Spin}(9,1)$$

In addition

$$\hat{\nabla}\epsilon = 0 \Rightarrow \hat{R}\epsilon = 0$$

So either

$$\operatorname{Stab}(\epsilon) = \{1\} \Longrightarrow \hat{R} = 0$$

all spinors are parallel and M is parallelizable (group manifold if dH = 0) or

 $\begin{aligned} & \operatorname{Stab}(\epsilon) \neq \{1\} \Longrightarrow \epsilon \text{ singlets} \\ & \operatorname{Stab}(\epsilon) \subset \operatorname{Spin}(9,1) \text{ and } \operatorname{hol}(\hat{\nabla}) \subseteq \operatorname{Stab}(\epsilon). \end{aligned}$

Heterotic	N = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	0000000000	000	00	0	

Solutions of both gravitino and dilatino KSEs can be summarized as follows:

L	$\operatorname{Stab}(\epsilon_1,\ldots,\epsilon_L)$	Ν
1	$Spin(7) \ltimes \mathbb{R}^8$	1(1)
2	$SU(4)\ltimes \mathbb{R}^8$	1(1), 2(1)
3	$Sp(2)\ltimes \mathbb{R}^8$	1(1), 2(1), 3(1)
4	$(\times^2 SU(2)) \ltimes \mathbb{R}^8$	1(1), 2(1), 3(1), 4(1)
5	$SU(2)\ltimes \mathbb{R}^8$	1(1), 2(1), 3(1), 4(1), 5(1)
6	$U(1)\ltimes \mathbb{R}^8$	1(1), 2(1), 3(1), 4(1), 5(1), 6(1)
8	\mathbb{R}^{8}	1(1), 2(1), 3(1), 4(1), 5(1), 6(1), 7(1), 8(1)
2	G_2	1(1), 2(1)
4	SU(3)	1(1), 2(2), 3(1), 4(1)
8	SU(2)	1(1), 2(2), 3(3), 4(6), 5(3), 6(2), 7(1), 8(1)
16	{1}	8(2), 10(1), 12(1), 14(1), 16(1)

▶ *L* is the number of parallel spinors, it solutions of the gravitino and *N* is the number of solutions of both gravitino and dilatino, so $N \leq L$.

• The number in parenthesis denotes the different geometries for a given *N*.

000 000000000 000 000 0	000	

- ► There are differences with the holonomy groups that appear in the Berger classification
- There are compact and non-compact isotropy groups which lead to geometries with different properties
- There is a restriction on the number of parallel spinors.
- The isotropy group of more than 8 spinors is {1}
- The conditions on the geometry of the spacetime which arise from the KSEs are known in all cases

Heterotic 00●		<i>N</i> = 8 backgrounds	N = 4 backgrounds 000	D = 11 00	IIB O	Conclusion
	L	$\operatorname{Stab}(\epsilon_1,\ldots,\epsilon_L)$		N		
	1	$Spin(7) \ltimes \mathbb{R}^8$		1(1)		-
	2	$SU(4)\ltimes \mathbb{R}^8$		1(1), 2(1)		-
	3	$Sp(2) \ltimes \mathbb{R}^8$	1(1), 2(1), 3(1)		-
	4	$(\times^2 SU(2))\ltimes \mathbb{R}^8$	1(1),	2(1), 3(1), 4(1)	-
	5	$SU(2)\ltimes \mathbb{R}^8$	1(1), 2(1	1), 3(1), 4(1),	5(1)	-
	6	$U(1)\ltimes \mathbb{R}^8$	1(1), 2(1),	3(1), 4(1), 5(1), 6(1)	-
	8	\mathbb{R}^{8}	1(1), 2(1), 3(1),	4(1), 5(1), 6(1), 7(1), <mark>8(1)</mark>	-
	2	G_2		1(1), 2(1)		-
	4	<i>SU</i> (3)	1(1),	2(2), 3(1), 4(1)	-
	8	SU(2)	1(1), 2(2), 3(3),	4(6) , 5(3), 6(2)	2), 7(1), 8(1)	-
	16	{1}	8(2), 10(1)	, 12(1), 14(1)	, 16(1)	-

• If the isotropy group is the identity, the 1/2 susy solutions are WZNW models.

Heterotic	N = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	$\bigcirc \bigcirc $	000	00	O	
N O	CU(2)				

N=8, SU(2)

The solution of the conditions that arise from the Killing spinor equations [GP] give

$$ds^{2} = \eta_{ab}\lambda^{a}\lambda^{b} + h \, ds^{2}_{hk} , \quad e^{2\Phi} = h$$

$$H = \frac{1}{3}\eta_{ab}\lambda^{a} \wedge d\lambda^{b} + \frac{2}{3}\eta_{ab}\lambda^{a} \wedge \mathcal{F}^{b} - \star_{hk}\tilde{d}h$$

► The spacetime is a Principal bundle $M = P(G, B; \pi)$ equipped with local frame (λ^a, e^i) , where λ^a is an anti-self dual instanton connection and

$$\mathcal{F}^a \equiv d\lambda^a - rac{1}{2}H^a{}_{bc}\lambda^b\lambda^c = rac{1}{2}H^a{}_{ij}e^i\wedge e^j$$

- ► The base space *B* is a hyper-Kähler 4-manifold
- ► $\mathfrak{Lie}G = \mathbb{R}^{6,1}$, $\mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{su}(2)$, \mathfrak{cw}_6 , self-dual, [Chamseddine,Figueroa, Sabra]
- Φ depends only on the coordinates of *B*

Heterotic	N = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	0000000000	000	00	0	

Field equations require

$$\star_{\rm hk} dH \equiv -\tilde{\nabla}_{\rm hk}^2 h - \frac{1}{2} \eta_{ab} \,\mathcal{F}_{ij}^a \,\mathcal{F}^{bij} = \frac{\alpha'}{8} \left({\rm tr}\check{R}_{ij}\check{R}^{ij} - {\rm tr}F_{ij}F^{ij} \right) + \mathcal{O}(\alpha'^2)$$

where $\check{\nabla} = \nabla - \frac{1}{2}H$.

Heterotic 000	N = 8 backgrounds	N = 4 backgrounds 000	D = 11 00	IIB O	Conclusions
Solutions					

Suppose that λ is flat, $\mathcal{F} = 0$, and $F = \check{R}$, so dH = 0. There are two classes of solutions.

 $G \times B_{hk}$,

where

$$G = \mathbb{R}^{5,1}$$
, $AdS_3 \times S^3$, CW_6

These include vacua for compactifications to 6 and 3 dimensions.

Heterotic	N = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	0000000000	000	00	0	

The 5-brane solution with flat [Callan, Harvey, Strominger] or curved worldvolume and transverse space B_{hk} . For $B_{hk} = \mathbb{R}^4$

$$\begin{aligned} ds^2 &= ds^2(G) + hds^2(\mathbb{R}^4) , \quad H = \frac{1}{3} \eta_{ab} \lambda^a \wedge d\lambda^b - \star_{hk} \tilde{d}h , \\ e^{2\Phi} &= h , \quad h = 1 + \sum_{\ell} \frac{N_{\ell}}{|x - x_{\ell}|^2} \end{aligned}$$

At infinity is $G \times \mathbb{R}^4$, and $G \times S^3 \times \mathbb{R}$ with linear dilaton near the position of the branes. The 5-brane charge at infinity is $p = \sum_{\ell} N_{\ell}$

Heterotic 000	N = 8 backgrounds	N = 4 backgrounds 000	D = 11	IIB O	Conclusions
New sol	utions				

Again suppose that $F = \check{R}$, ie dH = 0. Take $G = AdS_3 \times S^3$ and λ a $SU(2) = S^3$ instanton on $B_{hk} = \mathbb{R}^4$. Using t'Hooft's ansatz to set

$$C_i^r = (I_r)^j{}_i\partial_j \log(1 + \frac{\rho^2}{|x|^2}), \quad r = 1, 2, 3$$

the smooth 1-instanton solution, $\lambda = dgg^{-1} - gCg^{-1}, g \in SU(2)$,

$$\begin{aligned} ds^2 &= ds^2 (AdS_3) + \delta_{rs} \lambda^r \lambda^s + h ds^2 (\mathbb{R}^4) , \\ H &= d \operatorname{vol}(AdS_3) + \frac{1}{3} \delta_{rs} \lambda^r \wedge d\lambda^s + \frac{2}{3} \delta_{rs} \lambda^r \wedge \mathcal{F}^s - \star_{hk} \tilde{d}h , \\ e^{2\Phi} &= h , \quad h = 1 + 4 \frac{|x|^2 + 2\rho^2}{(|x|^2 + \rho^2)^2} \end{aligned}$$

where ρ is the size of the instanton.

Heterotic N	I = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000 0	000000000000000000000000000000000000000	000	00	0	

This solution $M = AdS_3 \times X_7$ is smooth with one $AdS_3 \times S^3 \times \mathbb{R}^4$ asymptotic region. There is no throat at |x| = 0, the location of the instanton. The dilaton is bounded everywhere on spacetime. Using the ADHM construction, solutions can be constructed that depend on $8\nu - 3$ continuous parameters.

Heterotic	N = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	00000000000	000	00	0	

Worldvolume theory

The worldvolume theory of the N = 8, SU(2) backgrounds can be described in terms of gauged 2-d sigma models with an anomalous gauging [Hull, Spence].

Minimal coupling is not sufficient to gauge the Wess-Zumino term W, dW = 0. To begin, minimal coupling gives

$$W = \frac{1}{6} W_{pqr} (dX^p + C^{a_1} \xi^p_{a_1}) \wedge (dX^q + C^{a_2} \xi^q_{a_2}) \wedge (dX^r + C^{a_3} \xi^r_{a_3}) ,$$

where ξ Killing vector fields, and *C* is a connection which gauges the isometries. Next

$$dW = \frac{1}{2} \xi_a^p H_{pqr} F(C)^a \wedge (dX^q + C^{a_2} \xi_{a_2}^q) \wedge (dX^r + C^{a_3} \xi_{a_3}^r) \neq 0$$

Add non-minimal coupling as

$$W = \frac{1}{6} W_{pqr} (dX^p + C^{a_1} \xi^p_{a_1}) \wedge (dX^q + C^{a_2} \xi^q_{a_2}) \wedge (dX^r + C^{a_3} \xi^r_{a_3}) - u_{ap} (dX^p + C^b \xi^p_b) \wedge F(C)^a, \quad i_{\xi_a} W = du_a$$

Heterotic	N = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	00000000000	000	00	0	

Then

$$dW = -c_{ab}F(C)^a \wedge F(C)^b$$
, $c_{ab} = \xi^M_{(a}u_{b)M}$

If $c \neq 0$, the coupling is anomalous.

The gauging that occurs in the N = 8, SU(2) models is that of the left action on *G*, and so it is anomalous. However, the gauge fields are composite and depend on the scalars of the base space *B*. The anomaly cancels due to an opposite contribution from the base space. Since $F = \check{R}$, the worldvolume supersymmetry is (1,1).

► All the solutions which are of the type $AdS_3 \times X_7$ are exact string solutions, ie the models are ultraviolet finite.

Heterotic 000	N = 8 backgrounds	N = 4 backgrounds 000	D = 11 00	IIB O	Conclusions
Deformation	ns of $AdS_3 \times S^3 \times$	\mathbb{R}^4 ?			

The backgrounds $AdS_3 \times X_7$ and $AdS_3 \times S^3 \times \mathbb{R}^4$ preserve 8 spacetime supersymmetries and both are conformal. Moreover $AdS_3 \times S^3 \times \mathbb{R}^4$ is a WZNW model.

- ► Is there a CFT description of $AdS_3 \times X_7$ as deformation of $AdS_3 \times S^3 \times \mathbb{R}^4$?
- The supergravity analysis suggests that such deformations are the only ones that admit 8 spacetime supersymmetries

Heterotic 000	N = 8 backgrounds	N = 4 backgrounds 000	D = 11 00	IIB O	Conclusions
$N = 8$. \mathbb{R}^8					

There is a choice of coordinates [GP] such that

$$\begin{aligned} ds^2 &= 2e^-e^+ + ds^2(\mathbb{R}^8) , \quad H = d(e^- \wedge e^+) , \\ e^- &= h^{-1}dv , \quad e^+ = du + Vdv + n_i dx^i , \quad e^{2\Phi} = h^{-1} \end{aligned}$$

All components depend on *v* and *x*, and $e_+ = \partial_u$ is Killing. The field equations imply that

$$\partial_i^2 h = \partial_i^2 V = 0$$
, $\partial^2 n_i$, $\partial^i n_i = \partial_v h$

The solutions is a superposition of fundamental strings [Dabholkar, Gibbons, Harvey, Ruis-Ruis], pp-waves and null rotations (also known as chiral null models).

Heterotic 000	N = 8 backgrounds	N = 4 backgrounds 000	D = 11 00	IIB O	Conclusions

Are the 2 charge fuzzballs unique?

These are mostly investigated for the D1 - D5 brane system.

Fuzzball solutions are constructed using a chain of dualities from the heterotic solution of a fundamental string with a pp-wave.

The heterotic solution is found using an ansatz and it is believed that nevertheless is the most general one.

Assuming that the fuzzballs

- preserve 8 spacetime supersymmetries
- ► and have the asymptotic charges of a fundamental string with a pp-wave

the classification theorem for holonomy \mathbb{R}^8 backgrounds implies that there are no other solutions.

If one of the assumptions is removed, the theorem does not hold.

Heterotic 000	<i>N</i> = 8 backgrounds	N = 4 backgrounds $\bullet \circ \circ$	D = 11 00	IIB O	Conclusions
3.7	4 GU(0)				

N=4, SU(2)

The solution of the conditions that arise from the Killing spinor equations give

$$egin{array}{rcl} ds^2&=&\eta_{ab}\lambda^a\lambda^b+h\,ds_4^2\ ,\ H&=&rac{1}{3}\eta_{ab}\lambda^a\wedge d\lambda^b+rac{2}{3}\eta_{ab}\lambda^a\wedge {\cal F}^b-\star_4 ilde dh \end{array}$$

- ► The spacetime is a Principal bundle $M = P(G, B; \pi)$ equipped with an anti-self dual connection $\lambda^a \equiv e^a$ with curvature, \mathcal{F} is either an anti-self-dual instanton or $\mathcal{F} \in \mathfrak{su}(2) \oplus \mathfrak{u}(1)$.
- ► The base space *B* is either hyper-Kähler or Kähler 4-manifold
- $\begin{array}{l} \blacktriangleright \ \mathfrak{Lie}G = \\ \mathbb{R}^{6,1} \ , \ \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{su}(2) \ , \ \mathfrak{cw}_6 \ , \ \mathbb{R}^{2,1} \oplus \mathfrak{su}(2) \ , \ \mathfrak{sl}(2,\mathbb{R}) \oplus \mathbb{R}^3 \ , \ \mathfrak{cw}_4 \oplus \mathbb{R}^2 \end{array}$
- Φ depends not only on the coordinates of *B* but also on the coordinates of the fibre *G*
- These solutions can be thought of as WZNW models with linear dilaton twisted over *B*.

Heterotic	N = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	00000000000	$\bigcirc \bullet \bigcirc$	00	O	
	a(a)				

N = 4, SU(3)

The solution of the conditions that arise from the Killing spinor equations give

$$\begin{aligned} ds^2 &= \eta_{ab}\lambda^a\lambda^b + ds^2(B) , \\ H &= \frac{1}{3}\eta_{ab}\lambda^a \wedge d\lambda^b + \frac{2}{3}\eta_{ab}\lambda^a \wedge \mathcal{F}^b + \pi^*\tilde{H} \end{aligned}$$

- The spacetime is a Principal bundle $M = P(G, B; \pi)$ equipped with an connection $\lambda^a \equiv e^a$ with curvature \mathcal{F} .
- $\mathfrak{Lie}G = \mathbb{R}^{3,1}$, $\mathfrak{sl}(2,\mathbb{R}) \oplus \mathbb{R}$, $\mathfrak{su}(2) \oplus \mathbb{R}$, \mathfrak{cw}_4
- Φ depends only on the coordinates of *B*
- ▶ If *G* is abelian, *B* is a complex, conformally balanced, with an SU(3)-structure compatible with a skew-symmetric connection with torsion, and $\mathcal{F} \in \mathfrak{su}(3)$. (CYs with torsion)
- ▶ If *G* non-abelian, *B* is a complex , conformally balanced, with a U(3)-structure compatible with a skew-symmetric connection with torsion, and $\mathcal{F} \in \mathfrak{su}(3) \oplus u(1)$ (Hermitian-Einstein).

Heterotic 000	<i>N</i> = 8 backgrounds 00000000000	N = 4 backgrounds $\bigcirc \bigcirc \bigcirc$	D = 11	IIB O	Conclusions
$N = 4, \times^2 S$	$U(2)\ltimes \mathbb{R}^8$				

The solution of the conditions that arise from the Killing spinor equations give

$$ds^{2} = 2e^{-}e^{+} + h_{1} d\sigma_{hk}^{2} + h_{2} d\delta_{hk}^{2} ,$$

$$H = d(e^{-} \wedge e^{+}) + \frac{1}{2} h_{ij} e^{-} \wedge e^{i} \wedge e^{j} - \star_{\sigma} dh_{1} - \star_{\delta} dh_{2}$$

$$e^{-} = (dv + m_{i}x^{i}) , e^{+} = du + V dv + n_{i} dx^{i}$$

where $e_+ = \partial_u$ is a null Killing vector field and e^i is a transverse frame to the lightcone.

► These solutions are in the same universality class as those of rotating intersecting 5-branes with transverse space a hyper-Kähler manifold and superposed with a pp-wave and a fundamental string .

Heterotic 000	<i>N</i> = 8 backgrounds	N = 4 backgrounds 000	D = 11 $\bullet 0$	IIB O	Conclusions
D = 11					

- ► N = 1, the KSEs have been solved in all case [Gauntlett, Pakis, Gutowski]
- ► N > 29, all solutions are maximally supersymmetric [Gutowski, Gran, Roest, GP]
- ► N = 32, the maximally supersymmetric solutions, classified by [Figueroa, GP], are $\mathbb{R}^{10,1}$, $AdS_4 \times S^7$, $AdS_7 \times S^4$, [Freund, Rubin], and the maximally supersymmetric plane wave [Kowalski-Glikman]
- ► IIA, *N* = 31, all solutions are maximally supersymmetric [Bandos, Azcarraga, Varela]

Heterotic	N = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	00000000000	000	$\odot \bullet$	O	
A puzzle					

It has been proposed that the M-theory supersymmetry algebra is

$$\{Q,Q\} = P_M \Gamma^M + Z_{MN} \Gamma^{MN} + Z_{M_1...M_5} \Gamma^{M_1...M_5}$$

where Z's are central charges associated with the brane solitons.

- The brane solitons, M2 and M5, arise as BPS states
- It also predicts states that preserve 31 and 30 supersymmetries but there are no associated supergravity backgrounds.
- ► Is the above superalgebra the right algebraic structure to describe the BPS states of M-theory?

Heterotic	<i>N</i> = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	00000000000	000	00	●	
IIB					

[Gutowski, Gran, Roest, GP]

- N = 1, the KSEs have been solved in all cases
- ▶ N = 2, the KSEs have been solved provided P = G = 0
- ► N = 28, there is a unique plane wave solution constructed by Bena and Roidan
- N > 28, all solutions are maximally supersymmetric
- ▶ N = 32, the maximally supersymmetric solutions, classified by [Figueroa, GP], are $\mathbb{R}^{9,1}$, $AdS_5 \times S^5$ [Freund, Rubin; Schwarz], and the maximally supersymmetric plane wave [Blau, Hull, Figueroa, GP]

Heterotic	<i>N</i> = 8 backgrounds	N = 4 backgrounds	D = 11	IIB	Conclusions
000	00000000000	000	00	O	
Conclusions					

- The Killing spinor equations of heterotic supergravity have been solved in ALL cases.
- The 1/2-supersymmetric heterotic solutions are either fundamental rotating strings superposed with pp-waves, or can be constructed from hyper-Kähler 4-manifolds and their anti-self dual instantons.
- ► The 2 charge fuzzball solution is unique
- ► The 1/4-supersymmetric heterotic solutions are associated with either hyper-Kähler or Kähler 4-manifolds, or suitable 6-manifolds with a either U(3) or SU(3) structure and their anti-self dual instantons or Hermitian-Einstein connections.