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What is black hole entropy?

Thermodynamic entropy

Einstein gravity: Bekenstein-Hawking Area law S = A/4G .

Higher derivative corrections (local effective action): Wald formula.

Quantum (low energy) effects: Sen Proposal. Quantum entropy
function for extremal black holes. Is this testable?
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Black hole entropy as statistical entropy

Macroscopic

String theory being a theory of quantum gravity admits black hole
solutions.

Find a black hole solution to the effective action which carries some
charges {Qi}. Measure its Bekenstein-Hawking (Wald) entropy SBH .

Microscopic

In a different regime of parameter space (weak coupling), find a
microscopic description of a generic state in the theory with the same
charges {Qi}.
Count the number of such states Ω(Qi ) and compute the statistical
entropy Sstat = ln(Ω).
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Black hole entropy in string theory

Four dimensional black holes (Qi ,Pi ) (following Strominger-Vafa)

SBH = π
√

Q2P2 − (Q.P)2. (1)

Corrections to formula (Wald) in inverse powers of charges;
Progress in supergravity, starting from Cardoso, de Wit, Mohaupt 1999.

Ω(q) = exp

(
q2s0 + s1 +

1

q2
s2...

)
. (2)

Here, s1, s2.. non trivial functions of the charges (e.g. Q2/P2).

Detailed understanding on microscopic side as well
Progress in BPS state counting, starting from Dijkgraaf, Verlinde, Verlinde 1994.
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Black hole entropy as statistical entropy

Questions 1 : Beyond perturbation theory?

Can we compute exponentially suppressed corrections to this formula?

Can we understand these effects from the theory of gravity?

Test of the Quantum entropy function proposal.
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Single centered black holes?

Formulation of microscopic partition functions in flat space at weak
coupling involves a representation of a generic charged state as a
collection of strings, branes, momentum...

Assumption – at strong coupling, this configuration gravitates and
forms a black hole.

However, there may exist other solutions in gravity with same charges
(Multi-centered black hole bound states).

The indexed partition function should count all these configurations.

Questions 2

Can one single out the single centered black holes in the microscopic
formulation?

What are the symmetry properties of such a function?
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Wall Crossing

Relatedly, the partition function has a dependence on the moduli of
the theory.

The moduli space is divided into regions bounded by walls.

On crossing these walls, the multi-centered black holes decay, while
the single centered black holes are immortal.

Questions 2, again

Can we extract the immortal configurations from the microscopic
formulation ?

What are the symmetry properties of such a function?
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Aim of the talk

In this talk, I will answer both these sets of questions in the context of
N = 4 string theory in four dimensions.
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Outline

1 Motivation

2 Review of the N = 4 theory

3 Immortal and decaying black holes

4 A Farey tail for N = 4 dyons

5 The immortal partition function as a Mock modular form

6 Summary
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The string theory setup

N = 4 string theory in four dimensions

Heterotic string theory on T 6,

Or equivalently, type IIB on K3× T 2.

U-duality group

G (Z) = O(22, 6; Z)× SL(2,Z). (3)

1/4 BPS Dyons

A dyonic state in the theory is specified by a charge vector

Γi
α ≡

[
Q i

P i

]
(4)

where the index i = 1, . . . , 28 is in the vector representation of the
T-duality group O(22, 6; Z) and α = 1, 2 transforms in the
fundamental representation of the S-duality group SL(2,Z).
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A complete classification of dyons

Continuous invariants

Three T-duality invariants Q2, P2, and Q · P.

Unique quartic invariant of the full U-duality group

∆ = Q2P2 − (Q · P)2. (5)

Discrete invariants

Unique U-duality invariant:

I = gcd(Q ∧ P). (6)

This positive integer is an invariant of G (Z) but not of G (R).
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The dyon degeneracy formula

We focus on I = 1 c.f. arXiv:0803.2692; Atish Dabholkar, João Gomes, Σ.M. for general answer.

Ω(Qi ,Pi )|φ = (−1)Q.P+1

∮
C(φ)

dσdρdv e−iπ(Q2ρ+P2σ+Q.Pv) Z(ρ, σ, v) ,

(7)
with

Z(ρ, σ, v) =
1

Φ10(ρ, σ, v)
. (8)

and C is a specific moduli dependent contour arXiv:0706.2363; Cheng,Verlinde.

Φ10 is the Igusa cusp form, which is the unique weight 10 Siegel modular
form of Sp(2,Z).
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Black hole solutions

The (two-derivative) effective action is given by N = 4 supergravity.

This admits a BPS black hole solution:

ds2 = e−2f (r)dt2 + e2f (r)
(
dr2 + r2dΩ2

)
, (9)

with flux and scalar fields turned on. Near the horizon, the geometry
is AdS2 × S2 and the scalars get fixed.

These black holes carry charges (Qi ,Pi ) and have entropy

SBH =
√

∆
(
1 + O(1/Q2)

)
. (10)

The O(1/Q2) can be computed in the theory with the addition of a
particular higher derivative F-type term from string theory.
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Multi-center solutions

In the N = 4 theory, the only multi-centered configurations that
contribute to the index are the two-centered small black hole bound
states A. Dabholkar, M.Guica, Σ.M.,S.Nampuri arxiv:0903.2481.

These are multi-center configurations with each center being a
half-BPS state and vanishing horizon area in the classical theory.

In the higher-derivative corrected theory, they develop a string scale
horizon.

They carry entropy S =
√

Q2.
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Evaluation of microscopic degeneracy (7)

The evaluation proceeds by performing one contour integral + two
saddle point expansions.

Divisors of Φ10 labelled by four independent integers (n2, n1,m, j),
with n2 ≥ 0.

The contour always encircles the divisors n2 ≥ 1 for any value of the
moduli.

The contribution to the degeneracy is then simply the residue at these
divisors which is Ω ∼ exp(

√
∆/n2).

Leading degeneracy given by n2 = 1 indeed matches the supergravity
computation including higher derivative corrections.
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Walls

Moving around in moduli space corresponds to deforming the Fourier
contour.

This does not change the degeneracy except when one encounters a
pole of the partition function. Crossing a pole corresponds to crossing
a wall in the moduli space.

Here, the only poles which one crosses correspond to the divisors with
n2 = 0.

The jump in the degeneracy is then given by the residue of the
partition function at the pole that is crossed, which is Ω ∼ exp(

√
Q2).

These correspond precisely to the decay of small black hole bound
states.
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Immortal degeneracies

To extract the immortal degeneracies, we should choose a contour
that avoids all the poles which contribute to jumps.

Such a contour is given by setting the asymptotic moduli to the
attractor values φ∞ = φ∗.

Generating function for the immortal dyon degneracies with fixed
(P2 = 2m,Q.P = l)

h∗m,l(τ) = e−πil2/2m
∑

Ω∗(m, n, l)qn . (11)

Degeneracy includes all n2 ≥ 1 contributions.
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Quantum entropy function

Wald’s formalism applies for any local theory of gravity, and computes
power law corrections to the classical entropy formula.

To understand the contributions exp(S0/n2), n2 = 2, 3.., we need a
formalism which goes beyond a local theory of gravity.

For extremal black holes, there has been such a proposal called the
quantum entropy function (QEF) Sen, arXiv:0809.3304.

This proposal relies on the near horizon geometry of an extremal
black hole being AdS2.
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Quantum entropy function

The quantum entropy function d(Qi ) is a Euclidean path integral
over asymptotically AdS2 field configurations with fixed electric
charge Qi , fixed value of the scalar fields at infinity (this includes
magnetic fluxes Pi ), and a Wilson line insertion.

The functional integral runs over all fields in the dimensionally
reduced two-dimensional field theory.

The Euclidean path integral is dominated by the field configuration
corresponding to pure AdS2. In general, there are other saddle points
approaching AdS2 asymptotically, and lead to exponentially
suppressed contributions.

These saddle points do not necessarily correspond to smooth
geometries, but may include (e.g. orbifold) singularities allowed by
the UV completion Banerjee,Sen, arxiv:0810.3472.
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Subleading configurations

In our problem, the black hole is a compactification of an effective
black string.

The near horizon geometry is AdS2 × S1 ×M.

Family of saddle points labelled by integers (c , d): Z/cZ orbifold of
the Euclidean AdS2, accompanied by a translation of angle 2πd/c
along the circle S1. Σ.M.,B.Pioline, arxiv:0904.4253.

For c > 1 and 1 ≤ d < c , the resulting geometry is smooth, and gives
a subleading contribution of order

exp

(
S0

c
+ 2πi Q2 d

c

)
(12)

to the quantum entropy function.
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From AdS2 to AdS3

These geometries are the very-near-horizon limit of the SL(2,Z)
family of black holes in Euclidean AdS3 Maldacena and Strominger hep-th/9804085

related to the Rademacher (Farey tail) expansion of Jacobi forms
Dijkgraaf, Maldacena, Moore, Verlinde hep-th/0005003.

The AdS3 path integral has fixed electric potential (complex structure
of the boundary torus) ⇒ Canonical partition function.

The AdS2 path integral has fixed electric charge ⇒ Microcanonical
partition function.

Our construction can be thought of as the Laplace transform in the
bulk theory.

In the microscopic theory, the integers (c , d) correspond precisely to
(n2, n1). The other two integers (m, j) correspond to similar orbifolds
involving M = S2 × S̃1 × K3.
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The immortal partition function

We are interested in the counting function (11) h∗m,l(τ) for immortal
black holes.

This counting function can be thought of as the partition function of
an effective black string, which upon compactification gives our black
hole.

There is a near horizon AdS3 with an associated SL(2,Z) global
diffeomorphism symmetry.

One expects that the partition function has good modular properties.
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The immortal partition function

Recall that the counting function (11) h∗m,l(τ) for immortal black
holes is a Fourier coefficient of a meromorphic Jacobi form.

h∗m,l(τ) = e−πil2τ/2m

∫ z∗+1

z∗

ψm(τ, z)e−2πilzdz . (13)

Because of the poles, the Fourier coefficient depends on the contour
of integration, and is not modular.

However, theorem of Zwegers + our improvement ⇒ h∗m,l(τ) is a
mock modular form.

A mock modular form is a holomorphic function which transforms
under modular transformations almost but not quite as a modular
form.
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Because of the poles, the Fourier coefficient depends on the contour
of integration, and is not modular.

However, theorem of Zwegers + our improvement ⇒ h∗m,l(τ) is a
mock modular form.

A mock modular form is a holomorphic function which transforms
under modular transformations almost but not quite as a modular
form.
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The holomorphic counting function h∗m,l(τ) is not modular, but it can

be completed to a modular function ĥ∗m,l(τ, τ̄) by adding a certain
specific non-holomorphic function.

It obeys the holomorphic anomaly equation

8πi√
m
τ

3/2
2

∂ĥ∗m,l(τ, τ̄)

∂τ̄
=

p24(m + 1)

η24(τ)
ϑm,l(τ) . (14)

Meromorphy is a reflection of wall crossing. The factors p24(m + 1)
and 1

η24(τ)
are precisely the degeneracy of electric and magnetic small

black holes.
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Summary 1

1 Universal series of exponentially suppressed corrections to the
degeneracy of extremal black holes exp(S0/c), c = 2, 3...

2 When the black hole arises from a black string, this is related to the
Rademacher (Farey tail) expansion of the associated modular form.

Summary 2

1 One can define a holomorphic counting function for counting the
microstates of a single-centered black hole.

2 This counting function is a mock modular form in that it fails to be
modular but in a very specific way. The failure of modularity is
governed by a shadow, which is a holomorphic modular form.
Physically, the shadow governs the jumps in the spectrum upon
crossing a wall in the moduli space.
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Further questions

Canonical mock modular form? – Relation to Hurwitz class numbers.

Jacobi-Rademacher expansion ⇒ Post-modern Farey tail?

More general physical systems with meromorphic Jacobi forms.

N = 2 compactifications? (Here the wall-crossings may be large).
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ΩPA ΦAΓHTOY !
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