Quantum black holes, wall crossing and mock modular forms

Σαμήρ Μούρθη

LPTHE, Paris

Ορθόδοξος Ακαδημία Κρήτης, July 1, 2009

Boris Pioline, **S.M.**; arXiv:0904.4253.

Atish Dabholkar, **S.M.**, Don Zagier; in preparation.

What is black hole entropy?

Thermodynamic entropy

- Einstein gravity: Bekenstein-Hawking Area law S = A/4G.
- Higher derivative corrections (local effective action): Wald formula.
- Quantum (low energy) effects: Sen Proposal. Quantum entropy function for extremal black holes. Is this testable?

A (10) A (10)

What is black hole entropy?

Thermodynamic entropy

- Einstein gravity: Bekenstein-Hawking Area law S = A/4G.
- Higher derivative corrections (local effective action): Wald formula.
- Quantum (low energy) effects: Sen Proposal. Quantum entropy function for extremal black holes. Is this testable?

A B F A B F

What is black hole entropy?

Thermodynamic entropy

- Einstein gravity: Bekenstein-Hawking Area law S = A/4G.
- Higher derivative corrections (local effective action): Wald formula.
- Quantum (low energy) effects: Sen Proposal. Quantum entropy function for extremal black holes. Is this testable?

Black hole entropy as statistical entropy

Macroscopic

- String theory being a theory of quantum gravity admits black hole solutions.
- Find a black hole solution to the effective action which carries some charges {Q_i}. Measure its Bekenstein-Hawking (Wald) entropy S_{BH}.

Microscopic

- In a different regime of parameter space (weak coupling), find a microscopic description of a generic state in the theory with the same charges {Q_i}.
- Count the number of such states Ω(Q_i) and compute the statistical entropy S_{stat} = ln(Ω).

Black hole entropy as statistical entropy

Macroscopic

- String theory being a theory of quantum gravity admits black hole solutions.
- Find a black hole solution to the effective action which carries some charges {Q_i}. Measure its Bekenstein-Hawking (Wald) entropy S_{BH}.

Microscopic

- In a different regime of parameter space (weak coupling), find a microscopic description of a generic state in the theory with the same charges {Q_i}.
- Count the number of such states Ω(Q_i) and compute the statistical entropy S_{stat} = ln(Ω).

(日) (同) (三) (三)

Black hole entropy in string theory

• Four dimensional black holes (Q_i, P_i) (following Strominger-Vafa)

$$S_{BH} = \pi \sqrt{Q^2 P^2 - (Q.P)^2}.$$
 (1)

• Corrections to formula (Wald) in inverse powers of charges;

Progress in supergravity, starting from Cardoso, de Wit, Mohaupt 1999.

$$\Omega(q) = \exp\left(q^2 s_0 + s_1 + \frac{1}{q^2} s_2...\right)$$
 (2)

Here, s_1, s_2 .. non trivial functions of the charges (*e.g.* Q^2/P^2).

• Detailed understanding on microscopic side as well

Progress in BPS state counting, starting from Dijkgraaf, Verlinde, Verlinde 1994.

< ロト < 同ト < ヨト < ヨト

Black hole entropy as statistical entropy

Questions 1 : Beyond perturbation theory?

- Can we compute exponentially suppressed corrections to this formula?
- Can we understand these effects from the theory of gravity?
- Test of the Quantum entropy function proposal.

Single centered black holes?

- Formulation of microscopic partition functions in flat space at weak coupling involves a representation of a generic charged state as a collection of strings, branes, momentum...
- Assumption at strong coupling, this configuration gravitates and forms a black hole.
- However, there may exist other solutions in gravity with same charges (Multi-centered black hole bound states).
- The indexed partition function should count all these configurations.

Questions 2

- Can one single out the single centered black holes in the microscopic formulation?
- What are the symmetry properties of such a function?

(日) (同) (三) (三)

Single centered black holes?

- Formulation of microscopic partition functions in flat space at weak coupling involves a representation of a generic charged state as a collection of strings, branes, momentum...
- Assumption at strong coupling, this configuration gravitates and forms a black hole.
- However, there may exist other solutions in gravity with same charges (Multi-centered black hole bound states).
- The indexed partition function should count all these configurations.

Questions 2

- Can one single out the single centered black holes in the microscopic formulation?
- What are the symmetry properties of such a function?

(日) (同) (三) (三)

Wall Crossing

- Relatedly, the partition function has a dependence on the moduli of the theory.
- The moduli space is divided into regions bounded by walls.
- On crossing these walls, the multi-centered black holes decay, while the single centered black holes are *immortal*.

Questions 2, again

- Can we extract the immortal configurations from the microscopic formulation ?
- What are the symmetry properties of such a function?

(日) (同) (日) (日)

Wall Crossing

- Relatedly, the partition function has a dependence on the moduli of the theory.
- The moduli space is divided into regions bounded by walls.
- On crossing these walls, the multi-centered black holes decay, while the single centered black holes are *immortal*.

Questions 2, again

- Can we extract the immortal configurations from the microscopic formulation ?
- What are the symmetry properties of such a function?

• • = • • = •

Aim of the talk

In this talk, I will answer both these sets of questions in the context of ${\cal N}=4$ string theory in four dimensions.

Outline

Motivation

- 2 Review of the $\mathcal{N} = 4$ theory
- Immortal and decaying black holes
- 4 A Farey tail for $\mathcal{N} = 4$ dyons
- 5 The immortal partition function as a Mock modular form

6 Summary

Outline

Motivation

- **2** Review of the $\mathcal{N} = 4$ theory
 - Immortal and decaying black holes
 - 4) A Farey tail for $\mathfrak{N}=$ 4 dyons
 - 5) The immortal partition function as a Mock modular form

Summary

The string theory setup

- $\ensuremath{\mathbb{N}}=4$ string theory in four dimensions
 - Heterotic string theory on T^6 ,
 - Or equivalently, type IIB on $K3 \times T^2$.
 - U-duality group

$$G(\mathbb{Z}) = O(22, 6; \mathbb{Z}) \times SL(2, \mathbb{Z}).$$
(3)

1/4 BPS Dyons

• A dyonic state in the theory is specified by a charge vector

$$\Gamma^{i}_{\alpha} \equiv \left[\begin{array}{c} Q^{i} \\ P^{i} \end{array} \right] \tag{4}$$

where the index i = 1, ..., 28 is in the vector representation of the T-duality group $O(22, 6; \mathbb{Z})$ and $\alpha = 1, 2$ transforms in the fundamental representation of the S-duality group $SL(2, \mathbb{Z})$.

Sameer Murthy (LPTHE)

A complete classification of dyons

Continuous invariants

- Three T-duality invariants Q^2 , P^2 , and $Q \cdot P$.
- Unique quartic invariant of the full U-duality group

$$\Delta = Q^2 P^2 - (Q \cdot P)^2. \tag{5}$$

Discrete invariants

• Unique U-duality invariant:

$$I = \gcd(Q \wedge P). \tag{6}$$

• This positive integer is an invariant of $G(\mathbb{Z})$ but not of $G(\mathbb{R})$.

A complete classification of dyons

Continuous invariants

- Three T-duality invariants Q^2 , P^2 , and $Q \cdot P$.
- Unique quartic invariant of the full U-duality group

$$\Delta = Q^2 P^2 - (Q \cdot P)^2.$$
⁽⁵⁾

Discrete invariants

• Unique U-duality invariant:

$$I = \gcd(Q \land P). \tag{6}$$

• This positive integer is an invariant of $G(\mathbb{Z})$ but not of $G(\mathbb{R})$.

A B A A B A

The dyon degeneracy formula

We focus on $I = 1 \ c.f.$ arXiv:0803.2692; Atish Dabholkar, João Gomes, S.M. for general answer.

$$\Omega(Q_i, P_i)|_{\phi} = (-1)^{Q.P+1} \oint_{\mathcal{C}(\phi)} d\sigma d\rho dv \, e^{-i\pi \left(Q^2 \rho + P^2 \sigma + Q.P_V\right)} Z(\rho, \sigma, v) ,$$
(7)
with
$$Z(\rho, \sigma, v) = \frac{1}{\Phi_{10}(\rho, \sigma, v)} .$$
(8)

and ${\mathcal C}$ is a specific moduli dependent contour $_{\rm arXiv:0706.2363;\ Cheng,Verlinde.}$

 Φ_{10} is the *Igusa cusp form*, which is the unique weight 10 Siegel modular form of $Sp(2,\mathbb{Z})$.

Sameer Murthy (LPTHE)

Quantum black holes

イロト 不得下 イヨト イヨト 二日

The dyon degeneracy formula

We focus on $I = 1 \ c.f.$ arXiv:0803.2692; Atish Dabholkar, João Gomes, S.M. for general answer.

$$\Omega(Q_i, P_i)|_{\phi} = (-1)^{Q.P+1} \oint_{\mathcal{C}(\phi)} d\sigma d\rho dv \, e^{-i\pi \left(Q^2 \rho + P^2 \sigma + Q.Pv\right)} Z(\rho, \sigma, v) ,$$
(7)
with
$$Z(\rho, \sigma, v) = \frac{1}{\Phi_{10}(\rho, \sigma, v)} .$$
(8)

and ${\mathcal C}$ is a specific moduli dependent contour $_{\rm arXiv:0706.2363;\ Cheng,Verlinde.}$

 Φ_{10} is the *Igusa cusp form*, which is the unique weight 10 Siegel modular form of $Sp(2,\mathbb{Z})$.

Sameer Murthy (LPTHE)

Quantum black holes

・ 何 ト ・ ヨ ト ・ ヨ ト

Outline

Motivation

- 2 Review of the $\mathcal{N}=4$ theory
- Immortal and decaying black holes
 - 4) A Farey tail for $\mathfrak{N}=$ 4 dyons
 - 5) The immortal partition function as a Mock modular form

Summary

Black hole solutions

- The (two-derivative) effective action is given by $\mathcal{N}=4$ supergravity.
- This admits a BPS black hole solution:

$$ds^{2} = e^{-2f(r)}dt^{2} + e^{2f(r)}\left(dr^{2} + r^{2}d\Omega^{2}\right),$$
(9)

with flux and scalar fields turned on. Near the horizon, the geometry is $AdS_2 \times S^2$ and the scalars get fixed.

• These black holes carry charges (Q_i, P_i) and have entropy

$$S_{BH} = \sqrt{\Delta} \left(1 + O(1/Q^2) \right) . \tag{10}$$

• The $O(1/Q^2)$ can be computed in the theory with the addition of a particular higher derivative F-type term from string theory.

Black hole solutions

- The (two-derivative) effective action is given by $\mathcal{N}=4$ supergravity.
- This admits a BPS black hole solution:

$$ds^{2} = e^{-2f(r)}dt^{2} + e^{2f(r)}\left(dr^{2} + r^{2}d\Omega^{2}\right), \qquad (9)$$

with flux and scalar fields turned on. Near the horizon, the geometry is $AdS_2 \times S^2$ and the scalars get fixed.

• These black holes carry charges (Q_i, P_i) and have entropy

$$S_{BH} = \sqrt{\Delta} \left(1 + O(1/Q^2) \right)$$
 (10)

• The $O(1/Q^2)$ can be computed in the theory with the addition of a particular higher derivative F-type term from string theory.

Multi-center solutions

- In the $\mathcal{N} = 4$ theory, the only multi-centered configurations that contribute to the index are the two-centered small black hole bound states A. Dabholkar, M.Guica, Σ .M.,S.Nampuri arxiv:0903.2481.
- These are multi-center configurations with each center being a half-BPS state and vanishing horizon area in the classical theory.
- In the higher-derivative corrected theory, they develop a string scale horizon.
- They carry entropy $S = \sqrt{Q^2}$.

- The evaluation proceeds by performing one contour integral + two saddle point expansions.
- Divisors of Φ₁₀ labelled by four independent integers (n₂, n₁, m, j), with n₂ ≥ 0.
- The contour always encircles the divisors $n_2 \ge 1$ for any value of the moduli.
- The contribution to the degeneracy is then simply the residue at these divisors which is $\Omega \sim \exp(\sqrt{\Delta}/n_2)$.
- Leading degeneracy given by $n_2 = 1$ indeed matches the supergravity computation including higher derivative corrections.

→ 3 → 4 3

- The evaluation proceeds by performing one contour integral + two saddle point expansions.
- Divisors of Φ_{10} labelled by four independent integers (n_2, n_1, m, j) , with $n_2 \ge 0$.
- The contour always encircles the divisors n₂ ≥ 1 for any value of the moduli.
- The contribution to the degeneracy is then simply the residue at these divisors which is Ω ~ exp(√Δ/n₂).
- Leading degeneracy given by $n_2 = 1$ indeed matches the supergravity computation including higher derivative corrections.

(日) (同) (三) (三)

- The evaluation proceeds by performing one contour integral + two saddle point expansions.
- Divisors of Φ_{10} labelled by four independent integers (n_2, n_1, m, j) , with $n_2 \ge 0$.
- The contour always encircles the divisors n₂ ≥ 1 for any value of the moduli.
- The contribution to the degeneracy is then simply the residue at these divisors which is $\Omega \sim \exp(\sqrt{\Delta}/n_2)$.
- Leading degeneracy given by $n_2 = 1$ indeed matches the supergravity computation including higher derivative corrections.

- The evaluation proceeds by performing one contour integral + two saddle point expansions.
- Divisors of Φ_{10} labelled by four independent integers (n_2, n_1, m, j) , with $n_2 \ge 0$.
- The contour always encircles the divisors n₂ ≥ 1 for any value of the moduli.
- The contribution to the degeneracy is then simply the residue at these divisors which is Ω ~ exp(√Δ/n₂).
- Leading degeneracy given by $n_2 = 1$ indeed matches the supergravity computation including higher derivative corrections.

(日) (周) (三) (三)

- The evaluation proceeds by performing one contour integral + two saddle point expansions.
- Divisors of Φ_{10} labelled by four independent integers (n_2, n_1, m, j) , with $n_2 \ge 0$.
- The contour always encircles the divisors n₂ ≥ 1 for any value of the moduli.
- The contribution to the degeneracy is then simply the residue at these divisors which is Ω ~ exp(√Δ/n₂).
- Leading degeneracy given by $n_2 = 1$ indeed matches the supergravity computation including higher derivative corrections.

(日) (周) (三) (三)

Walls

- Moving around in moduli space corresponds to deforming the Fourier contour.
- This does not change the degeneracy except when one encounters a pole of the partition function. Crossing a pole corresponds to crossing a wall in the moduli space.
- Here, the only poles which one crosses correspond to the divisors with $n_2 = 0$.
- The jump in the degeneracy is then given by the residue of the partition function at the pole that is crossed, which is Ω ~ exp(√Q²).
- These correspond precisely to the decay of small black hole bound states.

(日) (同) (三) (三)

Walls

- Moving around in moduli space corresponds to deforming the Fourier contour.
- This does not change the degeneracy except when one encounters a pole of the partition function. Crossing a pole corresponds to crossing a wall in the moduli space.
- Here, the only poles which one crosses correspond to the divisors with $n_2 = 0$.
- The jump in the degeneracy is then given by the residue of the partition function at the pole that is crossed, which is Ω ~ exp(√Q²).
- These correspond precisely to the decay of small black hole bound states.

Walls

- Moving around in moduli space corresponds to deforming the Fourier contour.
- This does not change the degeneracy except when one encounters a pole of the partition function. Crossing a pole corresponds to crossing a wall in the moduli space.
- Here, the only poles which one crosses correspond to the divisors with $n_2 = 0$.
- The jump in the degeneracy is then given by the residue of the partition function at the pole that is crossed, which is Ω ~ exp(√Q²).
- These correspond precisely to the decay of small black hole bound states.

Immortal degeneracies

- To extract the immortal degeneracies, we should choose a contour that avoids all the poles which contribute to jumps.
- Such a contour is given by setting the asymptotic moduli to the attractor values $\phi_{\infty} = \phi_{*}$.
- Generating function for the immortal dyon degneracies with fixed $(P^2 = 2m, Q.P = I)$

$$h_{m,l}^{*}(\tau) = e^{-\pi i l^{2}/2m} \sum \Omega^{*}(m, n, l) q^{n}.$$
(11)

• Degeneracy includes all $n_2 \ge 1$ contributions.

Sameer Murthy ((LPTHE)
-----------------	---------

イロト 不得下 イヨト イヨト

Immortal degeneracies

- To extract the immortal degeneracies, we should choose a contour that avoids all the poles which contribute to jumps.
- Such a contour is given by setting the asymptotic moduli to the attractor values $\phi_{\infty} = \phi_{*}$.
- Generating function for the immortal dyon degneracies with fixed $(P^2 = 2m, Q.P = I)$

$$h_{m,l}^*(\tau) = e^{-\pi i l^2/2m} \sum \Omega^*(m, n, l) q^n \,. \tag{11}$$

• Degeneracy includes all $n_2 \ge 1$ contributions.

Sameer Murthy	(LPTHE)	
---------------	---------	--

くほと くほと くほと

Outline

Motivation

- 2 Review of the $\mathcal{N}=$ 4 theory
- Immortal and decaying black holes
- 4 A Farey tail for $\mathcal{N} = 4$ dyons
 - 5) The immortal partition function as a Mock modular form

Summary

- Wald's formalism applies for any local theory of gravity, and computes power law corrections to the classical entropy formula.
- To understand the contributions $\exp(S_0/n_2)$, $n_2 = 2, 3...$, we need a formalism which goes beyond a local theory of gravity.
- For extremal black holes, there has been such a proposal called the *quantum entropy function* (QEF) sen, arXiv:0809.3304.
- This proposal relies on the near horizon geometry of an extremal black hole being AdS_2 .

(日) (同) (三) (三)

- Wald's formalism applies for any local theory of gravity, and computes power law corrections to the classical entropy formula.
- To understand the contributions $\exp(S_0/n_2)$, $n_2 = 2, 3...$, we need a formalism which goes beyond a local theory of gravity.
- For extremal black holes, there has been such a proposal called the *quantum entropy function* (QEF) Sen, arXiv:0809.3304.
- This proposal relies on the near horizon geometry of an extremal black hole being AdS_2 .

- The quantum entropy function $d(Q_i)$ is a Euclidean path integral over asymptotically AdS_2 field configurations with fixed electric charge Q_i , fixed value of the scalar fields at infinity (this includes magnetic fluxes P_i), and a Wilson line insertion.
- The functional integral runs over all fields in the dimensionally reduced two-dimensional field theory.
- The Euclidean path integral is dominated by the field configuration corresponding to pure AdS_2 . In general, there are other saddle points approaching AdS_2 asymptotically, and lead to exponentially suppressed contributions.
- These saddle points do not necessarily correspond to smooth geometries, but may include (e.g. orbifold) singularities allowed by the UV completion Banerjee,Sen, arXiv:0810.3472.

- The quantum entropy function $d(Q_i)$ is a Euclidean path integral over asymptotically AdS_2 field configurations with fixed electric charge Q_i , fixed value of the scalar fields at infinity (this includes magnetic fluxes P_i), and a Wilson line insertion.
- The functional integral runs over all fields in the dimensionally reduced two-dimensional field theory.
- The Euclidean path integral is dominated by the field configuration corresponding to pure AdS_2 . In general, there are other saddle points approaching AdS_2 asymptotically, and lead to exponentially suppressed contributions.
- These saddle points do not necessarily correspond to smooth geometries, but may include (e.g. orbifold) singularities allowed by the UV completion Banerjee,Sen, arxiv:0810.3472.

22 / 32

Subleading configurations

- In our problem, the black hole is a compactification of an effective black string.
- The near horizon geometry is $AdS_2 \times S^1 \times M$.
- Family of saddle points labelled by integers (c, d): Z/cZ orbifold of the Euclidean AdS₂, accompanied by a translation of angle 2πd/c along the circle S¹. Σ.Μ.,B.Pioline, arXiv:0904.4253.
- For c > 1 and $1 \le d < c$, the resulting geometry is *smooth*, and gives a subleading contribution of order

$$\exp\left(\frac{S_0}{c} + 2\pi i Q^2 \frac{d}{c}\right) \tag{12}$$

to the quantum entropy function.

* (四) * * (日) * * (日)

Subleading configurations

- In our problem, the black hole is a compactification of an effective black string.
- The near horizon geometry is $AdS_2 \times S^1 \times M$.
- Family of saddle points labelled by integers (c, d): Z/cZ orbifold of the Euclidean AdS₂, accompanied by a translation of angle 2πd/c along the circle S¹. Σ.Μ.,B.Pioline, arXiv:0904.4253.
- For c > 1 and $1 \le d < c$, the resulting geometry is *smooth*, and gives a subleading contribution of order

$$\exp\left(\frac{S_0}{c} + 2\pi i Q^2 \frac{d}{c}\right) \tag{12}$$

to the quantum entropy function.

A B F A B F

From AdS_2 to AdS_3

• These geometries are the very-near-horizon limit of the $SL(2,\mathbb{Z})$ family of black holes in Euclidean AdS_3 Maldacena and Strominger hep-th/9804085 related to the Rademacher (Farey tail) expansion of Jacobi forms

Dijkgraaf, Maldacena, Moore, Verlinde hep-th/0005003.

- The AdS₃ path integral has fixed electric potential (complex structure of the boundary torus) ⇒ Canonical partition function.
- The AdS₂ path integral has fixed electric charge ⇒ Microcanonical partition function.
- Our construction can be thought of as the Laplace transform in the bulk theory.
- In the microscopic theory, the integers (c, d) correspond precisely to (n₂, n₁). The other two integers (m, j) correspond to similar orbifolds involving M = S² × Š¹ × K3.

From AdS_2 to AdS_3

• These geometries are the very-near-horizon limit of the $SL(2,\mathbb{Z})$ family of black holes in Euclidean AdS_3 Maldacena and Strominger hep-th/9804085 related to the Rademacher (Farey tail) expansion of Jacobi forms

Dijkgraaf, Maldacena, Moore, Verlinde hep-th/0005003.

- The AdS₃ path integral has fixed electric potential (complex structure of the boundary torus) ⇒ Canonical partition function.
- The AdS₂ path integral has fixed electric charge ⇒ Microcanonical partition function.
- Our construction can be thought of as the Laplace transform in the bulk theory.
- In the microscopic theory, the integers (c, d) correspond precisely to (n₂, n₁). The other two integers (m, j) correspond to similar orbifolds involving M = S² × Š¹ × K3.

(日) (同) (三) (三)

From AdS_2 to AdS_3

• These geometries are the very-near-horizon limit of the $SL(2,\mathbb{Z})$ family of black holes in Euclidean AdS_3 Maldacena and Strominger hep-th/9804085 related to the Rademacher (Farey tail) expansion of Jacobi forms

Dijkgraaf, Maldacena, Moore, Verlinde hep-th/0005003.

- The AdS₃ path integral has fixed electric potential (complex structure of the boundary torus) ⇒ Canonical partition function.
- The AdS₂ path integral has fixed electric charge ⇒ Microcanonical partition function.
- Our construction can be thought of as the Laplace transform in the bulk theory.
- In the microscopic theory, the integers (c, d) correspond precisely to (n₂, n₁). The other two integers (m, j) correspond to similar orbifolds involving M = S² × Š¹ × K3.

(日) (同) (三) (三)

Outline

Motivation

- 2 Review of the $\mathcal{N}=4$ theory
- Immortal and decaying black holes
- 4) A Farey tail for $\mathfrak{N}=$ 4 dyons
- 5 The immortal partition function as a Mock modular form

Summary

• We are interested in the counting function (11) $h_{m,l}^*(\tau)$ for immortal black holes.

• This counting function can be thought of as the partition function of an effective black string, which upon compactification gives our black hole.

• There is a near horizon AdS_3 with an associated $SL(2,\mathbb{Z})$ global diffeomorphism symmetry.

• One expects that the partition function has good modular properties.

4 3 5 4 3

- We are interested in the counting function (11) $h_{m,l}^*(\tau)$ for immortal black holes.
- This counting function can be thought of as the partition function of an effective black string, which upon compactification gives our black hole.

• There is a near horizon AdS_3 with an associated $SL(2,\mathbb{Z})$ global diffeomorphism symmetry.

• One expects that the partition function has good modular properties.

4 E N 4 E N

- We are interested in the counting function (11) $h_{m,l}^*(\tau)$ for immortal black holes.
- This counting function can be thought of as the partition function of an effective black string, which upon compactification gives our black hole.
- There is a near horizon *AdS*₃ with an associated *SL*(2, ℤ) global diffeomorphism symmetry.

• One expects that the partition function has good modular properties.

- We are interested in the counting function (11) $h_{m,l}^*(\tau)$ for immortal black holes.
- This counting function can be thought of as the partition function of an effective black string, which upon compactification gives our black hole.
- There is a near horizon AdS_3 with an associated $SL(2,\mathbb{Z})$ global diffeomorphism symmetry.
- One expects that the partition function has good modular properties.

• Recall that the counting function (11) $h_{m,l}^*(\tau)$ for immortal black holes is a Fourier coefficient of a *meromorphic* Jacobi form.

$$h_{m,l}^{*}(\tau) = e^{-\pi i l^{2} \tau/2m} \int_{z_{*}}^{z_{*}+1} \psi_{m}(\tau, z) e^{-2\pi i l z} dz .$$
(13)

• Because of the poles, the Fourier coefficient depends on the contour of integration, and is not modular.

• However, theorem of Zwegers + our improvement $\Rightarrow h_{m,l}^*(\tau)$ is a mock modular form.

• A mock modular form is a holomorphic function which transforms under modular transformations almost but not quite as a modular form.

Sameer Murthy (LPTHE)

Quantum black holes

• Recall that the counting function (11) $h_{m,l}^*(\tau)$ for immortal black holes is a Fourier coefficient of a *meromorphic* Jacobi form.

$$h_{m,l}^{*}(\tau) = e^{-\pi i l^{2} \tau/2m} \int_{z_{*}}^{z_{*}+1} \psi_{m}(\tau, z) e^{-2\pi i l z} dz .$$
(13)

- Because of the poles, the Fourier coefficient depends on the contour of integration, and is not modular.
- However, theorem of Zwegers + our improvement $\Rightarrow h_{m,l}^*(\tau)$ is a mock modular form.
- A mock modular form is a holomorphic function which transforms under modular transformations almost but not quite as a modular form.

Sameer Murthy (LPTHE)

Quantum black holes

27 / 32

• Recall that the counting function (11) $h_{m,l}^*(\tau)$ for immortal black holes is a Fourier coefficient of a *meromorphic* Jacobi form.

$$h_{m,l}^{*}(\tau) = e^{-\pi i l^{2} \tau/2m} \int_{z_{*}}^{z_{*}+1} \psi_{m}(\tau, z) e^{-2\pi i l z} dz .$$
(13)

- Because of the poles, the Fourier coefficient depends on the contour of integration, and is not modular.
- However, theorem of Zwegers + our improvement $\Rightarrow h^*_{m,l}(\tau)$ is a mock modular form.
- A mock modular form is a holomorphic function which transforms under modular transformations almost but not quite as a modular form.

27 / 32

• Recall that the counting function (11) $h_{m,l}^*(\tau)$ for immortal black holes is a Fourier coefficient of a *meromorphic* Jacobi form.

$$h_{m,l}^{*}(\tau) = e^{-\pi i l^{2} \tau/2m} \int_{z_{*}}^{z_{*}+1} \psi_{m}(\tau, z) e^{-2\pi i l z} dz .$$
(13)

- Because of the poles, the Fourier coefficient depends on the contour of integration, and is not modular.
- However, theorem of Zwegers + our improvement $\Rightarrow h^*_{m,l}(\tau)$ is a mock modular form.
- A mock modular form is a holomorphic function which transforms under modular transformations almost but not quite as a modular form.

Sameer Murthy (LPTHE)

Quantum black holes

27 / 32

- The holomorphic counting function $h_{m,l}^*(\tau)$ is not modular, but it can be completed to a modular function $\widehat{h_{m,l}^*}(\tau, \overline{\tau})$ by adding a certain specific non-holomorphic function.
- It obeys the holomorphic anomaly equation

$$\frac{8\pi i}{\sqrt{m}} \tau_2^{3/2} \frac{\partial \widehat{h_{m,l}^*}(\tau,\bar{\tau})}{\partial \bar{\tau}} = \frac{p_{24}(m+1)}{\eta^{24}(\tau)} \overline{\vartheta_{m,l}(\tau)}.$$
 (14)

• Meromorphy is a reflection of wall crossing. The factors $p_{24}(m+1)$ and $\frac{1}{\eta^{24}(\tau)}$ are precisely the degeneracy of electric and magnetic small black holes.

・帰る くらん くらん しき

Outline

Motivation

- 2 Review of the $\mathcal{N}=4$ theory
- Immortal and decaying black holes
- 4) A Farey tail for $\mathfrak{N}=$ 4 dyons
- 5) The immortal partition function as a Mock modular form

6 Summary

- N

• Universal series of exponentially suppressed corrections to the degeneracy of extremal black holes $\exp(S_0/c)$, c = 2, 3...

When the black hole arises from a black string, this is related to the Rademacher (Farey tail) expansion of the associated modular form.

Summary 2

One can define a holomorphic counting function for counting the microstates of a single-centered black hole.

This counting function is a mock modular form in that it fails to be modular but in a very specific way. The failure of modularity is governed by a shadow, which is a holomorphic modular form. Physically, the shadow governs the jumps in the spectrum upon crossing a wall in the moduli space.

- Universal series of exponentially suppressed corrections to the degeneracy of extremal black holes $\exp(S_0/c)$, c = 2, 3...
- When the black hole arises from a black string, this is related to the Rademacher (Farey tail) expansion of the associated modular form.

Summary 2

- One can define a holomorphic counting function for counting the microstates of a single-centered black hole.
- This counting function is a mock modular form in that it fails to be modular but in a very specific way. The failure of modularity is governed by a shadow, which is a holomorphic modular form. Physically, the shadow governs the jumps in the spectrum upon crossing a wall in the moduli space.

- Universal series of exponentially suppressed corrections to the degeneracy of extremal black holes $\exp(S_0/c)$, c = 2, 3...
- When the black hole arises from a black string, this is related to the Rademacher (Farey tail) expansion of the associated modular form.

Summary 2

- One can define a holomorphic counting function for counting the microstates of a single-centered black hole.
- This counting function is a mock modular form in that it fails to be modular but in a very specific way. The failure of modularity is governed by a shadow, which is a holomorphic modular form. Physically, the shadow governs the jumps in the spectrum upon crossing a wall in the moduli space.

- Universal series of exponentially suppressed corrections to the degeneracy of extremal black holes $\exp(S_0/c)$, c = 2, 3...
- When the black hole arises from a black string, this is related to the Rademacher (Farey tail) expansion of the associated modular form.

Summary 2

 One can define a holomorphic counting function for counting the microstates of a single-centered black hole.

This counting function is a mock modular form in that it fails to be modular but in a very specific way. The failure of modularity is governed by a shadow, which is a holomorphic modular form. Physically, the shadow governs the jumps in the spectrum upon crossing a wall in the moduli space.

- Universal series of exponentially suppressed corrections to the degeneracy of extremal black holes $\exp(S_0/c)$, c = 2, 3...
- When the black hole arises from a black string, this is related to the Rademacher (Farey tail) expansion of the associated modular form.

Summary 2

- One can define a holomorphic counting function for counting the microstates of a single-centered black hole.
- This counting function is a *mock* modular form in that it fails to be modular but in a very specific way. The failure of modularity is governed by a *shadow*, which is a holomorphic modular form. Physically, the shadow governs the jumps in the spectrum upon crossing a wall in the moduli space.

- Canonical mock modular form? Relation to Hurwitz class numbers.
- Jacobi-Rademacher expansion \Rightarrow Post-modern Farey tail?
- More general physical systems with meromorphic Jacobi forms.
- $\mathcal{N} = 2$ compactifications? (Here the wall-crossings may be large).

- Canonical mock modular form? Relation to Hurwitz class numbers.
- Jacobi-Rademacher expansion ⇒ Post-modern Farey tail?
- More general physical systems with meromorphic Jacobi forms.
- $\mathcal{N} = 2$ compactifications? (Here the wall-crossings may be large).

- Canonical mock modular form? Relation to Hurwitz class numbers.
- Jacobi-Rademacher expansion ⇒ Post-modern Farey tail?
- More general physical systems with meromorphic Jacobi forms.

• $\mathcal{N} = 2$ compactifications? (Here the wall-crossings may be large).

- Canonical mock modular form? Relation to Hurwitz class numbers.
- Jacobi-Rademacher expansion ⇒ Post-modern Farey tail?
- More general physical systems with meromorphic Jacobi forms.
- $\mathcal{N} = 2$ compactifications? (Here the wall-crossings may be large).

ΩΡΑ ΦΑΓΗΤΟΥ !

E 990

イロン イヨン イヨン イヨン