Stringy Instantons and Fermion Masses in Intersecting D-brane models George Leontaris Physics Department Ioannina University Ioannina, Greece

On The Fermion Mass Problem

*The vast mass hierarchy among the three fermion generations:

$$\frac{m_t}{m_u} \sim 10^5$$

$$\frac{m_t}{m_{\nu_e}} \sim \frac{M_{GUT}}{M_W} \qquad (1)$$

has no satisfactory explanation in SM and SUSY-GUTs The second ratio in (1) is the well known hierarchy problem Early attempts: Additional 'family' symmetry. (Froggatt & Nielsen, NPB147(1979)277 etc...) Strings: Predict additional U(1) factors "incarnating" naturally the family symmetries.

\star String Approach: The Main Features

▲ Restricted Superpotential couplings, due to selection rules and U(1)'s (Normally only 3^d generation present at tree-level)

 $\mathcal{W}_{tree} \supset \lambda_t Q_t t^c h_u + \lambda_b Q_t b^c h_d + \lambda_l L_\tau \tau^c h_d$

▲ Gauge-Yukawa coupling relations, $(\lambda_t \sim g_{unif})$ fix $m_t \sim 180$ GeV.

▲ Anomalous $U(1)_A \& D/F$ – flatness fix various singlet vevs $\langle \Phi_i \rangle$

$$\frac{\partial \mathcal{W}}{\partial \Phi_j} = 0; \quad \sum_j Q_j^k |\langle \Phi_j \rangle|^2 - \xi_{FI}^2 \delta_{Ak} = 0, \quad (A = \text{Anomalous}U(1))$$

▲ Calculable NR-terms to all orders!

 \blacktriangle Fermion mass entries expressed in terms of

$$\epsilon_{\mathbf{i}} = \frac{\langle \Phi_i \rangle}{\mathcal{M}} < 1$$

Stringy Inspired Classification: Texture zeros: (see e.g. Ramond-Roberts-Ross, Nucl.Phys.B406:19-42,1993 ... etc)
General Idea: Minimal structure, maximum information...

$$m_{U} = \begin{pmatrix} 0 & \epsilon^{6} & 0 \\ \epsilon^{6} & 0 & \epsilon^{2} \\ 0 & \epsilon^{2} & 1 \end{pmatrix} \qquad m_{D} = \begin{pmatrix} 0 & 2\epsilon^{4} & 0 \\ 2\epsilon^{4} & 2\epsilon^{3} & 2\epsilon^{3} \\ 0 & 2\epsilon^{3} & 1 \end{pmatrix}$$
$$m_{U} = \begin{pmatrix} 0 & 0 & \sqrt{2}\epsilon^{4} \\ 0 & \epsilon^{4} & 0 \\ \sqrt{2}\epsilon^{4} & 0 & 1 \end{pmatrix} \qquad m_{D} = \begin{pmatrix} 0 & 2\epsilon^{4} & 0 \\ 2\epsilon^{4} & 2\epsilon^{3} & 4\epsilon^{3} \\ 0 & 4\epsilon^{3} & 1 \end{pmatrix}$$
$$m_{U} = \begin{pmatrix} 0 & \sqrt{2}\epsilon^{6} & 0 \\ \sqrt{2}\epsilon^{6} & \sqrt{3}\epsilon^{4} & \epsilon^{2} \\ 0 & \epsilon^{2} & 1 \end{pmatrix} \qquad m_{D} = \begin{pmatrix} 0 & 2\epsilon^{4} & 0 \\ 2\epsilon^{4} & 2\epsilon^{3} & 0 \\ 2\epsilon^{4} & 2\epsilon^{3} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$m_U = \begin{pmatrix} 0 & \sqrt{2}\epsilon^6 & 0 \\ \sqrt{2}\epsilon^6 & \epsilon^4 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad m_D = \begin{pmatrix} 0 & 2\epsilon^4 & 0 \\ 2\epsilon^4 & 2\epsilon^3 & 4\epsilon^3 \\ 0 & 4\epsilon^3 & 1 \end{pmatrix}$$
$$m_U = \begin{pmatrix} 0 & 0 & \epsilon^4 \\ 0 & \sqrt{2}\epsilon^4 & \frac{\epsilon^2}{\sqrt{2}} \\ \epsilon^4 & \frac{\epsilon^2}{\sqrt{2}} & 1 \end{pmatrix} \qquad m_D = \begin{pmatrix} 0 & 2\epsilon^4 & 0 \\ 2\epsilon^4 & 2\epsilon^3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

However.... Subtle is the real World!

- \blacktriangledown No zeros in realistic string constructions...
- ▼ Non-symmetric textures is usually the case!!!

Need of unified treatment of symmetric & non-symmetric mass matrices

Mass textures in a class of D-brane Standard-like Models Preliminaries

A string stretched between:

i) D_b , D_c intersecting brane stacks giving rise to bifundamental $(N_b, \bar{N}_c)_{(+1,-1)}$, and ii) D_b , D_{c^*} (mirror), incarnating the $(N_b, N_c)_{(+1,+1)}$

D-brane **SM** analogue with P extra U(1) branes

$$G = U(3)_C \times U(2)_L \times U(1)^P \tag{2}$$

Antoniadis et al, Nucl. Phys. B 660 (2003) 81; Ibanez et al, JHEP 0111 (2001) 002; R. Blumenhagen et al, Nucl. Phys. B 616 (2001) 3...

For P = 0, notice that

 $U(3)_C \times U(2)_L \to SU(3)_C \times SU(2)_L \times U(1)_C \times U(1)_L$

Hypercharge $U(1)_Y \nsubseteq U(1)_C \times U(1)_L$,

$$\Rightarrow P \geq 1$$

 \implies **SM** embedding is not unique!

-11-

Most general hypercharge

$$Y = k_3 Q_3 + k_2 Q_2 + \sum_{i=1}^{P} k'_i Q'_i$$
 (3)

and gauge coupling condition

$$\frac{1}{g_Y^2} = \frac{6k_3^2}{g_3^2} + \frac{4k_2^2}{g_2^2} + 2\sum_{i=1}^P \frac{k_i'^2}{g_i'^2} \tag{4}$$

The requirement to obtain the correct $U(1)_Y$ charges for the SM spectrum determines the coefficients $k_{2,3}, k'_i$.

- $k_{2,3}$ are due to the contributions of the abelian factors of $U(3)_C \to SU(3)_C \times U(1)_C$ and $U(2)_L \to SU(2)_L \times U(1)_L$
- k'_i are due to the abelian factors (the U(1) branes).
- For P = 1, 2, 3 the results for $k_{2,3}, k'_i$ shown in table below: (D.V. Gioutsos, **GKL** and A. Psallidas, Phys Rev D74:075007,2006

GKL, N. Vlachos and N. Tracas Phys Rev D76:115009,2007)

P		$ k_3 $	$ k_2 $	$ k_1' $	$ k_2' $	$ k'_3 $
1	a_1	$\frac{1}{3}$	$\frac{1}{2}$	0	_	_
	b_1	$\frac{1}{6}$	0	$\frac{1}{2}$	—	—
2	a_2	$\frac{1}{6}$	0	$\frac{1}{2}$	$\frac{1}{2}$	_
	b_2	$\frac{2}{3}$	$\frac{1}{2}$	1	0	_
	c_2	$\frac{1}{3}$	$\frac{1}{2}$	0	1	_
3	a_3	$\frac{1}{6}$	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
	b_3	$\frac{1}{3}$	$\frac{1}{2}$	0	1	1
	c_3	$\frac{2}{3}$	$\frac{1}{2}$	1	0	0

Table 1: Simplest $U(3) \times U(2) \times U(1)^P$ hypercharge embeddings for P = 1, 2, 3

Analysis of various phenomenological issues of the above models shows that for models where the U(1) branes are aligned to SU(3)or SU(2) branes:

(Gioutsos, GKL, Rizos, EPJC 45, 241 (2006), hep-ph/0508120)
•With respect to the predictions of the string scale, there are three classes of viable models: (P is the number of abelian branes)

1: There are P = 1, 3 models with string scale $M_S \sim 10^{16}$ GeV. (see also GKL arXiv:0903.3691 for intersecting branes)

2: There are P = 2 models with $M_S \sim 10^{7-8}$ GeV; In addition, the condition $m_b^0 = m_\tau^0$ at M_S is fulfilled.

3: There are P = 3 models with M_S as low as a few TeV.

Uniqueness could arise from the embedding in a higher gauge group

A closer look to a viable P = 1 case

GKL, arXiv:0903.3691

Conditions on wrappings:

$$(N_a, \bar{N}_b) \rightarrow I_{ab} = \prod_{i=1}^3 (m_{ai}n_{bi} - m_{bi}n_{ai})$$

$$(N_a, N_b) \rightarrow I_{ab^*} = -\prod_{i=1}^3 (m_{ai}n_{bi} + m_{bi}n_{ai})$$

$$A \rightarrow I_{aa^*}^A = 8m_{a1}m_{a2}m_{a3}$$

$$A\&S \rightarrow I'_{aa^*} = 4m_{a1}m_{a2}m_{a3} (n_{a1}n_{a2}n_{a3} - 1)$$

Anomaly cancelation conditions Imply $\#N_a = \#\bar{N}_a, \forall U(N_a)$

SPECTRUM									
Inters.	$SU(3) \times SU(2)$	\mathcal{Q}_a	\mathcal{Q}_b	\mathcal{Q}_c	Y				
ab	$1 imes Q\left(3,ar{2} ight)$	1	-1	0	$\frac{1}{6}$				
ab^*	$2 imes Q^{\prime}\left(3,2 ight)$	1	1	0	$\frac{1}{6}$				
ac	$3 imes u^{c} \left(ar{3}, 1 ight)$	-1	0	1	$-\frac{2}{3}$				
ac^*	$3 imes d^{c}\left(ar{3},1 ight)$	-1	0	-1	$\frac{1}{3}$				
bc	$3 imes L\left(1,ar{2} ight)$	0	-1	1	$-\frac{1}{2}$				
cc^*	$3 imes e^{c}\left(1,1 ight)$	0	0	-2	1				
bb^*	$3 imes u^c (1, 1)$	0	-2	0	0				
1 *	$1 imes H_d(1,2)$	0	1	1	$-\frac{1}{2}$				
00	$1 imes H_u(1, ar 2)$	0	-1	-1	$\frac{1}{2}$				

Depiction of the $U(3) \times U(2) \times U(1)$ intersecting D-brane configuration. ($a \equiv U(3), b \equiv U(2), c \equiv U(1)$)

Blue string representing the quark doublet Q' is stretched between the $D6_a$ and $D6_{b^*}$.

One endpoint of the " d^c -string" is attached on the mirror $D6_{c^*}$.

Effective field theory model

String scale:

$$M_S = e^{\frac{\pi}{2} \left(\frac{\sin^2 \theta_W}{\alpha} - \frac{1}{\alpha_3}\right)} \left(\frac{m_Z}{m_s}\right)^{\frac{13}{12}} m_Z \sim \mathcal{O}(10^{16}) \text{GeV} \quad (5)$$

Yukawa couplings:

$$\mathcal{W} \supset \lambda_{1j}^{u} Q_{1}^{\prime} u_{j}^{c} H_{u} + \lambda_{2j}^{u} Q_{2}^{\prime} u_{j}^{c} H_{u} \rightarrow \text{up-quarks}$$
$$+ \lambda_{j}^{d} Q_{3} d_{j}^{c} \rightarrow \text{down-quarks}$$
$$+ \lambda_{ij}^{l} L_{i} e_{j}^{c} H_{d} \rightarrow \text{charged leptons}$$

Resulting up and down quark Yukawa textures. We have the following distinct possibilities

$$m_{Q} = \begin{pmatrix} 0 & 0 & 0 \\ \lambda_{21}^{u} & \lambda_{22}^{u} & \lambda_{23}^{u} \\ \lambda_{31}^{u} & \lambda_{32}^{u} & \lambda_{33}^{u} \end{pmatrix} \langle H_{u} \rangle, \qquad m_{d} = \begin{pmatrix} \lambda_{11}^{d} & \lambda_{12}^{d} & \lambda_{13}^{d} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \langle H_{d} \rangle$$
or
$$m_{Q} = \begin{pmatrix} \lambda_{11}^{u} & \lambda_{12}^{u} & \lambda_{13}^{u} \\ 0 & 0 & 0 \\ \lambda_{31}^{u} & \lambda_{32}^{u} & \lambda_{33}^{u} \end{pmatrix} \langle H_{u} \rangle, \qquad m_{d} = \begin{pmatrix} 0 & 0 & 0 \\ \lambda_{21}^{d} & \lambda_{22}^{d} & \lambda_{23}^{d} \\ 0 & 0 & 0 \end{pmatrix} \langle H_{d} \rangle$$

or

$$m_{Q} = \begin{pmatrix} \lambda_{11}^{u} & \lambda_{12}^{u} & \lambda_{13}^{u} \\ \lambda_{21}^{u} & \lambda_{22}^{u} & \lambda_{23}^{u} \\ 0 & 0 & 0 \end{pmatrix} \langle H_{u} \rangle$$
(6)
$$m_{d} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \lambda_{31}^{d} & \lambda_{32}^{d} & \lambda_{33}^{d} \end{pmatrix} \langle H_{d} \rangle$$
(7)

 \Rightarrow at tree-level ... mass textures...not viable. **Possible solutions:**

- * NR-terms (extending the spectrum)
- * Additional Higgs pair
- * Stringy Instanton Effects

Inters.	$SU(3) \times SU(2)$	\mathcal{Q}_a	\mathcal{Q}_b	\mathcal{Q}_c	Y
bb^*	${\nu'}^c\left(1,1\right)$	0	+2	0	0
he	$H_d^\prime(1,2)$	0	-1	1	$-\frac{1}{2}$
UC	$H'_u(1,ar 2)$	0	1	-1	$\frac{1}{2}$

* NR-terms and/or Additional Higgs pair

 ν^c and H'_u, H'_d superpotential contributions

$$\mathcal{W}' = \lambda'^{u}_{j} Q u^{c}_{j} H'_{u} + \lambda'^{d}_{j} Q'_{p} d^{c}_{j} H'_{d} + \lambda'^{\nu}_{ij} \mathcal{L}_{i} \nu'^{c}_{j} H_{u} \qquad (8)$$

Instanton Effects

▷ YM Instantons: Classical Euclidean Solutions of F.T. Equations $(F_{\mu\nu} = \tilde{F}_{\mu\nu})$

Physical Meaning: Tunneling event between degenerate classical vacua in the presence of fermion zero-modes.

ightarrow N=1 SUSY: Non-perturbative Superpotential couplings. (a surrogate for the non-renormalizable terms.)

* Intersecting D-brane models:

Non-perturbative string effects generate missing Yukawa Couplings
Blumenhagen et al, Nucl. Phys. B 771 (2007) 113,
Ibanez et al, JHEP 0703 (2007) 052,
M. Bianchi et al, JHEP 0707 (2007) 038

-23-

The Stringy Mechanism:

Certain desired Yukawa couplings $\prod_j \Phi_j$ violate some $U(1)_a$ ($U(n)_a \to SU(n)_a \times U(1)_a$)

Under $U(1)_a$, the transformation property of the exponential instanton action is $(U(1)_a$ is broken by the instanton!)

$$e^{-S_{\mathcal{E}}} \rightarrow e^{-S_{\mathcal{E}}} e^{i \mathcal{Q}_a(\mathcal{E}2)\Lambda_a}$$
 (9)

 $\mathcal{Q}_a(\mathcal{E}2)$ depends on the $\mathcal{E}2$ intersections

$$Q_a(\mathcal{E}2) = -\mathcal{N}_a \, \pi_{\mathcal{E}} \circ \pi_a \equiv -\mathcal{N}_a \, I_{\mathcal{E}a} \tag{10}$$

 $U(1)_a$ charge violation of $\prod_i \Phi_j$ compensated by a S_{inst} -shift:

$$\mathcal{W}_{n.p.} \sim \prod_{j} \Phi_{j} e^{-S_{inst}}$$

Up Quark coupling $Qu_j^c H_u$ violates the $U(1)_b$ charge by two units

$$\mathcal{Q}_{b_Q} + \mathcal{Q}_{b_{u^c}} + \mathcal{Q}_{b_{H_u}} = -2$$

Choose # of $\bar{\lambda}_b^i, \lambda_b^i, i = 1, 2, 3$ so that $I_{\mathcal{E}b}$ satisfies

$$\mathcal{Q}_b(\mathcal{E}2) = -\mathcal{N}_b I_{\mathcal{E}b} \tag{11}$$

Integration over zero modes

$$\int \left\{ d^4x \, d^2\theta \, d^2\lambda_b \right\} e^{-S_{\mathcal{E}}} \, y^u_j \epsilon_{mn} \epsilon_{r\ell} < \lambda^m_b Q^n u^c_j H^r_u \lambda^s_{b^*} > e^{Z'}$$

(and similarly for down quarks) leads to the tree level superpotential couplings

$$\mathcal{W}_{n.p.} = \lambda_j^u Q \, u_j^c H_u + \lambda_{pj}^d Q_p' d_j^c H_d$$

Final forms of quark matrices

$$m_{Q} = \begin{pmatrix} \lambda_{11}^{u} & \lambda_{12}^{u} & \lambda_{13}^{u} \\ \lambda_{21}^{u} & \lambda_{22}^{u} & \lambda_{23}^{u} \\ \lambda_{31}^{u} & \lambda_{32}^{u} & \lambda_{33}^{u} \end{pmatrix}, \ m_{d} = \begin{pmatrix} \lambda_{11}^{d} & \lambda_{12}^{d} & \lambda_{13}^{d} \\ \lambda_{21}^{d} & \lambda_{22}^{d} & \lambda_{23}^{d} \\ \lambda_{31}^{d} & \lambda_{32}^{d} & \lambda_{33}^{d} \end{pmatrix}$$

 $\lambda_{ji}^{u,d} \ll \lambda_{ji}^{u,d}$ (Instanton or NR contributions) $\lambda_{ji}^{u,d} \sim \lambda_{ji}^{u,d}$ (Additional Higgs) Neutrinos: Absent at tree level (minimal model) Instanton induced masses through the following D6 - E2intersections

Remarks:

- 1.) Exponential suppression: $m_{\nu} \propto e^{-S_{\mathcal{E}}} \frac{m_D^2}{M_S}$
- 2.) Factorizable couplings: $y_{ij} = e^{i\phi_{ij}} \lambda_i^{\nu} \lambda_j^{\nu}$

Results: Instantons induce a new hierarchical structure of mass matrices

Convenient parametrization

$$m_D = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ \zeta_{21} & \zeta_{22} & \zeta_{23} \\ \kappa_{31} & \kappa_{32} & \kappa_{33} \end{pmatrix}, |\vec{x}| \gg, |\vec{\kappa}|, |\vec{\zeta}|$$

Since m_D is non-symmetric, we form

$$m_D m_D^T = \begin{pmatrix} \vec{x} \cdot \vec{x} & \vec{x} \cdot \vec{\zeta} & \vec{x} \cdot \vec{\kappa} \\ \vec{x} \cdot \vec{\zeta} & \vec{\zeta} \cdot \vec{\zeta} & \vec{\zeta} \cdot \vec{\kappa} \\ \vec{x} \cdot \vec{\kappa} & \vec{\zeta} \cdot \vec{\kappa} & \vec{\kappa} \cdot \vec{\kappa} \end{pmatrix}$$

• A simple parametrization of $m_D: \vec{x} \cdot \vec{\zeta} = 0 \rightarrow$

$$m_D m_D^T = \begin{pmatrix} 1 & -r\cos(\theta) & r\sin(\theta) \\ -r\cos(\theta) & s^2 & 0 \\ r\sin(\theta) & 0 & s^2 \end{pmatrix} m_0^2 \quad (12)$$

with
$$r = \frac{\sqrt{(m_b^2 - m_s^2)(m_s^2 - m_d^2)}}{m_b^2 + m_d^2 - m_s^2}, s^2 = \frac{m_s^2}{m_b^2 + m_d^2 - m_s^2}$$

•Question: Is there a compatible up-quark texture?

We can check it using the Cabbibo-Kobayashi-Maskawa (CKM) Matrix.

If $V_u^{L,R}$ and $V_d^{L,R}$ the diagonalizing matrices:

$$m_U^{diag.} = V_u^L m_U V_u^{R\dagger} \tag{13}$$

$$m_D^{diag.} = V_d^L m_D V_d^{R\dagger} \tag{14}$$

and V_d is known, we can use now the CKM matrix and the relation

$$V_u = V_{CKM} V_d \tag{15}$$

to construct the diagonalizing matrix of the up quarks. Then,

$$\mathcal{M}_U^2 \equiv m_U m_U^{\dagger} = V_U^{\dagger} \left(m_U^2 \right)_{diag.} V_U \tag{16}$$

Wolfenstein parametrization of CKM:

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} (17)$$

with $\lambda \sim 0.2257$ and $A, \rho, \eta = \mathcal{O}(1)$, while putting $(\xi \sim s \sim r)$

Resulting up-quark mass texture:

see G.K.L., Stringy Instantons and Fermion Masses: (in Annual Meeting of HEP Society, Demokritos, Athens, 23/05/2009, Greece http://indico.cern.ch/conferenceDisplay.py?confId=55216

$$\epsilon = A\sin(\theta)\lambda^2 + \xi\cos(\theta)$$

$$\epsilon' = \xi \sin(\theta) - A\lambda^2 \cos(\theta)$$

$$m_U m_U^T \sim \left(egin{array}{cccc} 1 & -\epsilon & \epsilon' \ -\epsilon & \epsilon^2 & \epsilon\epsilon' \ \epsilon' & \epsilon\epsilon' & \epsilon'^2 \end{array}
ight) m_t^2$$

 $\Rightarrow m_U, m_D$ are Aligned

Neutrino sector

Since the couplings are factorizable,

$$y_{ij} = e^{i\phi_{ij}}\lambda_i^{\nu}\lambda_j^{\nu} \tag{18}$$

the Dirac neutrino mass matrix can be written

$$m_D^{\nu} = \begin{pmatrix} 1 & r\cos(\theta) & r\sin(\theta) \\ r\cos(\theta) & e^{i\phi_1} r^2 \cos^2(\theta) & e^{i\phi_2} \frac{r^2}{2} \sin(2\theta) \\ r\sin(\theta) & e^{i\phi_3} \frac{r^2}{2} \sin(2\theta) & e^{i\phi_4} r^2 \sin^2(\theta) \end{pmatrix}$$
(19)

Simple choice: $\chi_1 = 0$ and $\phi_i = \chi_{2,3} = \pi$, $r = 1 + \epsilon + O(\epsilon^2)$,

$$m_{\nu_1} \sim (-1 - \epsilon) m_0, \ m_{\nu_2} \sim (1 - \epsilon) m_0, \ m_{\nu_3} = 0$$

Inverse mass hierarchy!

A FEW COMMENTS

Simple *D*-brane configurations imply a variety of interesting SM-successors with desirable features. Among them: i) Extra U(1)'s \Rightarrow hierarchy, and proton stability ii) 6*d* internal space \Rightarrow Calculability

• Quark mass ratios determined in terms of the 6*d* compact space structure

- Factorizable neutrino mass texture, easy to handle
- Instanton corrections imply new mass textures not previously explored
- A new parametrization of mass textures and mixing is needed.... (with N.D. Vlachos, to appear...)