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Motivation
Important developments over last year relating to effective action for

multiple M2-branes. Following leads from Bagger-Lambert and

Gustavsson involving 3-algebras, ABJM wrote a CS action in 3d with

U(N)×U(N̄) gauge fields, coupled to bifundamental matter

[Aharony-Bergman-Jafferis-Maldacena]
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• N = 6 superconformal, SU(4) R-symmetry

• Can use λ = N/k as ’t Hooft coupling
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• For λ� 1 gauge theory weakly coupled

• For λ� 1 string theory dual in terms of near horizon limit of N

M2 branes on a C4/Zk singularity.

• For small k M-theory on AdS4 × S7/Zk
• The orbifold acts on the circle of the Hopf fibration

S1 ↪→ S7 π→ CP3

• For large k Type IIA on AdS4 × CP3 → (AdS4/CFT3)

Even though M2-brane physics emerge at strong coupling this is

significant progress!
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But what about the M5-brane?

M5-brane potentially emerges from M2-brane through generalisation

of Myers effect:

In the presence of external p+ 4-form flux Dp-branes polarise into

Dp+2-branes with worldvolume scalars obeying

[Xi, Xj ] = 2iεijkXk

This is defining equation for fuzzy S2 of radius R2 ∝ 1
NTrXiXi ∼ N2

At large-N this approaches the classical sphere with the

noncommuting matrices becoming Euclidean coordinates on S2

Xi

N
→ xi
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This idea can be realised in M-theory:

Require that M2s blow up into a fuzzy three-sphere with the matriceal

scalars becoming fuzzy directions on M5:

• As a vacuum of a mass-deformed theory of M2s (akin to N = 1∗)

[Bena]

• Set of M2-M5 geometries with SO(4)× SO(4) symmetry and 16

supercharges also constructed

[Bena-Warner, Lin-Lunin-Maldacena]

• Via an M2⊥M5 intersection or ‘fuzzy funnel’ (see BIon)

[Basu-Harvey]

→ Revisit these constructions within ABJM
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Interesting mass-deformation of ABJM found by GRvV: Split complex

scalars into CI = (Rα, Qα̇) and introduce potential

[Gomis-Rodrı́guez Gómez-van Raamsdonk-Verlinde,

Hosomichi-Lee3-Park]

V = |Mα|2 + |Nα|2

where
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2π
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• Breaks conformal invariance and R-symmetry

SU(4)→ SU(2)× SU(2)×U(1)

• Preserves N = 6 supersymmetry
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GRvV also found set of classical vacua for Qα̇ = 0. Need to solve

Rα =
2π
kµ
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β −RβR†βR

α)

which leads to
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(for f2 = k
2πs the above is ‘funnel’ solution in undeformed ABJM,

where s the direction along which M2s extend away from the M5)

6 / 26



The Gαs should encode all information about geometry. GRvV also

notice that

RαR†α = X1X1 +X2X2 +X3X3 +X4X4 ≡ R2

Looks like S3. Extrapolating to k = 1 seem to get the M5-brane. At

finite N the ‘three-sphere’ is fuzzy.

[Terashima, Hanaki-Lin]

However, the solution has G1 = G†1. Immediately reduces

GαG†α = X1X1 +X2X2 +X3X3 = N − 1

Q: where is the (fuzzy) S3? [Nastase, CP, Ramgoolam]
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Outline

• Gα matrix algebra

• Fuzzy S2 realisation in terms of bifundamentals

• Small fluctuation analysis

• D4/M5 interpretation

• Summary and Open questions
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Gα matrix algebra

Fuzzy sphere: discretisation of Sn while retaining SO(n+ 1) isometry.

Immediately note that ‘usual’ SO(4)-covariant fuzzy S3 of

Guralnik-Ramgoolam cannot be at work: solution has only got

SU(2)×U(1) symmetry.

Investigate algebra of Gαs: First construct bilinears Jαβ = GαG†β .

These obey U(2) algebra

[Jαβ , J
µ
ν ] = δµβJ

α
ν − δαν J

µ
β
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Further defining Ji = (σTi )αβJ
β
α picks out traceless combinations and

leads to SU(2) algebra

[Ji, Jj ] = 2iεijkJk

Similar things hold for J̄αβ = G†βG
α

[J̄i, J̄j ] = 2iεijkJ̄k

Looks like there are two independent SU(2)s.
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Fields in the adjoint of U(N) admit a decomposition in terms of Jis.

This is an expansion in terms of fuzzy spherical harmonics

â =
N−1∑
l=0

l∑
m=−l

almŶlm(Ji)

with
Ŷlm(Ji) =

∑
i

α
(i1...il)
lm Ji1 . . . Jil

Once again, there is another set of fuzzy spherical harmonics for

U(N̄) adjoint fields, in an expansion in terms of J̄is.
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However, the algebra for odd products of Gα or G†α will combine the

two. One finds that

JiG
α −GαJ̄i = (σTi )αβG

β

G†αJi − J̄iG†α = G†β(σTi )βα

and only a diagonal SU(2) survives.

This is a sign that the Gαs describe a single S2. The large-N limit

helps clarify this.

It is known that at large-N limit the Jis and J̄is approach the

commutative Euclidean coordinates on the ‘classical’ sphere

Ji√
N2 − 1

→ xi and
J̄i√

(N2 − 1)2 − 1
→ x̄i
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One can also define some classical object corresponding to

Gα√
N
→ gα and

G†α√
N
→ g†α

Then notice that for the defining equation of Ji

Ji
N

=
1
N

(σTi )αβG
βG†α → xi = (σTi )αβg

βg†α

This looks like first Hopf map S3 π→ S2. Defined modulo a U(1)

phase. In order to match the degrees of freedom we need to consider

the objects defined by extracting the phase. These can be identified

with Killing spinors on S2.

The Gαs should then be thought of as fuzzy Killing spinors on S2.

[Nastase, CP – in progress]
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Another interesting picture is the following: Embed everything into

2N × 2N super-matrices

Ji =

(
Ji 0

0 J̄i

)
and Jα =

(
0

√
NGα

−
√
NG†α 0

)
Then we can summarise the relations

[Ji,Jj] = 2iεijkJk

[Ji,Jα] = (σTi )αβJβ

{Jα,Jβ} = −(σTi )αβJi

This is an OSp(1|2) super-algebra, capturing the isometries of the

fuzzy supersphere. In the large-N limit they become the coordinates

on the classical supersphere. [Grosse-Reiter, Hasebe-Kimura]
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The (fuzzy) Killing spinors and hence the bifundamental matter fields

live on the spinor bundle over S2.

The bifundamental fields also admit harmonic decomposition under

the SU(2), which can either be given in terms of (fuzzy) spinor

spherical harmonics

or

One can define new fields by ‘extracting’ the Gα part and having an

expansion in terms of usual (fuzzy) spherical harmonics.

Rα = RαβG
β with Rαβ =

∑
l,m

(alm)αβ Ŷlm(Ji)
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This construction will apply more generally to gauge theories with

bifundamental matter admitting fuzzy sphere solutions.

[Maldacena-Martelli]

One can also have vacua in terms of reducible representations

Gα = Gα1 ⊕Gα2 ⊕ . . .

These should have interpretation in terms of concentric higher

dimensional branes wrapping the S2.
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Small Fluctuation Analysis

Next look at (bosonic) quadratic fluctuation action around irreducible

GRvV vacuum. Fluctuation parameter is 1
f2 = 2π

µk

Rα = fGα + rα , Qα̇ = qα̇ , Aµ = aµ , Âµ = âµ

The radius of the sphere can once again be defined as

R2 = 2
NTrRαR†α = 8π2f2Nl3p.

The rα further decompose into trace and traceless parts

rα = rδαβG
β + si

1
2

(σTi )αβG
β , r†α = G†αr +G†βsi

1
2

(σTi )βα

Use Matrix Theory technology to convert into fields on smooth

(classical) S2 at large N .

[Iso-Kimura-Tanaka-Wakatsuki, CP-Ramgoolam-Toumbas]
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At large N the mode si can be further decomposed into radial and

angular components on S2

si = xiφ+Ka
i Aa

with Ka
i a set of Killing vectors on the sphere such that xiKa

i = 0.

For the ‘transverse’ scalars write similarly

qα̇ = Qα̇αG
α

Then use standard dictionary between large N fuzzy sphere matrices

and functions on the sphere

â =

N−1X
l=0

lX
m=−l

almŶlm(Ji)→ a(θ, φ) =
∞X
l=0

lX
m=−l

almYlm(xi)

1

N
Tr→

Z
dΩ

Ji
N
→ xi

[Ji, â]→ −2iKa
i ∂aa(θ, φ)
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How about gauge fields? Expanding around the GRvV solution also

triggers version of Higgs mechanism present in ABJM (CS-matter)

theories.

When a single scalar gets a large, trivial vev the diagonal subgroup of

the two non-dynamical CS gauge fields become dynamical. Matter

gets promoted from bifundamental to adjoint. CS-matter→ YM

[Mukhi-CP, Aharony-Bergman-Jafferis-Maldacena]

In M-theory corresponds to moving all M2-branes far away from the

C4/Zk singularity.

However, for the case at hand things significantly more complicated:

half fields get a vev and that has nontrivial matrix structure

(proportional to Gα)
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To cut a (very) long story short:

• The calculation involves combination of large-N Matrix Theory

techniques + Higgsing

• Through the above: (r, si)→ (r + φ,Aa) ≡ (Φ, Aa)

• Non-dynamical (Aµ, Âµ) become a dynamical Ãµ = Aµ + Âµ

• The combination (r − φ) played role of Goldstone mode and

does not appear

• ‘Transverse’ scalars in action can be written as real scalars XI ,

I = 1, ..., 4.
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The final answer for the bosonic sector is:

SBflucts =
1

g2
YM

Z
d3xd2σ

√
h
h
− 1

4
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2
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i
where A = {µ, a} and the metric gAB = (ηµν , hab) with the size of the

S2 set by µ−1. Finally g2
YM = gsls.

This is the action one expects for fluctuations around a single

spherical D4 in non-trivial background with µ dependence.

Result very reminiscent to similar calculation in the BMN matrix model

[Maldacena-Sheikh Jabbari-van Raamsdonk]
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D4/M5 interpretation

Thus: D4-brane - no M5-brane! Since the fluctuation action is valid at

weak coupling this makes sense. However, S2 structure and

realisation is now explicit.

Interesting related question involves D4 compactification and susy.

Usually D-branes with (partly) curved worldvolumes realise a twisted

version of susy, although in some special cases (e.g. giant gravitons

in AdS) that’s not necessary.

[Bershadsky-Sadov-Vafa, Maldacena-Núñez, Andrews-Dorey]

This should be obvious at the level of the action once we include the

fermionic sector.
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At strong coupling→ M5-brane

How does this tally with initial geometric description in terms of Gαs?

• Relation between Ji and Gα hints to the Hopf fibration

S1 ↪→ S3 π→ S2

• The D4 is wrapping the S2 base of the above bundle. At large N

this base is smooth. At finite N it becomes fuzzy.

• At weak coupling (large k) the S1 fibre has shrunk

• At strong coupling (small k) the S1 fibre (M-theory direction)

unfolds and one ends up with an M5-brane wrapping an S3/Zk
• Due to large degree of susy this interpretation ought to be similar

for all sphere sizes, controlled by f2 = µk
2π .
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Summary...

• Analysed ground state solutions for mass-deformed ABJM theory

• Found that the algebra obeyed by Gα’s gives rise to fuzzy S2

• In fact Gα correspond to fuzzy Killing spinors on S2 and lead to

realisation in terms of bifundamentals

• Classical GRvV solutions do not describe (fuzzy) S3; instead

describe S2 base of Hopf fibration

• S1 fibre coincides with M-theory direction and is beyond

perturbative regime
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• If M5-brane is to emerge at small k, as expected, that would only

be seen by non-perturbative effects

• Fluctuation analysis around irreducible vacuum adds credibility to

this picture

• Starting from M5 wrapped on S3 the D4 on S2 is obtained by a

double-dimensional reduction

• Gravity duals obtained by a Zk orbifold of the appropriate

M-theory LLM geometries

[Auzzi-Kumar]
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... & open questions

• Analyse the fermion sector of the fluctuation action

• Clarify D4-brane picture - background - susy

• Repeat fluctuation analysis for reducible vacua

• Reducible vacua of mass-deformed ABJM describe multiple,

concentric spherical M5-branes at strong coupling

• Finite N effects

• Use all of the above in a clever way to get information about

M5-branes in M-theory.
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