The fuzzy S^2 structure of M2-M5 systems in ABJM

Costis Papageorgakis Tata Institute of Fundamental Research 5th Regional Meeting in String Theory Kolymbari 5th July 2009

(w/ H. Nastase and S. Ramgoolam, arXiv:0903.3966 and in progress)

Motivation

Important developments over last year relating to effective action for multiple M2-branes. Following leads from Bagger-Lambert and Gustavsson involving 3-algebras, ABJM wrote a CS action in 3d with $U(N) \times U(\bar{N})$ gauge fields, coupled to bifundamental matter [Aharony-Bergman-Jafferis-Maldacena]

$$S = \int d^3x \left[\frac{k}{4\pi} \epsilon^{\mu\nu\lambda} \operatorname{Tr} \left(A_\mu \partial_\nu A_\lambda + \frac{2i}{3} A_\mu A_\nu A_\lambda - \hat{A}_\mu \partial_\nu \hat{A}_\lambda - \frac{2i}{3} \hat{A}_\mu \hat{A}_\nu \hat{A}_\lambda \right) \right. \\ \left. - \operatorname{Tr} D_\mu C_I^{\dagger} D^\mu C^I + \frac{4\pi^2}{3k^2} \operatorname{Tr} \left(C^I C_I^{\dagger} C^J C_J^{\dagger} C^K C_K^{\dagger} + C_I^{\dagger} C^I C_J^{\dagger} C^J C_K^{\dagger} C^K \right. \\ \left. + 4C^I C_J^{\dagger} C^K C_I^{\dagger} C^J C_K^{\dagger} - 6C^I C_J^{\dagger} C^J C_I^{\dagger} C^K C_K^{\dagger} \right]$$

- $\mathcal{N} = 6$ superconformal, SU(4) R-symmetry
- Can use $\lambda = N/k$ as 't Hooft coupling

- For $\lambda \ll 1$ gauge theory weakly coupled
- For λ ≫ 1 string theory dual in terms of near horizon limit of N M2 branes on a C⁴/Z_k singularity.
- For small k M-theory on $AdS_4 \times S^7/\mathbb{Z}_k$
- The orbifold acts on the circle of the Hopf fibration $S^1 \hookrightarrow S^7 \xrightarrow{\pi} \mathbb{CP}^3$
- For large k Type IIA on $AdS_4 \times \mathbb{CP}^3 \to (AdS_4/CFT_3)$

Even though M2-brane physics emerge at strong coupling this is significant progress!

But what about the M5-brane?

M5-brane potentially emerges from M2-brane through generalisation of Myers effect:

In the presence of external p + 4-form flux Dp-branes polarise into Dp+2-branes with worldvolume scalars obeying

 $[X_i, X_j] = 2i\epsilon_{ijk}X_k$

This is defining equation for fuzzy S^2 of radius $R^2 \propto \frac{1}{N} \text{Tr} X_i X_i \sim N^2$

At large-N this approaches the classical sphere with the noncommuting matrices becoming Euclidean coordinates on S^2

$$\frac{X_i}{N} \to x_i$$

This idea can be realised in M-theory:

Require that M2s blow up into a fuzzy three-sphere with the matriceal scalars becoming fuzzy directions on M5:

- As a vacuum of a mass-deformed theory of M2s (akin to $\mathcal{N}=1^{*})$ [Bena]
- Set of M2-M5 geometries with $SO(4) \times SO(4)$ symmetry and 16 supercharges also constructed [Bena-Warner, Lin-Lunin-Maldacena]
- Via an M2⊥M5 intersection or 'fuzzy funnel' (see Blon) [Basu-Harvey]
- \rightarrow Revisit these constructions within ABJM

Interesting mass-deformation of ABJM found by GRvV: Split complex scalars into $C^{I} = (R^{\alpha}, Q^{\dot{\alpha}})$ and introduce potential [Gomis-Rodríguez Gómez-van Raamsdonk-Verlinde, Hosomichi-Lee³-Park]

$$V = |M^{\alpha}|^2 + |N^{\alpha}|^2$$

where

$$\begin{split} M^{\alpha} &= \mu Q^{\alpha} + \frac{2\pi}{k} (2Q^{[\alpha}Q^{\dagger}_{\beta}Q^{\beta]} + R^{\beta}R^{\dagger}_{\beta}Q^{\alpha} - Q^{\alpha}R^{\dagger}_{\beta}R^{\beta} + 2Q^{\beta}R^{\dagger}_{\beta}R^{\alpha}) \\ N^{\alpha} &= -\mu R^{\alpha} + \frac{2\pi}{k} (2R^{[\alpha}R^{\dagger}_{\beta}R^{\beta]} + Q^{\beta}Q^{\dagger}_{\beta}R^{\alpha} - R^{\alpha}Q^{\dagger}_{\beta}Q^{\beta} + 2R^{\beta}Q^{\dagger}_{\beta}Q^{\alpha}) \end{split}$$

- Breaks conformal invariance and R-symmetry $SU(4) \rightarrow SU(2) \times SU(2) \times U(1)$
- Preserves $\mathcal{N} = 6$ supersymmetry

GRvV also found set of classical vacua for $Q^{\dot{\alpha}} = 0$. Need to solve

$$R^{\alpha} = \frac{2\pi}{k\mu} (R^{\alpha} R^{\dagger}_{\beta} R^{\beta} - R^{\beta} R^{\dagger}_{\beta} R^{\alpha})$$

which leads to

$$R^{lpha}=fG^{lpha}$$
 for $f^2=rac{k\mu}{2\pi}$

where

(for $f^2 = \frac{k}{2\pi s}$ the above is 'funnel' solution in undeformed ABJM, where *s* the direction along which M2s extend away from the M5) The G^{α} s should encode all information about geometry. GRvV also notice that

$$R^{\alpha}R^{\dagger}_{\alpha} = X^{1}X^{1} + X^{2}X^{2} + X^{3}X^{3} + X^{4}X^{4} \equiv R^{2}$$

Looks like S^3 . Extrapolating to k = 1 seem to get the M5-brane. At finite N the 'three-sphere' is fuzzy.

[Terashima, Hanaki-Lin]

However, the solution has $G^1 = G_1^{\dagger}$. Immediately reduces

$$G^{\alpha}G^{\dagger}_{\alpha} = X^{1}X^{1} + X^{2}X^{2} + X^{3}X^{3} = N - 1$$

Q: where is the (fuzzy) S³? [Nastase, CP, Ramgoolam]

Outline

- G^α matrix algebra
- Fuzzy S^2 realisation in terms of bifundamentals
- Small fluctuation analysis
- D4/M5 interpretation
- Summary and Open questions

G^{α} matrix algebra

Fuzzy sphere: discretisation of S^n while retaining SO(n+1) isometry.

Immediately note that 'usual' SO(4)-covariant fuzzy S^3 of Guralnik-Ramgoolam cannot be at work: solution has only got $SU(2) \times U(1)$ symmetry.

Investigate algebra of G^{α} s: First construct bilinears $J^{\alpha}_{\beta} = G^{\alpha}G^{\dagger}_{\beta}$. These obey U(2) algebra

$$[J^{\alpha}_{\beta}, J^{\mu}_{\nu}] = \delta^{\mu}_{\beta} J^{\alpha}_{\nu} - \delta^{\alpha}_{\nu} J^{\mu}_{\beta}$$

Further defining $J_i = (\sigma_i^T)^{\alpha}_{\beta} J^{\beta}_{\alpha}$ picks out traceless combinations and leads to SU(2) algebra

$$[J_i, J_j] = 2i\epsilon_{ijk}J_k$$

Similar things hold for $\bar{J}^{\alpha}_{\beta} = G^{\dagger}_{\beta}G^{\alpha}$

$$[\bar{J}_i, \bar{J}_j] = 2i\epsilon_{ijk}\bar{J}_k$$

Looks like there are two independent SU(2)s.

Fields in the adjoint of U(N) admit a decomposition in terms of J_i s. This is an expansion in terms of fuzzy spherical harmonics

$$\hat{a} = \sum_{l=0}^{N-1} \sum_{m=-l}^{l} a_{lm} \hat{Y}_{lm}(J_i)$$

with

$$\hat{Y}_{lm}(J_i) = \sum_i \alpha_{lm}^{(i_1 \dots i_l)} J_{i_1} \dots J_{i_l}$$

Once again, there is another set of fuzzy spherical harmonics for $U(\bar{N})$ adjoint fields, in an expansion in terms of \bar{J}_i s.

However, the algebra for odd products of G^{α} or G^{\dagger}_{α} will combine the two. One finds that

and only a diagonal SU(2) survives.

This is a sign that the G^{α} s describe a single S^2 . The large-N limit helps clarify this.

It is known that at large-N limit the J_i s and \bar{J}_i s approach the commutative Euclidean coordinates on the 'classical' sphere

$$\frac{J_i}{\sqrt{N^2-1}} \to x_i \qquad \text{and} \qquad \frac{\bar{J_i}}{\sqrt{(N^2-1)^2-1}} \to \bar{x}_i$$

One can also define some classical object corresponding to

$$rac{G^{lpha}}{\sqrt{N}}
ightarrow g^{lpha} \qquad {
m and} \qquad rac{G^{\dagger}_{lpha}}{\sqrt{N}}
ightarrow g^{\dagger}_{lpha}$$

Then notice that for the defining equation of J_i

$$\frac{J_i}{N} = \frac{1}{N} (\sigma_i^T)^\alpha_\beta G^\beta G^\dagger_\alpha \to x_i = (\sigma_i^T)^\alpha_\beta g^\beta g^\dagger_\alpha$$

This looks like first Hopf map $S^3 \xrightarrow{\pi} S^2$. Defined modulo a U(1) phase. In order to match the degrees of freedom we need to consider the objects defined by extracting the phase. These can be identified with Killing spinors on S^2 .

The G^{α} s should then be thought of as fuzzy Killing spinors on S^2 . [Nastase, CP – in progress] Another interesting picture is the following: Embed everything into $2N \times 2N$ super-matrices

$$\mathbf{J}_{i} = \begin{pmatrix} J_{i} & 0\\ 0 & \bar{J}_{i} \end{pmatrix} \quad \text{ and } \quad \mathbf{J}_{\alpha} = \begin{pmatrix} 0 & \sqrt{N}G_{\alpha}\\ -\sqrt{N}G_{\alpha}^{\dagger} & 0 \end{pmatrix}$$

Then we can summarise the relations

$$\begin{aligned} [\mathbf{J}_{\mathbf{i}},\mathbf{J}_{\mathbf{j}}] &= 2i\epsilon_{ijk}\mathbf{J}_{\mathbf{k}} \\ [\mathbf{J}_{\mathbf{i}},\mathbf{J}_{\alpha}] &= (\sigma_{i}^{T})_{\alpha\beta}\mathbf{J}^{\beta} \\ \{\mathbf{J}_{\alpha},\mathbf{J}_{\beta}\} &= -(\sigma_{i}^{T})_{\alpha\beta}\mathbf{J}_{\mathbf{i}} \end{aligned}$$

This is an OSp(1|2) super-algebra, capturing the isometries of the fuzzy supersphere. In the large-*N* limit they become the coordinates on the classical supersphere. [Grosse-Reiter, Hasebe-Kimura]

The (fuzzy) Killing spinors and hence the bifundamental matter fields live on the spinor bundle over S^2 .

The bifundamental fields also admit harmonic decomposition under the SU(2), which can either be given in terms of (fuzzy) spinor spherical harmonics

or

One can define new fields by 'extracting' the G^{α} part and having an expansion in terms of usual (fuzzy) spherical harmonics.

$$R^{\alpha} = R^{\alpha}_{\beta}G^{\beta}$$
 with $R^{\alpha}_{\beta} = \sum_{l,m} (a_{lm})^{\alpha}_{\beta}\hat{Y}_{lm}(J_i)$

This construction will apply more generally to gauge theories with bifundamental matter admitting fuzzy sphere solutions. [Maldacena-Martelli]

One can also have vacua in terms of reducible representations

$$G^{\alpha} = G_1^{\alpha} \oplus G_2^{\alpha} \oplus \dots$$

These should have interpretation in terms of concentric higher dimensional branes wrapping the S^2 .

Small Fluctuation Analysis

Next look at (bosonic) quadratic fluctuation action around irreducible GRvV vacuum. Fluctuation parameter is $\frac{1}{f^2} = \frac{2\pi}{\mu k}$

$$R^{\alpha} = f G^{\alpha} + r^{\alpha} , \qquad Q^{\dot{\alpha}} = q^{\dot{\alpha}} , \qquad A_{\mu} = a_{\mu} , \qquad \hat{A}_{\mu} = \hat{a}_{\mu}$$

The radius of the sphere can once again be defined as $R^2 = \frac{2}{N} \text{Tr} R^{\alpha} R^{\dagger}_{\alpha} = 8\pi^2 f^2 N l_p^3.$

The r^{α} further decompose into trace and traceless parts

$$r^{\alpha} = r \delta^{\alpha}_{\beta} G^{\beta} + s_i \frac{1}{2} (\sigma^T_i)^{\alpha}_{\beta} G^{\beta} , \qquad r^{\dagger}_{\alpha} = G^{\dagger}_{\alpha} r + G^{\dagger}_{\beta} s_i \frac{1}{2} (\sigma^T_i)^{\beta}_{\alpha}$$

Use Matrix Theory technology to convert into fields on smooth (classical) S^2 at large N.

[Iso-Kimura-Tanaka-Wakatsuki, CP-Ramgoolam-Toumbas]

At large N the mode s_i can be further decomposed into radial and angular components on S^2

$$s_i = x_i \phi + K_i^a A_a$$

with K_i^a a set of Killing vectors on the sphere such that $x_i K_i^a = 0$.

For the 'transverse' scalars write similarly

$$q^{\dot{\alpha}} = Q^{\dot{\alpha}}_{\alpha} G^{\alpha}$$

Then use standard dictionary between large N fuzzy sphere matrices and functions on the sphere

$$\hat{a} = \sum_{l=0}^{N-1} \sum_{m=-l}^{l} a_{lm} \hat{Y}_{lm}(J_i) \to a(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_{lm}(x_i)$$
$$\frac{1}{N} \operatorname{Tr} \to \int d\Omega$$
$$\frac{J_i}{N} \to x_i$$
$$[J_i, \hat{a}] \to -2i K_i^a \partial_a a(\theta, \phi)$$

How about gauge fields? Expanding around the GRvV solution also triggers version of Higgs mechanism present in ABJM (CS-matter) theories.

When a single scalar gets a large, trivial vev the diagonal subgroup of the two non-dynamical CS gauge fields become dynamical. Matter gets promoted from bifundamental to adjoint. CS-matter \rightarrow YM [Mukhi-CP, Aharony-Bergman-Jafferis-Maldacena]

In M-theory corresponds to moving all M2-branes far away from the $\mathbb{C}^4/\mathbb{Z}_k$ singularity.

However, for the case at hand things significantly more complicated: half fields get a vev and that has nontrivial matrix structure (proportional to G^{α}) To cut a (very) long story short:

- The calculation involves combination of large-N Matrix Theory techniques + Higgsing
- Through the above: $(r, s_i) \rightarrow (r + \phi, A_a) \equiv (\Phi, A_a)$
- Non-dynamical (A_{μ}, \hat{A}_{μ}) become a dynamical $\tilde{A}_{\mu} = A_{\mu} + \hat{A}_{\mu}$
- The combination $(r \phi)$ played role of Goldstone mode and does not appear
- 'Transverse' scalars in action can be written as real scalars X^{I} , I = 1, ..., 4.

The final answer for the bosonic sector is:

$$\begin{split} S^B_{\rm flucts} = & \frac{1}{g_{YM}^2} \int d^3x d^2\sigma\sqrt{h} \left[-\frac{1}{4}F_{AB}F^{AB} - \frac{1}{2}\partial_A \Phi \partial^A \Phi - \frac{1}{2}\partial_A X^I \partial^A X^I \right. \\ & \left. -\frac{3}{4}\mu^2 X^I X^I - \frac{\mu^2}{2}\Phi^2 + \frac{\mu}{2}\;\omega^{ab}F_{ab}\Phi \right] \end{split}$$

where $A = \{\mu, a\}$ and the metric $g_{AB} = (\eta_{\mu\nu}, h_{ab})$ with the size of the S^2 set by μ^{-1} . Finally $g_{YM}^2 = g_s l_s$.

This is the action one expects for fluctuations around a single spherical D4 in non-trivial background with μ dependence.

Result very reminiscent to similar calculation in the BMN matrix model [Maldacena-Sheikh Jabbari-van Raamsdonk]

D4/M5 interpretation

Thus: D4-brane - no M5-brane! Since the fluctuation action is valid at weak coupling this makes sense. However, S^2 structure and realisation is now explicit.

Interesting related question involves D4 compactification and susy. Usually D-branes with (partly) curved worldvolumes realise a twisted version of susy, although in some special cases (e.g. giant gravitons in AdS) that's not necessary.

[Bershadsky-Sadov-Vafa, Maldacena-Núñez, Andrews-Dorey]

This should be obvious at the level of the action once we include the fermionic sector.

At strong coupling \rightarrow M5-brane

How does this tally with initial geometric description in terms of G^{α} s?

- Relation between J_i and G^α hints to the Hopf fibration $S^1 \hookrightarrow S^3 \xrightarrow{\pi} S^2$
- The D4 is wrapping the S² base of the above bundle. At large N this base is smooth. At finite N it becomes fuzzy.
- At weak coupling (large k) the S^1 fibre has shrunk
- At strong coupling (small k) the S^1 fibre (M-theory direction) unfolds and one ends up with an M5-brane wrapping an S^3/\mathbb{Z}_k
- Due to large degree of susy this interpretation ought to be similar for all sphere sizes, controlled by $f^2 = \frac{\mu k}{2\pi}$.

Summary...

- Analysed ground state solutions for mass-deformed ABJM theory
- In fact G^{α} correspond to fuzzy Killing spinors on S^2 and lead to realisation in terms of bifundamentals
- Classical GRvV solutions do not describe (fuzzy) S³; instead describe S² base of Hopf fibration
- *S*¹ fibre coincides with M-theory direction and is beyond perturbative regime

- If M5-brane is to emerge at small *k*, as expected, that would only be seen by non-perturbative effects
- Fluctuation analysis around irreducible vacuum adds credibility to this picture
- Starting from M5 wrapped on S^3 the D4 on S^2 is obtained by a double-dimensional reduction
- Gravity duals obtained by a Z_k orbifold of the appropriate M-theory LLM geometries [Auzzi-Kumar]

... & open questions

- Analyse the fermion sector of the fluctuation action
- Clarify D4-brane picture background susy
- Repeat fluctuation analysis for reducible vacua
- Reducible vacua of mass-deformed ABJM describe multiple, concentric spherical M5-branes at strong coupling
- Finite N effects
- Use all of the above in a clever way to get information about M5-branes in M-theory.