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@ No shear in 141 dimensions.
Conformal fluid is a perfect fluid i.e.
T = (e + P)utu” + PnM.

@ Only viscous transport coefficient is bulk viscosity.

@ Gauge invariant fluctuations found for the Dp brane for
p > 2 can’t be extended to p = 1.
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Outline [

@ Gauge/gravity duality for the D1 brane
@ D1 brane supergravity solution
@ Thermodynamics for the D1 brane
@ Regimes of validity for our analysis.
@ Hydrodynamics in 1+1 dimensions.
e Lorentz structure of correlators
@ Poles of the Green’s function
@ Sound channel in gravity
o Effective 3-D system
@ Linear perturbations and gauge choices
@ Diffeomorphism invariant sound mode
o Dispersion relation
@ Viscosity by entropy ratio



@ Stress Tensor correlators

e Boundary action
e Expression for Green’s function
e &/s using the Kubo’s formula
@ Other Examples
o F1 solution
e Transverse space as Sasaki-Einstein Manifolds

@ Summary



@ For the SU(N) gauge theory with 16 supercharges in
1+ 1D on the D1-branes in range \/XN_l << T << \/X,

o

2673 N2T2

TR

@ For T << VAN 'and T >> V),
the D1-brane gauge theory — a CFT.
So, bulk viscosity vanishes.



Non extremal D1 brane solution in Einstein frame is

dr?

ds?y = H_%(r)(—f(r)dt2 + dx?) + Hi (r) <f(r)

+ r2d§23> ,

0 = H(),
FRE - — 615,

where



@ The temperature in terms of the non-extremal parameter
ro 1S

_ o
- onL3’

@ The entropy density is

i () - et




e i
@ This supergravity solution is valid in the temperature range

VAN™S << T << VA

@ Here, the t’Hooft coupling

g
A =gy uN gyn = FZ/

@ Out side this range, curvature in supergravity grows large.

@ For T >> /), Perturbative description of YM.

@ For T << VAN —§, can dualize to fundamental string
solution.



Now for T' << v/ AN~2/3, the holographic dual of the Yang-Mills
theory is given by the non-extremal fundamental string solution.

dr?

ds2y = H™1(r)(—f(r)dt® + da?) + Hi(r) ( o

+ r2dQ$> ,

) = H(r)_%,
ENS = 6L5wg..

Here, wg. denotes the volume form on the 7-sphere.
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@ F1 solution can be trusted in the following temperature

range
2
VAN ! << T << VANT3.

@ To conclude, for T >> /A and T << VAN,
the YM theory — free conformal field theory.
So, bulk viscosity vanish.

@ Supergravity description available in region

VAN <« T < VAN"3 and VAN"3 < T < VA

o Fairly large domain for large N.
@ Bulk viscosity non trivial in this regime.
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@ We define the retarded Green’s function of the stress tensor
as

Guvap(® —y) = =i0(z° — y°) ([T (), Tap(y)])-

o Its Fourier transform is denoted as G, a3(k).
@ [t is symmetric by definition under

o interchange of indices (u, ).

¢ interchange of indices (a, 3).

Gvap(k) = Gap (k).

due to CPT invariance.



S A S —
Conservation of Stress energy tensor — Ward identity
E'Gap(k) = 0.
This suggests a useful tensor which forms a basis to write down
the correlator is ek
P = 1 — 5"
Note that £#P,, = 0. Can split it as
G,uu,aﬁ(k) = P,u.VPozﬂGB(kZ) + H;u/,aBGS(kZ):

where 1
Hywap = §(PuaPVﬁ + Puﬁpva) — PuwPag.
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1
Hﬂyyaﬁ = i(P/J'O‘PVﬁ + PI,LIBPl/a) — P;wPaﬁ'

@ Note that n*"H,,, o5 = 0.
@ The two tensors above are orthogonal

Py PapH™, 5 = 0.

@ By substituting the value of k, = (—w, q),
we find that all components of H,,, .3 vanish.

@ So, the two point function of the stress tensor in a 1+ 1
dimensional theory is entirely dependent on just one
function Gp(k?).
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@ Thus the two point function can be written as
Guu,aﬁ(w7 Q) = P,ul/PaﬂGB(w7 Q)'
o Writing it explicitly, we obtain
Gust =~ Gp, Gupe = —L%-G
tttt — m B, tt,tx — WE B>
w?q 2,2
Gtt,ac:c = WGB’ Gtz,ta: = ﬁGBy

w3q 4
Gtm,xw = mGB, Gmm,axz = (wza_}—quGB

@ Thus all components of the thermal Green’s function of the
stress tensor are determined by a single function Gp.



I S T S S —
The stress tensor of a fluid in 1 4+ 1 dimensions is given by
TH = (e + P)ulu” + Pn*"" — {(ut'u” + 17“”)8)\11/\,
where u* is the 2-velocity with
uput = —1

and ¢ is the bulk viscosity.
Now consider small fluctuations from the rest frame of the fluid.

T00 — ¢ 4 (5T00, 70z — 6T0w,

T = P+ §T%%,
u =1, u® = ou”.



S A S —
Putting them into the conservation equation V#T},, = 0
and after some manipulations, one gets

(—iw2 + z'q?vg + qu2> 6T = 0.
€

+ P
where
S De

is the speed of sound.
We thus get dispersion relation for 67°% upto leading order as

S 9
=+ —i—q".
“ Usd 7’2(e+P)q

Linear response theory says Gp has a pole at this w.
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First consistently truncate the 10D NH geometry to 3D by
reducing on the S”. Ansatz is

ds?y = e B0 as2 4 2B 2g02

ds3 = —cp(r)?dt® + cx(r)?d2? + cr(r)?dr?.

We take B(r) = —5;¢(r) and keep the RR flux on the 7-sphere
constant. The effective action

_ 1 3 B
S= i, | Fov7a R - 50,007 - P(o)].

Here, p=11% and P =23,



The D1-brane in 10-dimensions reduces to

ds3 = —cp(r)2dt* + cx(r)?d2® + cp(r)?dr?,
r
o = —slog(g).
with the components of the metric given by
2 2 _ (T)\® o 1 /r\2
CT_( )f’ CX_(L)’ cR_f(L)’

with f=1—

‘Kmlc?o:
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@ We take small perturbations in the above background.

Y — Guv + 0G0 and b — &+ d¢.
@ We make a Fourier transformation

0Guw = e_i(wt_qz)h/w(r)a dp = e_i(wt_qz)@(r)'

@ We further parametrize the metric perturbations as

2 2 2
htt = O1"I—Itta htz = CXHtZ7 hzz = CXsz-

@ We fix the gauge by choosing
697“15 = 6grz = 697“7“ =0.
@ We have 4 dynamical equations and 3 constraints.
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Diffeomorphism invariant sound mode

One is left with the residual gauge freedom under the
infinitesimal diffeomorphisms

at — ot + €F with pe {t,z,7}.

@ The metric changes as

5guy - 5g,uy - v,ugu - vu€u~

We next form a diffeomorphism invariant quantity out of
the perturbations.

Unique in our case.

Differs from such quantity constructed for Dp systems for
p =2
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We find the following combination gauge invariant.

Zp = Zo—i—A(pgo

2
where Z; = qQCTTHtt+2qutz+w2sz
X
2 z%
A, = ¢, q lncT wiin’ ex

Using linear perturbations of Einstein equations and the
dilaton equation of motion, we get

A/
70+ {m' (CTCX) - 2—90] Zl+GZp = 0.
CR A¢

2

with Q:—[Cﬁ<q2%—w)+2—‘ﬁln<x)].

2
CT C X cT



2
. T
We define a variable u = .4,

so that w — 1 is the horizon.
and v — 0 is the boundary.

We are interested in a solution which is ingoing at the horizon
Taking appropriate limits, we find the ingoing solution behaves
as

1 i
Zy= 4 (- w7

where
L3 3

TR T 4T
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We next consider a solution of the type

1 i
Z, = A—(p(1 —u3) T3 Z (u).

We also consider the hydrodynamic limit
w<<T and q<<T

and we ignore terms of order ¢?/7?, w?/T?, wq/T? and higher,
but keep terms of order w/T', q/T .
In this limit,

C{2+0- 2iaw)u®}

18u*(4) — 3) 7 -0
uw(l —u3) ’

2
%z (1 —ud)(4— 4\ —ud)2”

02 —
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Its well behaved solution at the horizon is

L 6A—2(1 — A)(3 — diow) — u3(3 + 2iaw)

Z
12(3 — 2iaw) (4 — 4\ + u?)

Next impose Dirichlet condition, Z = 0 at the boundary,
—dioaw?® + 6w? + diawg® — 3¢* = 0.

We assume w ~ ¢, and solve this equation perturbatively.

1 e
w=t—q—iqg®+
V2t e
with
L3 3



Dispersion relation from general hydrodynamics considerations

oP
2 _ oF
Vg 86.

5 1 13 e 1

VL = — = — = —,
52 e+P 3 AnT
UEI%—IZ — e =2P.

The medium seems to behave as a conformal fluid in 2+1D.



e+ P 4nT
e+ P=Ts — ¢ = i
s 4w
2473 N272 2073 N2772

e, S R/
For Dp-branes with p > 2 (Mas and Tarrio hep-th/0703093),

§€_&n_ 12B8-pp?

s ns 4w p®-p)’

The general expression continues to hold also for p = 1.



T ————————.——.
We first need to expand the action along with the

Gibbons-Hawking boundary term to second order in the metric
and dilaton fluctuations.

S = Spux +Scw,

_ 1 3 _é Y-
S = 1oag | PV R 50,00 ~ P
_ 1 2. /]
Saon = 87TG3/d$ hK|r—oo-
where
QZE p— 2,

9 L?



After algebraic manipulations, we obtain

1 dwd R o
2 _ q A 7! 7 _ (2)
S 167TG3 / ( ) (wa% T) P(Tv k) P(T, k) SCT;

where
B erex

A(waqu) - 2A2 CR .

Metric fluctuation - stress energy tensor coupling is
1
Scoupling = 3 / d*z[HYT™ + H, T + 2H? T%].

We evaluate two point fn(s) using the AdS/CFT correspondence

(exp (iScoupling) > = €xp [iS(2) (ng)] .



Consider
5§52
Gtt,tt = — <[TttaT;5t]> .
6Hg§( &)SHY) (k)

Note Zp = ¢°Hy, + 2wqH}, + w*HY, + AJp°

= C(+.)+Du(l+.),

Near u— 0, Zp
— ZO [1+ _|_Dr0 1+ ]

592 1 ¢' 6§D

4 — — =
OHG(R)OHG(—k) 167G (w* -

= Gtt,tt = -
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Stress-Energy correlator

Recall Gp,l/,aﬁ (W, q) = P/LVPQBGB (wv Q)

We can read out the holographic value of Gp from the
expression of Gy 4+ as

1 6r$D

Gplw.q) = T 167Gs L7 C

The poles in the Green’s function are therefore same as the
zeros of the factor C.

The Dirichlet boundary condition for the mode Zp = 0 at
the horizon is equivalent to setting C' = 0.

Poles in Gp —dispersion relation of the sound mode.
Evaluation of remaining two point functions reproduces the
same expression for Gp(w, q).



T ————————.——.
We next extract Bulk viscosity from the Green’s function. This

is done using the Kubo’s formula. In 1 + 1D, Kubo’s formula
for bulk viscosity is given by

£ = lim & C>Odt/al,ze““t([Tzz(ﬂﬁ),Tzz(O)])-
0

w—0 W

1
= 1 — = .
WIE}J o Gzz,zz (w7 q 0)

Recall

wt Cplw,q) G — 1 8
(W2 —¢?)? B, ), B T 16rGs LT

D
Gzz zz — -~
’ c’



(—diaw? + diawg?® + 6w? — 3¢%)

C =
9(2iaw — 3) '
D - w[%iwg? + Siacw(w? — ¢?)? — 12a(2¢* — 3¢%w? + w)]
B 54(3i + 2aw)(¢? — w?) '
1 rS D
Gzz,zz(w; 0) - = 167G |:F 6:| 0 .
1 6r§iaw WS
S T A R

1

Using Kubo’s formula, we get P
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In the temperature range VAN ! << T << VAN —§,

we have fundamental string solution.
Consistent truncation leads to a similar effective action

/ Sev/—g [R——@,qu@“d)-i-—e s¢]

167TG

The 10D string solution reduces to
ds® = —cp(r)?dt? + ex (r)?dz® + cr(r)2dr?,
r
- ;).
¢ 3log -

Only change is ¢ — —¢.



The equation of sound mode

A
Z}S + [ln’ (CTCX) — 2—¢:| Zp+GZp =0.
CR A,

depends on dilaton only by the ratio
A_fp _ [AgIn’(cx)]) ¢
A, Ag ln'(cX) ¢

which remains unchanged. So the result % = ﬁ remains valid in

temperature range

VAN~ << T << V/AN73,
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We start from the 10 dimensional solution

dr?

ds® = H™i(r) (= f(r)dt> + da?) + Hi(r) (f(r)

+ rzdS’gﬁ) ,

G- H(r)%,
F; = 6L%x..
L\6 0\ 6
where H(r) = (7) , f(r)y=1- (70) .
Leads to the same 3D effective action as in D1 case, but with
1 L™Vol(X7)
ég GlO

So, the viscosity to entropy ratio remains same.



@ For the SU(N) gauge theory with 16 supercharges in
1+ 1D on the D1-branes in range \/XN_l << T << \/X,

o
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@ For T << VAN 'and T >> V),
the D1-brane gauge theory — a CFT.
So, bulk viscosity vanishes.
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