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Motivation

No shear in 1+1 dimensions.
Conformal fluid is a perfect fluid i.e.
Tµν = (ǫ + P )uµuν + Pηµν .
Only viscous transport coefficient is bulk viscosity.
Gauge invariant fluctuations found for the Dp brane for
p ≥ 2 can’t be extended to p = 1.
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Summary

For the SU(N) gauge theory with 16 supercharges in

1 + 1D on the D1-branes in range
√

λN−1 << T <<
√

λ,

ξ =
26π

7

2

33

N2T 2

√
λ

.

ξ

s
=

1

4π
.

For T <<
√

λN−1 and T >>
√

λ,
the D1-brane gauge theory → a CFT.
So, bulk viscosity vanishes.
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D1 brane supergravity solution

Non extremal D1 brane solution in Einstein frame is

ds2
10 = H−

3

4 (r)(−f(r)dt2 + dx2
1) + H

1

4 (r)

(

dr2

f(r)
+ r2dΩ2

7

)

,

eφ(r) = H(r)
1

2 ,

FRR
7 = 6L6ωS7

,

where

f(r) = 1 −
(r0

r

)6
H =

(

L

r

)6

L6 = 26π3g2
Y MNα′4
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D1 brane thermodynamics

The temperature in terms of the non-extremal parameter
r0 is

T =
3r2

0

2πL3
,

The entropy density is

s =
1

4G3

(r0

L

)4
=

2π4

4!G10
r4
0L

3.



Supergravity Picture 1+1D hydrodynamics Sound channel Tµν Correlator Other Examples Conclusion

Regime of validity

This supergravity solution is valid in the temperature range

√
λN−

2

3 << T <<
√

λ.

Here, the t’Hooft coupling

λ = g2
Y MN g2

Y M =
gs

2πα′

.
Out side this range, curvature in supergravity grows large.
For T >>

√
λ, Perturbative description of YM.

For T <<
√

λN−
2

3 , can dualize to fundamental string
solution.
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F1 brane solution

Now for T <<
√

λN−2/3, the holographic dual of the Yang-Mills
theory is given by the non-extremal fundamental string solution.

ds2
10 = H−

3

4 (r)(−f(r)dt2 + dx2
1) + H

1

4 (r)

(

dr2

f(r)
+ r2dΩ2

7

)

,

eφ(r) = H(r)−
1

2 ,

FNS
7 = 6L6ωS7

.

Here, ωS7
denotes the volume form on the 7-sphere.
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Regime of validity

F1 solution can be trusted in the following temperature
range √

λN−1 << T <<
√

λN−
2

3 .

To conclude, for T >>
√

λ and T <<
√

λN−1,
the YM theory → free conformal field theory.
So, bulk viscosity vanish.
Supergravity description available in region

√
λN−1 ≪ T ≪

√
λN−

2

3 and
√

λN−
2

3 ≪ T ≪
√

λ.

Fairly large domain for large N .
Bulk viscosity non trivial in this regime.
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Two point correlator: structure

We define the retarded Green’s function of the stress tensor
as

Gµν,αβ(x − y) = −iθ(x0 − y0)〈[Tµν(x), Tαβ(y)]〉.

Its Fourier transform is denoted as Gµν,αβ(k).
It is symmetric by definition under

interchange of indices (µ, ν).
interchange of indices (α, β).

Gµν,αβ(k) = Gαβ,µν(k).

due to CPT invariance.
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Two point correlator: structure

Conservation of Stress energy tensor → Ward identity

kµGµν,αβ(k) = 0.

This suggests a useful tensor which forms a basis to write down
the correlator is

Pµν = ηµν − kµkν

k2
.

Note that kµPµν = 0. Can split it as

Gµν,αβ(k) = PµνPαβGB(k2) + Hµν,αβGS(k2),

where

Hµν,αβ =
1

2
(PµαPνβ + PµβPνα) − PµνPαβ .
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Two point correlator: structure

Hµν,αβ =
1

2
(PµαPνβ + PµβPνα) − PµνPαβ .

Note that ηµνHµν,αβ = 0.
The two tensors above are orthogonal

PµνPαβHµν
,α′β′ = 0.

By substituting the value of kµ = (−ω, q),
we find that all components of Hµν,αβ vanish.
So, the two point function of the stress tensor in a 1 + 1
dimensional theory is entirely dependent on just one
function GB(k2).
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Two point correlator: structure

Thus the two point function can be written as

Gµν,αβ(ω, q) = PµνPαβGB(ω, q).

Writing it explicitly, we obtain

Gtt,tt =
q4

(ω2 − q2)2
GB, Gtt,tx = q3ω

(ω2
−q2)2

GB,

Gtt,xx =
ω2q2

(ω2 − q2)2
GB, Gtx,tx = ω2q2

(ω2
−q2)2

GB,

Gtx,xx =
ω3q

(ω2 − q2)2
GB, Gxx,xx = ω4

(ω2
−q2)2

GB.

Thus all components of the thermal Green’s function of the
stress tensor are determined by a single function GB.
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Poles in the correlators

The stress tensor of a fluid in 1 + 1 dimensions is given by

Tµν = (ǫ + P )uµuν + Pηµν − ξ(uµuν + ηµν)∂λuλ,

where uµ is the 2-velocity with

uµuµ = −1

and ξ is the bulk viscosity.
Now consider small fluctuations from the rest frame of the fluid.

T 00 = ǫ + δT 00, T 0x = δT 0x,
T xx = P + δT xx,

u0 = 1, ux = δux.
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Poles in the correlators

Putting them into the conservation equation ∇µTµν = 0
and after some manipulations, one gets

(

−iω2 + iq2v2
s +

ξ

ǫ + P
ωq2

)

δT 0x = 0.

where

v2
s =

∂P

∂ǫ

is the speed of sound.
We thus get dispersion relation for δT 0x upto leading order as

ω = ±vsq − i
ξ

2(ǫ + P )
q2.

Linear response theory says GB has a pole at this ω.
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Effective 3-D system

First consistently truncate the 10D NH geometry to 3D by
reducing on the S7. Ansatz is

ds2
10 = e−14B(r)ds2

3 + e2B(r)L2dΩ2
7,

ds2
3 = −cT (r)2dt2 + cX(r)2dz2 + cR(r)2dr2.

We take B(r) = − 1
24φ(r) and keep the RR flux on the 7-sphere

constant. The effective action

S =
1

16πG3

∫

d3x
√−g

[

R − β

2
∂µφ∂µφ − P(φ)

]

.

Here, β = 16
9

, and P = − 24
L2 e

4

3
φ.
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Effective 3-D system

The D1-brane in 10-dimensions reduces to

ds2
3 = −cT (r)2dt2 + cX(r)2dz2 + cR(r)2dr2,

φ = −3 log
( r

L

)

,

with the components of the metric given by

c2
T =

( r

L

)8
f, c2

X =
( r

L

)8
, c2

R =
1

f

( r

L

)2
,

with f = 1 − r6

0

r6 .
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Linear perturbations and gauge fixing

We take small perturbations in the above background.

gµν → gµν + δgµν and φ → φ + δφ.

We make a Fourier transformation

δgµν = e−i(ωt−qz)hµν(r), δφ = e−i(ωt−qz)ϕ(r).

We further parametrize the metric perturbations as

htt = c2
T Htt, htz = c2

XHtz, hzz = c2
XHzz.

We fix the gauge by choosing

δgrt = δgrz = δgrr = 0.

We have 4 dynamical equations and 3 constraints.
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Diffeomorphism invariant sound mode

One is left with the residual gauge freedom under the
infinitesimal diffeomorphisms

xµ → xµ + ξµ with µ ∈ {t, z, r}.

The metric changes as

δgµν → δgµν −∇µξν −∇νξµ.

We next form a diffeomorphism invariant quantity out of
the perturbations.
Unique in our case.
Differs from such quantity constructed for Dp systems for
p ≥ 2.
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Diffeomorphism invariant sound mode

We find the following combination gauge invariant.

ZP = Z0 + Aϕϕ

where Z0 = q2 c2
T

c2
X

Htt + 2qωHtz + ω2Hzz

Aϕ =
2

φ′

(

q2 c2
T

c2
X

ln′ cT − ω2 ln′ cX

)

.

Using linear perturbations of Einstein equations and the
dilaton equation of motion, we get

Z ′′

P +

[

ln′

(

cT cX

cR

)

− 2
A′

ϕ

Aϕ

]

Z ′

P + GZP = 0.

with G = −
[

c2
R

c2
T

(

q2 c2
T

c2
X

− ω2
)

+ 2
A′

ϕ

Aϕ
ln′

(

cX

cT

)]

.
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Dispersion relation for the sound mode

We define a variable u =
r2

0

r2 ,

so that u → 1 is the horizon.
and u → 0 is the boundary.

We are interested in a solution which is ingoing at the horizon
Taking appropriate limits, we find the ingoing solution behaves
as

Zp =
1

Aϕ
(1 − u)−

i
3
αω.

where

α =
L3

2r2
0

=
3

4πT
.
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Dispersion relation for the sound mode

We next consider a solution of the type

Zp =
1

Aϕ
(1 − u3)−

i
3
αωZ(u).

We also consider the hydrodynamic limit

ω << T and q << T

and we ignore terms of order q2/T 2, ω2/T 2, ωq/T 2 and higher,
but keep terms of order ω/T , q/T .
In this limit,

∂2
uZ − {2 + (1 − 2iαω)u3}

u(1 − u3)
∂uZ − 18u4(4λ − 3)

(1 − u3)(4 − 4λ − u3)2
Z = 0.
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Dispersion relation for the sound mode

Its well behaved solution at the horizon is

Z =
6λ − 2(1 − λ)(3 − 4iαω) − u3(3 + 2iαω)

12(3 − 2iαω)(4 − 4λ + u3)
.

Next impose Dirichlet condition, Z = 0 at the boundary,

−4iαω3 + 6ω2 + 4iαωq2 − 3q2 = 0.

We assume ω ∼ q, and solve this equation perturbatively.

ω = ± 1√
2
q − i

α

6
q2 + ...

with

α =
L3

2r2
0

=
3

4πT
.
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Viscosity by entropy ratio

Dispersion relation from general hydrodynamics considerations

ω = vs −
i

2

1

ǫ + P
ξq2, v2

s =
∂P

∂ǫ
.

Dispersion relation from linearized supergravity analysis

ω = ± 1√
2
q − i

α

6
q2 + ...

By comparing, we get

v2
s =

1

2

ξ

ǫ + P
=

α

3
=

1

4πT
.

v2
s = ∂P

∂ǫ → ǫ = 2P.

The medium seems to behave as a conformal fluid in 2+1D.
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Viscosity by entropy ratio

ξ

ǫ + P
=

1

4πT
.

ǫ + P = Ts → ξ

s
=

1

4π
.

s =
24π

5

2

33

N2T 2

√
λ

→ ξ =
26π

7

2

33

N2T 2

√
λ

.

For Dp-branes with p ≥ 2 (Mas and Tarrio hep-th/0703093),

ξ

s
=

ξ

η

η

s
=

1

4π

2(3 − p)2

p(9 − p)
.

The general expression continues to hold also for p = 1.
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Stress-Energy correlator

We first need to expand the action along with the
Gibbons-Hawking boundary term to second order in the metric
and dilaton fluctuations.

S = Sbulk + SGH ,

Sbulk =
1

16πG3

∫

d3x
√−g

[

R − β

2
∂µφ∂µφ − P(φ)

]

SGH =
1

8πG3

∫

d2x
√
−hK|r→∞.

where

β =
16

9
P = − 24

L2
e4φ/3.
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Stress-Energy correlator

After algebraic manipulations, we obtain

S(2) =
1

16πG3

∫

dωdq

(2π)2
A(ω, q, r)Z ′

P (r,~k)ZP (r,−~k) + S
(2)
CT ,

where

A(ω, q, r) = − β

2A2
ϕ

cT cX

cR
.

Metric fluctuation - stress energy tensor coupling is

Scoupling =
1

2

∫

d4x[H0
ttT

tt + H0
zzT

zz + 2H0
tzT

tz].

We evaluate two point fn(s) using the AdS/CFT correspondence

〈exp(iScoupling)〉 = exp[iS(2)(H0
µν)].
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Stress-Energy correlator

Consider

Gtt,tt = −i〈[Ttt, Ttt]〉 = −4
δS(2)

δH0
tt(

~k)δH0
tt(−~k)

.

Note Z0
P = q2H0

tt + 2ωqH0
tz + ω2H0

zz + A0
ϕϕ0.

Near u → 0, ZP = C(1 + ...) + Du3(1 + ...),

= Z0
P

[

1 + ... + D
C

r6

0

r6 (1 + ...)
]

.

⇒ Gtt,tt = −4
δS(2)

δH0
tt(

~k)δH0
tt(−~k)

= − 1

16πG3

q4

(ω2 − q2)2
6r6

0

L7

D

C
.
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Stress-Energy correlator

Recall Gµν,αβ(ω, q) = PµνPαβGB(ω, q).

We can read out the holographic value of GB from the
expression of Gtt,tt as

GB(ω, q) = − 1

16πG3

6r6
0

L7

D

C
.

The poles in the Green’s function are therefore same as the
zeros of the factor C.
The Dirichlet boundary condition for the mode ZP = 0 at
the horizon is equivalent to setting C = 0.
Poles in GB →dispersion relation of the sound mode.
Evaluation of remaining two point functions reproduces the
same expression for GB(ω, q).
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ξ/s using the Kubo’s formula

We next extract Bulk viscosity from the Green’s function. This
is done using the Kubo’s formula. In 1 + 1D, Kubo’s formula
for bulk viscosity is given by

ξ = lim
ω→0

1

ω

∫

∞

0
dt

∫

dzeiωt〈[Tzz(x), Tzz(0)]〉.

= lim
ω→0

i

ω
Gzz,zz(ω, q = 0).

Recall

Gzz,zz =
ω4

(ω2 − q2)2
GB(ω, q), GB = − 1

16πG3

r6
0

L7

D

C
.
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ξ/s using the Kubo’s formula

C =
(−4iαω3 + 4iαωq2 + 6ω2 − 3q2)

9(2iαω − 3)
,

D =
ω[9iωq2 + 8iα2ω(ω2 − q2)2 − 12α(2q4 − 3q2ω2 + ω4)]

54(3i + 2αω)(q2 − ω2)
.

Gzz,zz(ω, 0) = − 1

16πG3

[

r6
0

L7

D

C

]

q=0

.

Gzz,zz(ω, 0) = − 1

16πG3

6r6
0

L7

iαω

3
= −i

ωs

4π
.

Using Kubo’s formula, we get
ξ
s =

1
4π .
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Fundamental string solution

In the temperature range
√

λN−1 << T <<
√

λN−
2

3 ,
we have fundamental string solution.
Consistent truncation leads to a similar effective action

S =
1

16πG3

∫

d3x
√−g

[

R − 8

9
∂µφ∂µφ +

24

L2
e−

4

3
φ

]

.

The 10D string solution reduces to

ds2 = −cT (r)2dt2 + cX(r)2dz2 + cR(r)2dr2,

φ = 3 log
( r

L

)

.

Only change is φ → −φ.
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ξ/s for the F1-brane case

The equation of sound mode

Z ′′

P +

[

ln′

(

cT cX

cR

)

− 2
A′

ϕ

Aϕ

]

ZP + GZP = 0.

depends on dilaton only by the ratio

A′

ϕ

Aϕ
=

[AH ln′(cX)]′

AH ln′(cX)
− φ′′

φ′
,

which remains unchanged. So the result ξ
s = 1

4π remains valid in
temperature range

√
λN−1 << T <<

√
λN−

2

3 .
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Sasaki-Einstein 7 manifolds as transverse spaces

We start from the 10 dimensional solution

ds2 = H−
3

4 (r)
(

−f(r)dt2 + dx2
1

)

+ H
1

4 (r)

(

dr2

f(r)
+ r2dS2

X7

)

,

eφ(r) = H(r)
1

2 ,

F7 = 6L6ωX7
.

where H(r) =
(

L
r

)6
, f(r) = 1 −

(

r0

r

)6
.

Leads to the same 3D effective action as in D1 case, but with

1

G̃3

=
L7Vol(X7)

G10
.

So, the viscosity to entropy ratio remains same.
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Summary

For the SU(N) gauge theory with 16 supercharges in

1 + 1D on the D1-branes in range
√

λN−1 << T <<
√

λ,

ξ =
26π

7

2

33

N2T 2

√
λ

.

ξ

s
=

1

4π
.

For T <<
√

λN−1 and T >>
√

λ,
the D1-brane gauge theory → a CFT.
So, bulk viscosity vanishes.
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