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Introduction

The AdS/CFT correspondence can be used to study the
dynamical passage of a system from a pure state to an
approximately thermalized state .
This process is dual to the process of black hole formation
via gravitational collapse.
In this talk we study asymptotically AdS collapse
processes, in a weak field limit, that display rich dynamics
while allowing for analytic control.
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The Basic Setup

An AdS collapse process can be set up as follows.
Start with vacuum AdS.
At time = 0 weakly perturb the system at the boundary by
turning on the non normalizable component of a massless
field for a finite duration.
The perturbation creates an ingoing shell of the massless
field which sometimes collapses to form black holes.
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Translationally invariant collapse

Our system: Negative cosmological constant Einstein
gravity with a minimally coupled massless scalar field

S =

∫
dd+1x

√
g
(

R + d(d − 1)− 1
2

(∂φ)2
)

We study spacetimes of the form (Eddington-Finkelstein
gauge)

ds2 = 2dr dv − g(r , v)dv2 + f 2(r , v)dx2
i

φ = φ(r , v).

f ,g and φ are independent of (xi) : Translational
invariance.
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ds2 = 2dr dv − g(r , v)dv2 + f 2(r , v)dx2
i

The lines of constant v are null ingoing geodesics.
When

g(r , v) = r2, f (r , v) = r

it is the metric of Poincare patch AdS space in Eddington
Finkelstein coordinate.
When

g(r , v) = r2
(

1− M
r3

)
, f (r , v) = r

it is the metric of the uniform black brane in Eddington
Finkelstein coordinate.
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Set up

Initial condition:
For v < 0 the metric is pure AdS and dilaton field is zero.
Boundary condition:
Metric is asymptotically Poincare AdS. Non normalizable
component φ0(v) of the dilaton field turned on.

lim
r→∞

φ(r , v) = φ0(v)

φ0(v) 6= 0 0 ≤ v ≤ δt
|φ0(v)| ∼ ε� 1

Goal: Given above data,
determine space-time metric and dilaton for all r and v .
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Naive perturbation expansion

Note that δt can be scaled away. Qualitatively the
amplitude ε is the only parameter. In this talk we work in
the limit of small ε
A weak boundary perturbation creates a small amplitude
wave that propagates from the boundary into the bulk of
AdS.
As the amplitude of the wave is small it is natural to
attempt to construct our spacetime in a perturbation
expansion (in ε) about empty AdS space. We refer to this
as the naive perturbative expansion.
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Naive perturbation expansion

We now implement the naive perturbation expansion in ε
around the empty AdS.

f (r , v) =
∞∑

n=0

εnfn(r , v), g(r , v) =
∞∑

n=0

εngn(r , v)

φ(r , v) =
∞∑

n=0

εnφn(r , v) with

f0(r , v) = r , g0(r , v) = r2, φ0(r , v) = 0.



First correction

We have determined f ,g and φ upto 5th order in ε by
solving the bulk equations. At first and second order

φ1(r , v) = φ0(v) +
φ̇0

r

f2(r , v) = −
φ̇2

0
8r

g2(r , v) = −C2(v)

r
− 3

4
φ̇2

0

C2(v) = −
∫ v

−∞
dt

φ̇0
...
φ0

2

Higher order results



Validity of perturbative expansion

φ1(r , v) = φ0(v) +
φ̇0

r

Note that φ̇0
r ∼

ε
rδt . Consequently φ1 � 1 for rδt � ε.

Therefore this perturbation theory, which is an expansion in
the amplitude of φ, breaks down for rδt � ε. Singular at
r = 0.
More generally it can be shown that naive expansion is
valid whenever

rδt � Max

{
ε

√
v
δt
, ε

}
and

v
δt
� ε−

2
3

So naive perturbation breaks down at small r and large v .
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Validity of perturbative expansion

We will show below that the small r region where
perturbation fails is shielded from the boundary by an
event horizon.
Breakdown at large v (IR divergence) will be important. It
is a consequence of an aspect of our solution that is visible
already at small v and so is reliably displayed in naive
perturbation theory.

For r � ε
δt and v

δt � ε−
2
3 ,where naive perturbation is valid,

the small ε limit of the metric is given by

lim
ε→0

ds2 = 2dr dv −
(

r2 − C2(v)

r

)
dv2 + r2dx2

i

6= 2dr dv − r2dv2 + r2dx2
i for r .

ε
2
3

δt

(1)
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Validity of perturbative expansion

In other words our spacetime is not uniformly well
approximated by empty AdS even in the limit ε→ 0.
Consequently the naive perturbation expansion
misidentifies the starting point for perturbation theory. This
results in infrared divergences in this expansion.
These divergences may be cured by perturbing around the
correct leading order spacetime. As we have seen this
spacetime is given at early times by

ds2 = 2dr dv −
(

r2 − C2(v)

r

)
dv2 + r2dx2

i

This follows from naive perturbation theory within its
regime of validity.
In fact the above metric is correct to leading order at all
times as we now explain.
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Resummed perturbation Theory

For v > δt the solution is an unforced normalizable solution
to the equations of motion. It turns out that the solution is
completely determined by two pieces of initial data: mass
density M(δt) ≈ C2(δt) and dilaton function φ(r , δt).
Naive expansion (valid at v = δt) determines both of these
perturbatively in ε. It turns out while C2(δt) ∼ O(ε2),
φ(r , δt) ∼ O(ε3).
This turns out to imply that the subsequent solution
(v > δt) is a small perturbation around static black brane of
energy density C2(δt)
Consequently

lim
ε→0

ds2 = 2dr dv −
(

r2 − C2(v)

r

)
dv2 + r2dx2

i

for all v .
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Summary

To the leading order in ε the spacetime takes the Vaidya
form for all v but for r > ε

δt

ds2 = 2dr dv −
(

r2 − M(v)

r

)
dv2 + r2dx2

i

where the mass function M(v) = C2(v) = −
∫ v
−∞ dt φ̇0

...
φ 0

2 .

At early times (v � δt

ε
2
3

) corrections to the Vaidya form are

systematically captured by naive perturbation.
Late time perturbation can be handled by a resummed
perturbation expansion about the Vaidya spacetime.
Corrections expressed in terms of universal functions that
can be computed numerically. Resummed perturbation at leading order
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Time scales

Note that the energy density M of the black brane is of

O
(
ε2

δt3

)
and so its temperature, M

1
3 is of O

(
ε

2
3
δt

)
. It follows

that the black brane is formed over a time scale much
smaller than the inverse temperature, the natural time
scale associated with the brane.
In particular in the limit ε→ 0, δt → 0, δt

ε
2
3

held fixed

describes the instantaneous formation of a black brane
finite temperature. Spacetime for this formation process is
simply given by AdS space for v < 0 and the blackbrane
for v > 0. All corrections to this metric are suppressed by
powers of ε

2
3 and so vanish in this limit.
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Event horizon
Recall that perturbation breaks down at r . ε

δt . We will
now show that this region is shielded from the boundary by
an event horizon.
The event horizon is the unique null manifold that
asymptotes to r = M

1
3 at late times. Can be determined

order by order in ε.
It turns out that to the leading order the position of the
event horizon

rH(v) = M
1
3 v > 0

rH(v) =
M

1
3

1−M
1
3 v

v < 0

Note M
1
3 � ε

δt . Consequently an arbitrarily small ε
perturbation produces a black brane. singularity formation
is always shielded behind an event horizon. Demonstration
of cosmic censorship at small ε in translationally invariant
AdS collapse.
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CFT dual

The gravity solution describes a CFT in R(d−1,1)

Initially in a vacuum state
During (0, δt) perturbed by a translationally invariant source
of amplitude ε .
The source couples to a marginal operator that pumps
energy into the system.

Our gravitational solution gives a detailed dual description
of the subsequent equilibration process.
It gives a formula for the final temperature as an expansion
in ε.
For some purposes the system appears to thermalize
almost instantaneously at leading order in ε as we now
explain.
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Rapid, scale dependent thermalization

To the leading order the spacetime reduces to that of a uniform
blackbrane immediately after v > δt . It follows at leading order

Our system responds to additional boundary perturbations
at v > δt as if it was precisely thermal.
One point functions of local operators, which probe the
spacetime only near the boundary, attain their thermal
values almost instantaneously (for v > δt).
Multipoint correlators of local operators and one point
functions of non local operators like Wilson loops, which
probe the spacetime away from the boundary, attain their
thermal values over longer scale dependent time scales.

Subleading corrections in ε display slower quasinormal mode
type decay over the linear response time scale M−

1
3 � δt .

Consequently all of the above is valid only at leading order in ε.
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Forcing with slow spatial variation and fluid dynamics

Let us generalize our discussion to allow for a forcing
function that breaks the translational invariance but on a
length scale L� the thermal scale M−

1
3 .

At leading order we expect the spacetime to be tubewise
well approximated by the Vaidya form with a spatially
varying temperature.

ds2 = 2dr dv −
(

r2 − M(v , ~x)

r

)
dv2 + r2dx2

i

where

M(v , ~x) = C2(v , ~x) +O(ε4)

C2(v , ~x) = −1
2

∫ v

−∞
dt φ̇0(t , ~x)

...
φ0(t , ~x)
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Forcing with slow spatial variation and fluid dynamics

Note that the metric at v ∼ δt is tubewise that of a black
brane with slowly varying temperature and so fluid
dynamical.
Subsequent evolution governed by the equations of
boundary fluid dynamics.
Note that the fluid dynamics is valid already for
v > δt � M−

1
3 . This is true even though correlation

functions over length scales of the mean free path (M−
1
3 )

are far from thermal at these times. Consequently fluid
dynamics is the precise dynamical description of our
system well before it has locally equilibriated on the scale
of mean free path.



Forcing with slow spatial variation and fluid dynamics

Note that the metric at v ∼ δt is tubewise that of a black
brane with slowly varying temperature and so fluid
dynamical.
Subsequent evolution governed by the equations of
boundary fluid dynamics.
Note that the fluid dynamics is valid already for
v > δt � M−

1
3 . This is true even though correlation

functions over length scales of the mean free path (M−
1
3 )

are far from thermal at these times. Consequently fluid
dynamics is the precise dynamical description of our
system well before it has locally equilibriated on the scale
of mean free path.



Forcing with slow spatial variation and fluid dynamics

Note that the metric at v ∼ δt is tubewise that of a black
brane with slowly varying temperature and so fluid
dynamical.
Subsequent evolution governed by the equations of
boundary fluid dynamics.
Note that the fluid dynamics is valid already for
v > δt � M−

1
3 . This is true even though correlation

functions over length scales of the mean free path (M−
1
3 )

are far from thermal at these times. Consequently fluid
dynamics is the precise dynamical description of our
system well before it has locally equilibriated on the scale
of mean free path.



References
Introduction

Translationally invariant collapse
Spherically symmetric collapse in flat space

Spherically collapse in global AdS
Extensions

Future directions
Summary

Spherically symmetric collapse in flat space

We study the collapse of a spherically symmetric null shell,
propagating inwards from I− in an asymptotically flat
space.
Near I− the shell takes the form

lim
r→∞

φ(r , v) =
ψ(v)

r
ψ(v) = 0, (v < 0)

ψ(v) < εf δt , (0 < v < δt)
ψ(v) = 0 (v > δt),

The shell is qualitatively characterized by thickness δt and
Schwarzschild radius rH ∼ ε2f δt .
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Spherically symmetric collapse in flat space

We study the collapse process in an expansion in
δt
rH

= 1
ε2f
� 1 In this limit the shell propagates into its

Schwarzschild radius before it interacts with itself.
Consequently blackholes are formed efficiently.
Quantitavely we demonstrate that spacetime to leading
order takes the Vaidya form.

ds2 = 2dr dv −
(

1− M(v)

r

)
dv2 + r2dΩ2

2

M(v) = −ψ(v)ψ̇(v)

2
+

1
2

∫ v

−∞
ψ̇(t)

2
dt
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Spherically symmetric collapse in flat space

Subleading corrections to the Vaidya metric back scatter a
fraction of the incident wave to I+.
As an application of our perturbative procedure we
compute the fraction of the incident energy that is back
scattered as a functional of the shape of the incident wave
packet ψ(v) to leading non trivial order in 1

ε2f
.

This fraction turns out to be of the order of
(
δt
rH

) 3
2 .

It is given by an explicit analytic formula upto an overall
numerical constant whose value may be determined from a
numerical solution of a linear differential equation.
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Spherically collapse in global AdS

We have studied the analogue of translationally invariant
Poincare AdS collapse process in Global AdS spaces.
Non normalizable component of dilaton is turned on
uniformly over the boundary sphere of radius R and time
interval δt .
Qualitatively two parameters: Amplitude = ε and x ≡ δt

R .
Interpolates between collapse processes in Poincare patch
(x � ε

2
3 ) and asymptotically flat space (x � ε

2
3 ).

Sharp transition between small black hole formation and
scattering dilaton solution as x increases above ε

1
2

Stability

Sayantani Bhattacharyya
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CFT dual

The gravitational solution is dual to a CFT on a sphere,
initially in its vacuum state.
The CFT is excited over a time δt by a spherically
symmetric source that couples to a marginal operator.
The system settles to a ’glueball’ phase (dual to gravitons)
when x � ε

1
2 .

The system settles to a high temperature ’plasma’ phase
(dual to blackhole) when x � ε

1
2 .

The equilibration to the high temperature phase is almost
instantaneous.
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Extensions

In this talk we have discussed the collapse in
asymptotically AdS4 spacetimes. This can be generalized
to asymptotically AdSd+1 spacetimes.
For odd d > 3 our results are qualitatively similar to those
of d = 3. However collapse processes in even d are
different, in some respects, from their odd d counterparts.

Odd vs. Even dimensions

In d = 3 we have also studied translationally invariant
collapse to a black brane induced by weak gravity wave.
The results are qualitatively very similar to those reported
in this talk suggesting a certain universality for our results.

Sayantani Bhattacharyya
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Future directions

It would be interesting to generalize our work to the study
of massive fields in AdS spaces. This would be dual to the
equilibriation of a conformal field theory excited by a
relevant or irrelevant operator rather than marginal
operator.
It would be interesting to generalize our work to study the
response of a conformal field theory to operator excitations
that preserve different symmetries (e.g. boost invariance).
It would be interesting to find an explanation within ’kinetic
theory’ for the precise validity of fluid dynamics for systems
out of local thermal equilibrium.

Sayantani Bhattacharyya
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Summary

We have systematically studied highly symmatric blackhole
formation processes in a weak field perturbative expansion
both in asymptotically AdS and in asymptotically flat space
times.
Our asymptotically AdS collapse processes are dual to
equilibriation processes in strongly coupled conformal field
theories. By some measures these processes appear to
describe anomalously rapid (almost instantaneous)
thermalization.
In particular fluid dynamics takes over as the precise
dynamical descriptions of our systems well before they
have attained local thermal equilibrium.

Sayantani Bhattacharyya
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Difference in odd and even bulk dimension

While in even bulk dimensions a massless field propagates
along its light cone, in odd bulk dimension it spreads inside
the light cone,
Nonetheless the field set up by the source of duretion δt
decays to zero over a region whose size is of order δt in
the neighbourhood of the horizon.
Consequently, while the collapse of a massless field in odd
bulk dimensions is not dual to instantaneous
thermalization, it continues to describe thermalization at a
time scale parametrically smaller than the mean free time.

Sayantani Bhattacharyya



References
Introduction

Translationally invariant collapse
Spherically symmetric collapse in flat space

Spherically collapse in global AdS
Extensions

Future directions
Summary

Difference in odd and even bulk dimension

While in even bulk dimensions a massless field propagates
along its light cone, in odd bulk dimension it spreads inside
the light cone,
Nonetheless the field set up by the source of duretion δt
decays to zero over a region whose size is of order δt in
the neighbourhood of the horizon.
Consequently, while the collapse of a massless field in odd
bulk dimensions is not dual to instantaneous
thermalization, it continues to describe thermalization at a
time scale parametrically smaller than the mean free time.

Sayantani Bhattacharyya



References
Introduction

Translationally invariant collapse
Spherically symmetric collapse in flat space

Spherically collapse in global AdS
Extensions

Future directions
Summary

Difference in odd and even bulk dimension

While in even bulk dimensions a massless field propagates
along its light cone, in odd bulk dimension it spreads inside
the light cone,
Nonetheless the field set up by the source of duretion δt
decays to zero over a region whose size is of order δt in
the neighbourhood of the horizon.
Consequently, while the collapse of a massless field in odd
bulk dimensions is not dual to instantaneous
thermalization, it continues to describe thermalization at a
time scale parametrically smaller than the mean free time.

Sayantani Bhattacharyya



Difference in odd and even bulk dimension

Back



Explicit results upto fifth order

φ3(r , v) =
1

4r3

∫ v

−∞
B(x) dx

f4(r , v) =
φ̇0

384r3

{
φ̇3

0 − 12
∫ v

−∞
B(x) dx

}
g4(r , v) = −C4(v)

r
+

φ̇0

24r2

{
−φ̇3

0 + 3
∫ v

−∞
B(x) dx

}
+

1
48r3

(
3B(v)φ̇0 − 4φ̇3

0φ̈0 + 3φ̈0

∫ ∞
v

B(t)dt
)

Where

C4(v) =

∫ v

−∞
dt

3φ̇0

8

(
φ̇3

0 −
∫ t

−∞
B(x) dx

)



Explicit results upto fifth order

φ5(r , v) =
1

8r5

∫ v

−∞
B1(x) dx

+
1

6r4

∫ v

−∞
B3(x) dx +

5
24r4

∫ v

−∞
dy
∫ y

−∞
B1(x) dx

+
1

4r3

∫ v

−∞
B2(x) dx +

1
6r3

∫ v

−∞
dy
∫ y

−∞
B3(x) dx

+
5

24r3

∫ v

−∞
dz
∫ z

−∞
dy
∫ y

−∞
B1(x) dx

where

B(v) = φ̇0

[
−C2(v) + φ̇0φ̈0

]
B1(v) =

(
−9

4
C2(v) +

7
8
φ̇0φ̈0

)∫ v

−∞
B(x) dx

+
1
2

C2(v)φ̇3
0 +

3
8
φ̇2

0B(v)− 1
6
φ̇4

0φ̈0

B2(v) = C4(v)φ̇0

B3(v) =
1
24

(
−30φ̇2

0

∫ v

−∞
B(x) dx + 7φ̇5

0

)
back



Resummed perturbation expansion

Explicitly to the leading order for v > δt :

φ =
φ0

3(δt)
M

ψ

(
r

M
1
3

, (v − δt)M
1
3

)
where

φ0
3(δt) =

1
4

∫ δt

−∞
φ̇0

[
−C2(t) + φ̇0φ̈0

]
dt

M =

∫ δt

−∞
dt

φ̈2
0

2

ψ(x , y). satisfies

∂x

(
x4
(

1− 1
x3

)
∂xψ

)
+ 2x∂y∂x (xψ) = 0

Boundary condition: ψ ∼ O( 1
x3 ) at large x

The initial condition: ψ(x ,0) = 1
x3 .
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Numerical solution

This plot is obtained using Mathematica 6.
Note exponential decay in time (quasinormal mode
behavior).
Perturbation small at all time. Divergences of the naive
perturbation resum into convergent decaying exponentials.
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