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Start with a weakly coupled supersymmetric string theory, on an
initially flat background:

RD × T 10−D , Ri ∼ ls

When gs � 1, ls � lp

(In 4D l2p = g2
s l2s )

At finite temperature, thermal fluctuations produce an energy
density

→ backreaction induces a cosmological evolution.



At low temperature

ρ = (D − 1)P ∼ TD

leading to a ∼ 1
T

, a is the scale factor of the universe.

If we extrapolate the cosmological evolution back in time, the
temperature increases

so that more and more massive string states get thermally excited
until we get a phase transition at the Hagedorn temperature:

TH ∼ 1

ls

. . . before the big bang.



Clearly to understand the very early history of a large class of
string gas cosmologies →

we need to be able to handle the Hagedorn instabilities of string
theory at high temperature.

Consider now a different but closely related problem
concerning tree level supersymmetry breaking in perturbative
superstrings.

We would like to start with a susy string compactification
and turn on a modulus that breaks susy

SUSY vacuumSUSY SUSY

Large ΦSmall Φ



. . . then vacua in the neighborhood of the supersymmetric point
would have arbitrarily small breaking.

Unfortunately if such a vacuum exists, it has to be at the boundary
of moduli space.

E.g. susy breaking via geometrical fluxes (stringy Scherk-Schwarz
mechanism) along a spatial cycle of radius R:

tachyons 

SUSY

R

SUSY is recovered
at very large R

M ∼ 1

R
, decompactification problem

On the other end we often find tachyonic modes whenever R ≤ ls .



We may also consider such a spontaneously broken susy model at
finite temperature T .

Then in many situations the string partition function satisfies

Z (T , M) = Z (M, T )

gravitino mass/temperature duality

The existence of tachyons at small R is related to the Hagedorn
instabilities at high temperature.



In this talk I will present asymmetric type II orbifolds
which exhibit susy breaking, but are free of tachyonic instabilities.

The models admit an interesting thermal interpretation and have a
temperature duality symmetry:

T → T 2
H

T



In string theory there is an exponential growth in the density of
single particle states as a function of the mass.

E.g. in in type II theories, for large mass

ρ(m) ∼ m−10 e
m
m0 , m0 = (2π

√
2α′)−1

As a result the canonical ensemble

Z = Tre−βH , β =
1

T

converges only for temperatures below the Hagedorn temperature:

TH ∼ 1

ls



2πTH =
1√
2α′

in type II theory

At T = TH , the free energy

F

T
= − lnZ

exhibits non-analytic behavior in t = TH − T ;

for a large enough number of non-compact dimensions, it is finite
as T → TH from below.



It has been argued by many authors that at T ∼ TH , the system
undergoes a phase transition

similar in fact to the deconfining phase transition of large N QCD
at high temperature.

The partition function can be computed via a Euclidean path
integral on S1 ×M

(S1 is the Euclidean time circle with period β)



In field theory:

• periodic BC for bosonic fields

• anti-periodic BC for fermionic fields

. . . Or sum over particle paths in a first quantized approach.

If a path winds m̃ times the Euclidean time circle, it must be
weighted by a phase (−1)m̃F

(F is the space-time fermion number).

In string theory we have both momentum and winding numbers:
(m̃, n).

At T > TH a certain stringy winding mode (n 6= 0) becomes
tachyonic.

→ divergence can be thought of as an IR instability and the phase
transition is driven by tachyon condensation.



Notice that the winding tachyon does not correspond to any
physical, propagating state of the original theory, and its “rolling
down” the potential is not a real time process.

But we can compare the free energy for different values of the
condensate φ∗φ so as to characterize the phases of the system.

Unfortunately, as the phase transition is first order, it involves large
values of the tachyon condensate |φ|2

and so it cannot be controlled in perturbation theory . . .



If a high temperature saddle point exists,

F ∼ 1

g2
s

This is a genus zero contribution and it is a signal of
“deconfinement” as in the case of large N QCD.

The genus zero contribution leads to large backreaction, since

Gρ ∼ 1

in string units. → thermal equilibrium ceases to exist.



• type II: tachyons for β < 2π
√

2. (ls = 1).

• Heterotic: tachyons for 4π2

βH
< β < βH .

The heterotic case is more intriguing, since the partition function
has a thermal duality symmetry. (X 0

R → −X 0
R is a symmetry of the

worldsheet CFT.)

β → 4π2

β



Due to this symmetry, it has been argued by Antoniadis,
Derendinger and Kounnas,

→ that the exact tachyon potential has a stable minimum

The potential was derived using properties of N = 4 gauged
supergravity . . .



Can we deform the thermal ensemble so as to avoid tachyonic
instabilities?

The answer is yes if we introduce gauge field condensates with zero
field strength but with a non-zero value of the Wilson line

U = P exp(i

∫ β

0
A0dX 0)

At finite temperature, (abelian) vacuum potentials in the range
0 ≤ A0

T
≤ π are gauge inequivalent.



The Model

Consider type IIB on T 2 × T 8.

*T 8 is a very large eight-torus

*T 2 is a rectangular torus S1
T × S1, the first circle is the Euclidean

time circle of radius R0.

Initially the model is supersymmetric

Z = 1
4

∫

F

d2τ

τ2

1

(ηη̄)12
Γ(1,1)(R0)Γ(1,1)(R1) Γ(8,8)

×
∑

a,b=0,1

(−1)a+b+ab θ4
[a

b

]

∑

ā,b̄=0,1

(−1)ā+b̄+āb̄ θ̄4

[

ā

b̄

]



Or in terms of the SO(8) characters

O8 =
θ4
3 + θ4

4

2 η4
, V8 =

θ4
3 − θ4

4

2 η4
,

S8 =
θ4
2 − θ4

1

2 η4
, C8 =

θ4
2 + θ4

1

2 η4
,

Z =

∫

F

d2τ

τ2

1

(ηη̄)8
|V8 − S8|2 Γ(1,1)(R0) Γ(1,1)(R1) Γ(8,8)

• All oscillators along the X 0, X 1 directions can be gauged away

• When we decompactify the T 8 torus, we get an SO(8)
symmetry



Spacetime fermion number receives contributions from both the
left and right worldsheet movers

F = FL + FR

Under (−1)FL the left moving R sector changes sign, similarly for
FR .

Conventional thermal deformation: Insert the phase

(−1)m̃0(a+ā)+n0(b+b̄)

Asymmetric deformation:

R0√
τ2

∑

m̃0,n0

e
−πR2

0
τ2

|m̃0+n0τ |2(−)m̃0a+n0b+m̃0n0

R1√
τ2

∑

m̃1,n1

e
−πR2

1
τ2

|m̃1+n1τ |2(−)m̃1ā+n1b̄+m̃1n1



In this way, the X 0 lattice is “thermally” coupled to the left-moving
world-sheet degrees of freedom, while the X 1 lattice is “thermally”
coupled to the right-moving world-sheet degrees of freedom.

In the n0 (n1) odd winding sector the left (right) GSO projection is
reversed

The string partition function takes the form

Z =

∫

F

d2τ

τ2

Γ(8,8)

(ηη̄)8

×
∑

m0,n0

(

V8 Γm0,2n0 + O8 Γm0+
1
2
,2n0+1 − S8 Γm0+

1
2
,2n0

− C8 Γm0,2n0+1

)

×
∑

m1,n1

(

V̄8 Γm1,2n1 + Ō8 Γm1+
1
2
,2n1+1 − S̄8 Γm1+

1
2
,2n1

− C̄8 Γm1,2n1+1

)

.



→ The OŌ sector appears in the spectrum, which typically
becomes tachyonic in some regions of moduli space.

Here, however it carries non-zero momentum and winding charges
and so

2 m2
OŌ

=

(

1√
2R0

−
√

2R0

)2

+

(

1√
2R1

−
√

2R1

)2

It is never tachyonic. Massless when R0 = R1 = 1√
2
, dual fermionic

point.



Spectrum

Only the V V̄ (Gµν , Bµν , Φ) sector is massless.

Fermions

2 m2
VS̄

=
1

(
√

2R1)2
, 2 m2

SV̄
=

1

(
√

2R0)2

and from the odd winding sectors

2 m2
VC̄

= (
√

2R1)
2 , 2 m2

CV̄
= (

√
2R0)

2

• At large radii the spinors S , S̄ are light.

• At small radii the conjugate spinors C , C̄ are light.

All RR fields are massive since these are charged under (−1)FL and
(−1)FR .



In fact the spectrum is T-duality invariant under

R0, R1 → 1

2R0
,

1

2R1

S , S̄ → C , C̄

Supersymmetry is restored at both ends of moduli space.
At large radii: chiral IIB model
At small radii: the equivalent chiral IIB’ model.

At the self-dual point R0 = R1 = 1√
2
, we get additional massless

states from the OŌ, V Ō and OV̄ sectors →

SU(2)L × SU(2)R enhanced gauge symmetry



Observe also that when

R0 >> 1, R1 ∼ 1

the light states arise in the V V̄ and SV̄ sectors with masses

m2
VV̄

= 0 , 2 m2
SV̄

=
1

(
√

2R0)2

→ the light spectrum is precisely thermal.



Thermal Interpretation

Shift
m̃1 → m̃1 + m̃0 , n1 → n1 + n0

We obtain a thermally coupled Γ(2,2) torus lattice, where there is a
non-trivial B field background

B01 = −B10 =
1

2

and a non-diagonal metric

ds2 = R2
0 (dx0)2 + R2

1 (dx1 + G dx0)2

G01

R2
1

= G = 1



R0 R1

τ2

∑

m̃,n

e
− π

τ2
[R2

0 |m̃0+τn0|2+R2
1 |m̃1+Gm̃0+τ(n1+Gn0)|2]

×e2iπB(m̃1n0−m̃0n1)

×(−1)m̃0(a+ā)+n0(b+b̄) (−1)m̃1ā+n1b̄+m̃1n1

X 0-cycle: the deformation acts as a standard thermal deformation.

X 1-cycle: couples only to the right-moving fermion number FR .

Special point: 2B = G = 1



We think of the model as follows:

Start with the 10D type IIB theory and compactify the X 1

direction on a circle.

Coupling this circle to FR , breaks the initial (4, 4) susy to (4, 0).

In addition we get two U(1) gauge fields:

• The graviphoton field: Aµ = G1µ

• The axial gauge field: Ãµ = B1µ

We then heat the system, giving vevs to A0 → G = 1 and to
Ã0 → B = 1/2

Or turn on Polyakov loops for these gauge fields.



G and B appear in the statistical ensemble as chemical potentials
for the charges

Q+ = m1 − 1
2(ā + n1) ≡ 1

2R1(pL + pR)

Q− = n1 ≡ 1
2R−1

1 (pL − pR)

The complete space-time partition function is then given by

Z (β,G , B) = Tr e−βH e2iπ(GQ+−BQ
−

)

the trace is over the full Hilbert space of the (4, 0) theory.



When G = 1, B = 1/2 we get

Z = Tr e−βH (−1)FR

the right-moving fermion index, corresponding to the tachyon free
model.

When G = 0, B = 0 we get

Z = Tr e−βH

the canonical ensemble, with thermal instabilities.

G10, B10 are non-fluctuating backgrounds → chemical potentials.



Phase diagram



The 1-loop partition function is finite and is characterized by a
formal “temperature duality” symmetry: R0 → 1/2R0.

However, in terms of the T-dual variables, the system at small R0

is effectively cold.

The line in moduli space, R = R0 = R1, is interesting.

As we decrease R, the system contracts and heats up, until we
reach the fermionic point. Then it expands and cools.



One can also find models, where at points in moduli space susy is
broken but the massive spectrum is characterized by a
boson/fermion degeneracy symmetry. Kounnas 0808.1340[hep-th];
Florakis, Kounnas 0901.3055[hep-th]

It would be interesting to see if we can use these models to reverse
contraction to expansion in a cosmological setting.


