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Sigma models

T T
S= [ doigy(s)«ds
>
V2¢' = P9 + od/T ) /agk = 0
Supersymmetry:
P(x) — B(x,0)
S.5= fdeZD2 K(6,3)

— [ (06 9,5(6.5)25 + .)
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where
9y5(0:d) = 0505K(9, 9)

<= 7T carries Kahler Geometry

[ Susy o0 models < Geometry of 7 |

(1,1) analysis by Gates Hull and Rocek in d=2:

N=(2,2): bi-hermitean geometry
N=(4,4): bi-hypercomplex
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Complex Geometry

Complex structure: J : TM © J? = —1
Nijenhuis: N'(J) =0 < wg[riu,m1v] =0
Hermitean Metric: J'gJ = g

Kahler: VJ =0, 02z = 0,0:K(2,2)

Hyperkahler: JA,A=1,23 JAJE = —§4B 4 ABCYC
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Generalized Complex Geometry

Complex structure: 7 : TM @ T*M © J? = —1
“Nijenhuis” Ng(J) =0 <= MNg[Niu,Niv]c=0
Hermitean Metric: J!ZJ =1
Generalized Kahler:
3 (J1,72); [J1,02] =0
G=-T1T2, G°=1
Kéhler:

_(J 0 (0 —uwT (0 g
n=(o %) (2% ) oo %)
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(2,2) superspace

The (2,2)-D-algebra:
{Ds,Ds} = 2i0y

Reduction to (1,1):

Di = \1@ (Di +Di)
Qs = 7 (Ds — D)

The (1,1)-D-algebra:
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(2,2) superfields

Chiral fields ¢:
Di¢p=0=D.p=0
Twisted chiral fields y:
D.x=D xy=0=D,y=D 1=0
Left/Right semi-chiral fields X, 5:
DX, =0=D,X,=0
DXg=0=DXgz=0

These are all the fields needed.
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Complex linear fields X 4:
D.D_¥4=0=D,D_%5=0
Dual to chiral fields
Complex twisted linear fields X, :
D.D ¥, =0=D.D ¥ =0

Dual to twisted chiral fields
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N=(1,1) content

Define:

Chiral fields:
d = ( Zi) ) :>Qi¢=JDi¢
Twisted chiral fields:
(X _
X = ( % ) = Qix = £JDsx

Read off the non-manifest second susy by projecting to the 65
independent part.
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Semi-chiral fields:

Xyr = XyRl,  Yi—/re = QeXyR|

X _
XR = < )-(L/R ), Vi py = ( YL/t >

L/R YL /R+
Q: Xy =JdD; X, Q Xg=JD Xg

and

QV,_=JD.V,_, QV,_=—-i0-X,

Q Vg, =JD Vg, QiVg, =—-idyXg

The W’s are auxiliary fermions.
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Back to the chiral complex linear duality:

S = szxozsz(z, ¥)

L§= Jd2x02D2 (K(5.,8) — ¢S — 38)

D S=0,D,D.S=0
— S

058 =058 =0 <= Ks=0,Kg=¢
= K~ ¢S~ ¢S = K(¢,9)
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Relation to GKG

*

S = | PHPDPK(0.6 T Kum Kuym)
= [ ox(2ndiay + Bo + ).
In(1,1):
5uS=0: = (Joyg,H=dB),
J2=-1,  NU)=0, [J;,J ]#0,
Jigly =9, H=dw; =—-d°w_

A complete description of GKG.
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New vector multiplets

K(¢, 0. x: % X1/m, X1/R)
(Abelian) Isometries:
ks = i(05 — 03)
kpx = i(0p — 05 — 0x + J%)

kLR = f(aL — 51 — 5/? + a,—q)
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The corresponding gauged Lagrangians:

Ks(¢+ ¢ + V2, x)
Koy (@ + ¢+ VO x+ X+ VX5ip—d+x—%) + V.x)

Kx(XL + XL + VL,XR + XF; + VR, i(XL — XL + Xp — X,q) + V,,X)
with gauge transformations for the vectors;

SV = i(A = A)

SVX = i(A — A)

SV =R+ A+A+A
SVHR = i(Aym — Auyr)

(5VI=/_\L+/\L+/_\F;+/\F;

Ulf Lindstrém (2,2) and (4,4)



The invariant field strengths are the usual ones

W=iD_D.V¢ W =iD_D,V?
W = iD_D.VX, W =iD_D,Vx
and the new

F=_-D. D (V' +i(Vt+VFh)

 — %D+D,(V' iVt — VAY)

Reduction to (1,1). Non-abelian extensions. Applied to T-duality.
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T-duality

Kox(0+ &+ VO x+ X+ VXi(¢p—d+x—X) + V')
—%XLV _ %XL\’/— %XR\N/ _ %XR\:/
0X R:
= V and V pure gauge. Plug back to find Ky, (¢, ¢, x, X)
sV, 6V:
= dy Ky, = X etc. Solve to give V(X, g, XLR),.....
Plug back to find K(X, g, X, g)

A similar relation starting from the gauged semi-chiral action
also displays the duality between (twisted) chiral and
semi-chiral models.

Ulf Lindstrém (2,2) and (4,4)



Additional supersymmetry

The chiral sector:

6% = e Da0%(0,9), 697 5
On-shell algebra.

@i _ (i 0
J /‘(0 _isga )

mi_ (0 Q2 @i_ ( 0 —iQf
J/—(Qg o ) YTl
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The semi-sector:

K — K(X(,Xg,X(,XR)
The general situation not known at the (2, 2) level.
Linear tf:

0X, = i€+]]3)+ (XL + Xp+ %XR) + I'IQE_H_]),XL + I'/-{_16_]D,XL,

0Xp = ie D (Xp — (|62 — )X, + EEE1R)) — iret D, Xq
—ir et D, Xp,

Invariance:

) Kis — Kiz —rKsp =
(|I€| —1)K2§+K12—FLK1§ = 0.

o
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{JJHJ*} - 2C,
—
(1 +0)|Ki2* + (1 = 0)|K;5[* = 2K;7Ky3.

Using the invariance condition we find:

c=—

EEES

Since ¢? > 1 is a constant we can form the following two local
product structures:

S = é(J_—i‘CJ_F), 82:1 5
c? —1

]
Ti=———[J, ], T? =1,
sz gl

such that the commutator algebra of (J,, S, T) is SL(2,R).
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The structures (J;, S, T) preserve a metric of signature (2,2)
and this geometry of the target space is called neutral
hypercomplex.

When ¢? < 1, the corresponding construction yields a triple of
complex structures, the metric is positive definite and the
geometry hyperkahler.

The general case is presently under investigation, i.e.,
2d-dimensions and non-linear transformations. We do not
expect that it will give a constant ¢, but it seems to have other
interesting geometric properties related to Yano f-structures
P +f=0.
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Conclusions

o A complete description of GKG uses chiral, twisted chiral and
semi-chiral superfields.

e The generalized Kahler potential doubles as a (non-linear)
potential for the metric and B-field and as a generating function
of symplectomorphisms.

¢ New vector-multiplets are available for gauging an important
class of isometries.

¢ T-duality and quotients may be discussed in terms of these
multiplets.

o Global issues (bi-holomorphic gerbes...) may be addressed.
« Additional supersymmetries, when examined at the (2,2)
level, lead to interesting new structures on the target space.
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