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1 Non-Relativistic Limit: Schrodinger

Symmetry



Non-Relativistic Limits

F Useful limit of AdS/CFT which might help understand a larger class of systems
(real world?).

F Two kinds of nonrelativistic limits of relativistic systems.

F For massive systems, can consider the limit where the rest energy� kinetic energy.

F Replace ∂0 → −im0 + ∂t ; m0 → m
ε2 ;xi → εxi (with ε→ 0).

F Then Klein Gordon equation reduces to Schrodinger equation

(∂2
0 − ∂2

i +m2
0)φ = 0→ (i∂t +

1
2m

∂2
i )φ = 0.

F The parameter ε ∼ v
c → 0 signifies taking the nonrelativistic limit.

F What are the symmetries in this limit?
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Schrodinger Symmetry

F The set of symmetries of the free particle Schrodinger equation, (i∂t + 1
2m∂

2
i )φ = 0

is called the Schrodinger Symmetry Sch(3, 1).

F It is sometimes referred to as a non-relativistic analogue of conformal symmetry.

F This symmetry also believed to arise in interacting systems like those of fermions
whose scattering length becomes infinite.

F Realised in cold atom systems with coupling tuned between BEC and BCS transi-
tion.

F Sch(3, 1) contains all the usual Galilean symmetries G(3, 1):

[Jij , Jrs] = so(3)
[Jij , Br] = −(Biδjr −Bjδir)
[Jij , Pr] = −(Piδjr − Pjδir), [Jij , H] = 0
[Bi, Bj ] = 0, [Pi, Pj ] = 0, [Bi, Pj ] = mδij
[H,Pi] = 0, [H,Bi] = −Pi. (1)

R. Gopakumar µ ¶ ToC · ¸ Non-Relativistic Dualties, page 6 of 24



Schrodinger Symmetry continued

G But also has two more generators K̃, D̃

G D̃ is a dilatation operator which scales time and space differently

xi → λxi, t→ λ2t. (2)

G K̃ is like a time component of special conformal transformations.

xi →
xi

(1 + µt)
, t→ t

(1 + µt)
. (3)

G No analogue of the spatial components Ki of special conformal transformations.

G Thus smaller group compared to the relativistic conformal group: 12 parameters (+
central mass term) as opposed to 15 parameters for SO(4, 2).
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2 Galilean Conformal Symmetry



Galilean Conformal Symmetry

G Second kind of non-relativistic limit appropriate for (massless) conformal field the-
ories.

G Here the starting symmetry group is bigger e.g. SO(4, 2).

G Taking the non-relativistic limit now means taking a group contraction of this group.

G Generalisation of the process by which one recovers the Galilean groupG(d, 1) from
the Poincare group ISO(d, 1).

G Take t→ t and xi → εxi and scale ε→ 0.

G Thus vi ∼ ε⇒ non-relativistic limit.

G Poincare generators reduce to the Galilean generators (after appropriate rescaling)

H = −∂t, Pi = ∂i

Bi = t∂i, Mij = −(xi∂j − xj∂i). (4)
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Galilean Conformal symmetry continued

F Now extend this scaling to all the extra generators of the relativistic conformal
group SO(4, 2) i.e (D,K0,Ki) (Lukierski et.al.; Gomis, Gomis and Kamimura)

F Gives the contracted vector fields

D = −(xi∂i + t∂t)
K = −(2txi∂i + t2∂t)
Ki = t2∂i (5)

F Note the dilatation generator D is the same as in the relativistic theory. xi →
λxi, t→ λt (z = 1 scaling: See Henkel).

F Therefore different from D̃ = −(2t∂t + xi∂i).

F Spatial conformal transformation generators Ki are present and generate constant
acceleration transformations. xi → xi + 1

2ait
2.

F The temporal special conformal generator different from K̃ = −(txi∂i + t2∂t)
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Galilean Conformal Symmetry continued

E The algebra of these generators (together with that of the Galilean Algebra) is quite
different from the Schrodinger group.

E Note we now have 15 generators as opposed to 12 in Sch(3, 1).

E Galilean central mass term in [Bi, Pj ] not admissible here – "massless non-relativistic
system".

E The Galilean conformal symmetries are actually realised on the Euler equations of
fluid mechanics. (With K acting trivially) (Bhattacharya, Minwalla and Wadia).

∂tvi(xi, t) + vj∂jvi(xi, t) = −∂ip(xi, t). (6)

E In fact, these equations admit a much larger symmetry. Under arbitrary boosts
xi → xi + bi(t).
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Galilean Conformal Symmetry continued

E Algebra of the contracted conformal group: Define

L(−1) = H, L(0) = D, L(+1) = K,

M
(−1)
i = Pi, M

(0)
i = Bi, M

(+1)
i = Ki. (7)

E Then

[Jij , L(n)] = 0, [L(m),M
(n)
i ] = (m− n)M (m+n)

i

[Jij ,M
(m)
k ] = −(M (m)

i δjk −M (m)
j δik), [M (m)

i ,M
(n)
j ] = 0,

[L(m), L(n)] = (m− n)L(m+n). (8)

E Note the SL(2, R) algebra in the last line. Different from that in the Schrodinger
group.
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Non-Relativistic Conformal Symmetries - Correlation
Functions
E We can use the Schrodinger/Galilean Conformal symmetry to constrain two and

three point functions.

E In the Schrodinger case, define Quasi-Primary Operators which obey [Bi,O] =
[K̃,O] = 0.

E These primary operators are labelled by their eigenvalue under D̃ and m.

G12(∆xi,∆t) = C12δh1,h2δm1,m2(∆t)−h exp
m(∆xi)2

2∆t
.

G123(~x(a), t(a)) = C123δm1+m2+m3,0(t12)
h3−h1−h2

2 (t23)
h1−h2−h3

2 (t31)
h2−h3−h1

2

exp (
m1(x13)2

2t13
+
m2(x23)2

2t23
)f(

[x13t23 − x23t13]2

t12t23t31
). (9)
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Non-Relativistic Conformal Symmetries - Correlation
Functions continued

E In the GCA case, the situation is closely parallel to the relativistic conformal case.
Two and three point functions are essentially fixed.

E Define Quasi-Primary Operators which obey [Ki,O] = [K,O] = 0.

E These primary operators are labelled by their eigenvalues (h, ξi) under D = L(0)

and Bi = M
(i)
0 .

G12(∆xi,∆t) = C12δh1,h2δξ1+ξ2,0(∆t)−2h exp (
2ξi∆xi

∆t
).

G123(~x(a), t(a)) = C123δξi
1+ξ

i
2+ξ

i
3,0

(t12)h3−h1−h2(t23)h1−h2−h3(t31)h2−h3−h1

exp (
2ξi1x

i
23

t23
+

2ξi2x31

t31
+

2ξi3x12

t12
). (10)
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Extended Galilean Conformal Symmetry
E A remarkable feature of this algebra is that it admits a very natural extension to an

infinite dimensional SO(d) Current Algebra.

E Define the vector fields for arbitrary integer n

L(n) = −(n+ 1)tnxi∂i − tn+1∂t

M
(n)
i = tn+1∂i

J
(n)
ij = −tn(xi∂j − xj∂i) (11)

E They obey exactly the same commutation relations as the ones for m,n = 0,±1.

[L(m), L(n)] = (m− n)L(m+n) [L(m), J (n)
a ] = nJ (m+n)

a

[J (n)
a , J

(m)
b ] = fabcJ

(n+m)
c [L(m),M

(n)
i ] = (m− n)M (m+n)

i (12)

E The Virasoro and Kac-Moody algebra of the vector fields is, of course, without the
central extension.
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Extended Galilean Conformal Symmetry continued

E The M (n)
i act as generators of generalised time dependent but spatially homoge-

neous accelerations
xi → xi + bi(t). (13)

E This is same symmetry possessed by the Euler equations.

E Similarly, the J (n)
ij ≡ J

(n)
a are generators of arbitrary time dependent rotations

xi → Rij(t)xj (14)

E These two together generate what is sometimes called the Coriolis group: the biggest
group of "isometries" of "flat" Galilean spacetime.

E L(n) seem to be generators of a conformal "isometry" of Galilean spacetime.

t→ f(t), xi →
df

dt
xi (15)

E All these generators together describe, in fact, the natural set of conformal isome-
tries of Galilean spacetime.
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3 Gravity Duals



Gravity Duals

E What can we say about the spacetime geometries dual to a system with non-relativistic
Conformal Symmetry (either Schrodinger or Galilean Conformal)?

E We would like to have a spacetime which has these symmetries as isometries (in an
appropriate sense).

E The corresponding spacetimes are somewhat unfamiliar.

E In the case of the Schrodinger Symmetry, it is a spacetime in six dimensions, with
an identification along a null direction.

E

ds2 =
2dx+dx− − dxidxi − dz2

z2
+ 2

(dx+)2

z4
. (16)

E The first piece is the metric of AdS6 while the second is a deformation.

E The null direction x− is identified with a period proportional to the mass (or parti-
cle number density).
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The Gravity Dual continued

E In the case of the Galilean Conformal Algebra, the spacetime is five dimensional,
obtained by taking a Galilean scaling limit of the AdS5 geometry.

E However, the metric degenerates on taking the Galilean limit – spatial interval
scales to zero.

E There is a surviving AdS2 piece and a degenerate Euclidean metric on the remain-
ing R3 directions.

E Might look like a singular limit. However, analogous to taking a Newtonian limit
of Einstein’s equations.

E Well-defined geometric theory of newtonian gravitation - Newton-Cartan theory.

E Spacetime with a non-metric dynamical connection.

In our case, can be viewed as connection of an R3 fibre bundle over AdS2.

E Has the right asymptotic symmetries – the infinite dimensional extension of the
Galilean conformal algebra.
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The Bulk Dual Symmetries

D AdSd+2 in Poincare coordinates:

ds2 = R2 dt
2 − dz2 − dx2

i

z2
(17)

D In radially infalling coordinates for null geodesics (t′ = t+ z, z′ = z)

ds2 =
R2

z′2
(−2dt′dz′ + dt′2 − dx2

i ) =
R2

z′2
(−dt′(2dz′ − dt′)− dx2

i ). (18)

D Take the generators of theAdSd+2 isometries and perform the contraction by taking
t′, z

′ → εr, xi → εr+1xi. Metric degenerates as expected.

D Contracted Killing vectors given by

Pi = −∂i, Bi = −(t′ − z′)∂i, Ki = −(t′2 − 2t′z′)∂i
H = ∂t′ , D = t′∂t′ + z′∂z′ + xi∂i, K = t′2∂t′ + 2(t′ − z′)(z′∂z′ + xi∂i).(19)
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The Bulk Dual Symmetries

H More compactly (for m,n = 0,±1, l = 0).

L(n) = t′n+1∂t′ + (n+ 1)(t′n − nzt′n−1)(xi∂i + z′∂z′)
M

(m)
i = −(t′m+1 − (m+ 1)zt′m)∂i
J

(l)
ij = −t′n(xi∂j − xjpi) (20)

H Reduces at the boundary (z = 0) to the generators of the contracted conformal
algebra. And satisfies the same algebra.

H In fact, these bulk vector fields (for arbitrary m,n, l) reduce to that of the extended
Kac-Moody algebra at the boundary.

H What is the role of these vector fields in the bulk?

H The Virasoro generators act as the generators of asymptotic symmetries of theAdS2.

H The others act only on the R3 (like Galilean "isometries" on the boundary).
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To Summarise



Summary

I Gauge-Gravity dualities can be generalised to a non-relativistic setting.

I Galilean conformal symmetry relevant to "massless" non-relativistic systems.

I Identify the sector in e.g. N = 4 SYM described by the GCA.

I Do the ward identities of the full GCA constrain correlators in this sector more than
expected otherwise?

I Are there real life systems which are described by the GCA?

I Need to develop a better understanding of the gravity duals which involve novel
features such as the Newtonian limit.

I Spell out the bulk-boundary dictionary, as a parametric limit of the relativistic case.
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Thank You
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