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1 Non-Relativistic Limit: Schrodinger

Symmetry



Non-Relativistic Limits

4 Useful limit of AdS/CFT which might help understand a larger class of systems
(real world?).

4+ Two kinds of nonrelativistic limits of relativistic systems.

4+ For massive systems, can consider the limit where the rest energy >> kinetic energy.

m .,

4+ Replace 0y — —img + 0y ; mo — %2 — ex; (with e — 0).

4 Then Klein Gordon equation reduces to Schrodinger equation

1

(83 —@2 +m(2))q§ =0 — (10, + v

07)¢p = 0.

(%

4 The parameter ¢ ~ © — 0 signifies taking the nonrelativistic limit.

4+ What are the symmetries in this limit?
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Schrodinger Symmetry

4+ The set of symmetries of the free particle Schrodinger equation, (i0; + 507 )¢ = 0

is called the Schrodinger Symmetry Sch(3,1).

4+ It is sometimes referred to as a non-relativistic analogue of conformal symmetry.

4+ This symmetry also believed to arise in interacting systems like those of fermions

whose scattering length becomes infinite.

4 Realised in cold atom systems with coupling tuned between BEC and BCS transi-

tion.

4 Sch(3,1) contains all the usual Galilean symmetries G(3,1):

[Jij, JIrs) so(3)
[Jij; Br] = —(Bidjr — Bjdir)
ij, Pl = —(Pidjr — Pjdir), [Jij, H =0
[B’UBJ': = 0, [P’UPJ'] =0, [B’i7Pj] :m5ij
H, P; 0, [H,Bi]=-F. (1)
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Schrodinger Symmetry continued

< But also has two more generators i, D

< D is a dilatation operator which scales time and space differently

Ti — AT, t — A%t (2)

¢ K is like a time component of special conformal transformations.

€I; " t
(14 put)’ (1+ pt)

Xi; —

(3)

< No analogue of the spatial components K; of special conformal transformations.

< Thus smaller group compared to the relativistic conformal group: 12 parameters (+
central mass term) as opposed to 15 parameters for SO(4, 2).
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2 Galilean Conformal Symmetry



Galilean Conformal Symmetry

< Second kind of non-relativistic limit appropriate for (massless) conformal field the-
ories.

<> Here the starting symmetry group is bigger e.g. SO(4, 2).

<& Taking the non-relativistic limit now means taking a group contraction of this group.

<> Generalisation of the process by which one recovers the Galilean group G(d, 1) from
the Poincare group I50(d, 1).

$ Taket — t and x; — ex; and scale e — 0.
<$ Thus v; ~ € = non-relativistic limit.
<> Poincare generators reduce to the Galilean generators (after appropriate rescaling)

H = _ata P’L — 67,
Bz’ = t(?i Mz = —(in({?j — ajj&) (4)
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Galilean Conformal symmetry continued

4+ Now extend this scaling to all the extra generators of the relativistic conformal
group SO(4,2) i.e (D, Ky, K;) (Lukierski et.al.; Gomis, Gomis and Kamimura)

4 Gives the contracted vector fields

D = —(azzﬁz + t@t)
K = —(thzf)’z -+ t20t)
K; = t%9; (5)

4+ Note the dilatation generator D is the same as in the relativistic theory. z;, —
Az;,t — At (2 = 1 scaling: See Henkel).

4 Therefore different from D = —(2t0; + x;0;).

4+ Spatial conformal transformation generators K; are present and generate constant
acceleration transformations. z; — x; + %aitz.

4 The temporal special conformal generator different from K= — (tw;0; + t20;)
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Galilean Conformal Symmetry continued

<+ The algebra of these generators (together with that of the Galilean Algebra) is quite
different from the Schrodinger group.

“+ Note we now have 15 generators as opposed to 12 in Sch(3,1).

<+ Galilean central mass term in [ B;, P;] not admissible here — "massless non-relativistic
system".

*+ The Galilean conformal symmetries are actually realised on the Euler equations of
fluid mechanics. (With K acting trivially) (Bhattacharya, Minwalla and Wadia).

8,51)@- (QZ'Z', t) + Ujaj?)i (.I‘z', t) = — Z'p($z', t) (6)

<+ In fact, these equations admit a much larger symmetry. Under arbitrary boosts
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Galilean Conformal Symmetry continued

<+ Algebra of the contracted conformal group: Define

) S - H, L0 — D, LD — K,
MY = p MY = B, MY — K, 7)
<+ Then
[Jigs M) = = (M5 = MF™og), M, M) =0,
L™ L] = (m —n)LMmt), (8)

“+ Note the SL(2, R) algebra in the last line. Different from that in the Schrodinger
group.
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Non-Relativistic Conformal Symmetries - Correlation
Functions

<+ We can use the Schrodinger/Galilean Conformal symmetry to constrain two and
three point functions.

“+ In the Schrodinger case, define Quasi-Primary Operators which obey [B;, O] =
[K,0] = 0.

4 These primary operators are labelled by their eigenvalue under D and m.

B m(Ax;)?

Glg(ALUZ', At) = 0125h1,h25m1,m2 (At) h €Xp (QAt) .

h —hl—h2 hl—h2—h h2—h —hl
G123<f(a>>t(a’>) = (C1230m; +motms.0(t12) 3 (t23) 7 (t31) 3
2 2 2
m1(Z13 mao (23 T13to3 — T23t13
exp (TAT13)” y Mal2s)7) | )

2t13 2t93 t12t23t31

R. Gopakumar <« <« ToC » » Non-Relativistic Dualties, page 13 of 24



Non-Relativistic Conformal Symmetries - Correlation
Functions continued

<+ In the GCA case, the situation is closely parallel to the relativistic conformal case.
Two and three point functions are essentially fixed.

“+ Define Quasi-Primary Operators which obey [K;, O] = |[K, O] = 0.

4 These primary operators are labelled by their eigenvalues (h,&;) under D = L)
and B; = Méz) :

_ 2 Zsz
Gra(A;, A1) = 1o b, v 0(A1) exp (2201,
Gio3 (2, t¥)) = 01235£i+£§+€§,,0(tlz)h3_h1_h2(t23)h1_h2_h3(t31)h2_h3_h1
oizhy  2Wlwg 26
exp ( 153 §5231 533312). (10)
o3 t31 12
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Extended Galilean Conformal Symmetry

< A remarkable feature of this algebra is that it admits a very natural extension to an
infinite dimensional SO(d) Current Algebra.

<+ Define the vector fields for arbitrary integer n

L(n) = —(n —+ 1)tn$161 — t”“c‘?t
M™M= gty
J,L(jn) — —t”(a:i(‘?j — ZIL‘]({)Z) (11)

*» They obey exactly the same commutation relations as the ones for m,n = 0, £1.

[L(m)’ L(”)] = (m— n)L(m+n) [L(m), JC(Ln)] - nJC(Lm+n)
) = fae L M) = (m— n) MY (12)

<+ The Virasoro and Kac-Moody algebra of the vector fields is, of course, without the
central extension.
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Extended Galilean Conformal Symmetry continued

<+ The M,L.(m act as generators of generalised time dependent but spatially homoge-
neous accelerations

<+ This is same symmetry possessed by the Euler equations.

< Similarly, the Ji(f) = ") are generators of arbitrary time dependent rotations
x; — Rij(t)z; (14)

<+ These two together generate what is sometimes called the Coriolis group: the biggest
group of "isometries" of "flat" Galilean spacetime.

4 L(") seem to be generators of a conformal "isometry" of Galilean spacetime.

I O (15)

< All these generators together describe, in fact, the natural set of conformal isome-
tries of Galilean spacetime.
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3 Gravity Duals



Gravity Duals

<+ What can we say about the spacetime geometries dual to a system with non-relativistic
Conformal Symmetry (either Schrodinger or Galilean Conformal)?

<+ We would like to have a spacetime which has these symmetries as isometries (in an
appropriate sense).

“+ The corresponding spacetimes are somewhat unfamiliar.

“+ In the case of the Schrodinger Symmetry, it is a spacetime in six dimensions, with
an identification along a null direction.

»  2dxtdrT —dz'ds’ — dz?

(da™)*

ds T

+2 (16)

zZ zZ

<+ The first piece is the metric of AdS¢ while the second is a deformation.

» The null direction ™ is identified with a period proportional to the mass (or parti-
cle number density).
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The Gravit_y Dual continued

<+ In the case of the Galilean Conformal Algebra, the spacetime is five dimensional,
obtained by taking a Galilean scaling limit of the AdS5 geometry.

<+ However, the metric degenerates on taking the Galilean limit — spatial interval
scales to zero.

< There is a surviving AdS; piece and a degenerate Euclidean metric on the remain-
ing R? directions.

<+ Might look like a singular limit. However, analogous to taking a Newtonian limit
of Einstein’s equations.

<+ Well-defined geometric theory of newtonian gravitation - Newton-Cartan theory.
<+ Spacetime with a non-metric dynamical connection.

In our case, can be viewed as connection of an R? fibre bundle over AdS;.

< Has the right asymptotic symmetries — the infinite dimensional extension of the
Galilean conformal algebra.
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The Bulk Dual Symmetries

* AdS;.- in Poincare coordinates:

dt? — dz* — da?

ds* = R? - (17)
2
¢ In radially infalling coordinates for null geodesics (' =t + z, 2" = 2)
2 R2 ! 3.0 12 2 R2 / / / 2
2 Z

¢ Take the generators of the AdS;. 2 isometries and perform the contraction by taking
t', 2 — € x; — ;. Metric degenerates as expected.

¢ Contracted Killing vectors given by

Pz' = —87;, Bz = —(t, — z’)@i, Kz = —(t/2 — 215/2/)81'
H = 0y, D=t0y+720, +x:0;, K=170p 42t — 2 ) (20, + x;0;)(19)
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The Bulk Dual Symmetries

* More compactly (for m,n = 0,+£1,l = 0).

L™ = "9y + (n+ 1)t = net™ ) (2,0; + 2'02)
M = (T (o 1)2t™)0,
Ty = —t"(@id; - ap) (20)

* Reduces at the boundary (¢ = 0) to the generators of the contracted conformal
algebra. And satisfies the same algebra.

* In fact, these bulk vector fields (for arbitrary m, n,[) reduce to that of the extended
Kac-Moody algebra at the boundary.

* What is the role of these vector fields in the bulk?
* The Virasoro generators act as the generators of asymptotic symmetries of the AdS5.

* The others act only on the R? (like Galilean "isometries" on the boundary).
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To Summarise



Summary

v Gauge-Gravity dualities can be generalised to a non-relativistic setting.
w Galilean conformal symmetry relevant to "massless" non-relativistic systems.

v Identify the sector in e.g. N' = 4 SYM described by the GCA.

v Do the ward identities of the full GCA constrain correlators in this sector more than
expected otherwise?

v Are there real life systems which are described by the GCA?

v Need to develop a better understanding of the gravity duals which involve novel
features such as the Newtonian limit.

v Spell out the bulk-boundary dictionary, as a parametric limit of the relativistic case.
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Thank You
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