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Quant. Gravitational Inflation

� Fund. IR gravity: Gµν = -Λgµν

� Λ ∼ [1012 GeV]2 starts inflation
� ds2 = -dt2 + a2(t) dx2 with a(t) = eHt

� QG “friction” stops inflation
� ρ ∼ +Λ2

� ρ ∼ –GΛ3 ln[a(t)]
� ρL ∼ – Λ2 [GΛln(a)]L-1

� Hence p ∼ -ρ ∼ Λ2 f[GΛln(a)] 



Only Causality Stops Collapse!

� IR gravitons � ρ ∼ +Λ2

� w/o causality � ρ ∼ –GΛ3 a2(t)
� R(t) ∼ a(t)/H   and   M(t) ∼ H a3(t)

� ∆E(t) = -GM2/R ∼ –GH3 a5(t)

� Causality changes powers of a(t) to 
powers of ln[a(t)]

� But grav. Int. E. still grows w/o bound



Need Phenomenological Model

� Advantages of QG Inflation
� Natural initial conditions

� No fine tuning

� Unique predictions

� But tough to USE! 

� Try guessing most cosmologically 
significant part of effective field eqns



Gµν = -Λgµν + 8πGTµν[g]

� Tµν[g] = p gµν + (ρ+p) uµuν

� Posit p[g]

� Infer ρ and uµ from conservation

� Getting p[de Sitter] = Λ2 f[GΛ ln(a)]
� […] must be nonlocal because 

Rµνρσ = Λ/3 [gµρ gνσ – gµσ gνρ]

� Simplest is X = 1/� R 



R  &   � ≡ (-g)-½∂µ[(-g)½gµν∂ν]

� R = 6 dH/dt + 12 H2 for flat FRW

� �f(t) = -a-3 d/dt [a3 df/dt]
� Hence 1/� f =  -∫t du a-3 ∫u dv a3 f(v)

� For de Sitter a(t) = eHt and dH/dt = 0
� 1/� R = - 4 Ht + 4/3 [1 – e-3Ht] ∼ -4 ln(a)



Spatially Homogeneous Case

� Gµν = (p-Λ)gµν + (ρ+p) uµuν

� X =1/� R = -∫tdu a-3∫udv a3 [12H2 + 6dH/dv]
� p = Λ2 f(-GΛ X)
� ρ+p = a-3∫tdu a3 dp/du   and   uµ = δµ



� Two Eqns
� 3H2 = Λ + 8πG ρ
� -2dH/dt – 3H2 = -Λ + 8πG p    (easier)

� Parameters
� 1 Number: GΛ (nominally ∼ 10-12)
� 1 Function: f(x)  (needs to grow w/o bound)



Numerical Results for
GΛ=1/300   and   f(x) = ex-1

� X= -∫tdu a-3∫udv a3R
� Criticality

p = Λ2f(-GΛX) = Λ/8πG

� Evolution of X(t)
� Falls steadily to Xc

� Then oscillates with 
constant period and 
decreasing amplitude

� For all f(x) growing 
w/o bound



Inflation Ends, H(t) goes < 0, 
R(t) oscillates about 0



Analytic Treatment (ǫ ≡ GΛ)

� 2 dH/dt + 3 H2 = Λ[1 - 8πǫf(-ǫX)]
� X(t) = Xc + ∆X(t)

� f ≈ fc - ǫ∆X f’c
� 2dH/dt + 3 H2 ≈ 24πǫ f’c ∆X

� Use R = 6 dH/dt + 12 H2

� L.H.S. = R/3 – H2

� ∆X = 1/� R – Xc

� Act   � = -[d/dt + 3H]d/dt to localize
� [(d/dt)2 + 2H(d/dt) + ω]R ≈ 0
� R(t) ≈ sin(ω t)/a(t)
� ω = 24πǫΛf’c (agrees with plots!)



Tensor Perturbations

� No change from usual eqn
ẍ + 3 H ẋ + k2/a2 x = 0

� Of course a(t) is unusual . . .
� Oscillations in H(t)

� And H(t) drops below zero!

� But this happens at the end of inflation
� Little effect on far super-horizon modes



Origin of Scalar Perturbations            

1. In Fundamental QG Inflation
� L = 1/16πG (R - 2Λ)(-g)½

� Two hij’s can make a scalar!
E.g. Graviton KE: ḣij ḣij + ∇hij ∇hij

� Usually negligible but if IR logs make 
homogeneous ~ O(1) maybe perts ~ O(GΛ)

2. In Phenomenological Model
� Tµν[g] = p gµν + (ρ+p) uµuν

� p = Λ2 f(-GΛ/� R) fixed by retarded BC
� But ρ and ui at t=0 not fixed by DµTµν = 0



Analysis (in conformal coords)

� 0th order: 2a’’/a3 - a’2/a4 = Λ[1 – 8πǫf(-ǫX0)]

� hµνdxµdxν = -2φdη – 2B,idxidη – 2[ψδij + 
E,ij]dxidxj

� Φ = φ – a’/a (B-E’) – (B’-E’’)

� Ψ = ψ + a’/a (B-E’)

� Gij Eqn � Ψ = Φ and
2/a2 Φ’’+6a’/a3 Φ’+[4a’’/a3-2a’2/a4]Φ = -8πǫΛ f’(-ǫX0)

x 1/�0 [∇2/a2  Φ - 6/a2 Φ’’ - 24 a’/a3 Φ’ - 4/a2 X0’ Φ’]



d2Φ/dt2 + 4HdΦ/dt + (2dH/dt 
+3H2)Φ = -8πε2Λ f’(-εX(t)) NL

� Early � f’(-εX(t)) << 1
� + de Sitter � Φ = 1/a  and  Φ = 1/a3

� Same for all k’s

� Late � f’(-εX(t)) ≈ fc’
� Oscillates with constant frequency ω

d2Φ/dt2 ≈ -ω 1/□ [d2Φ/dt2]

� Amplitude seems constant (numerically)

� Energy transfer to matter crucial



After Inflation

� Model driven by X = 1/� R
� Oscillations & H < 0 � efficient reheating

� H = 1/2t � R = 6 dH/dt + 12 H2 = 0

� QG ends inflation, reheats & then turns 
off for most of cosmological history
� X(t) = -∫tdu a-3∫udv a3 R � Xc



Two Problems at Late Times

Eventually matter dominates
� H(t) goes from 1/(2t) to 2/(3t)
� R = 6dH/dt +12H2 from 0 to 3/(4t2)
� X = 1/□ R from Xc to Xc - 4/3 ln(t/teq)

1. The Sign Problem: 
This gives further screening!

2. The Magnitude Problem:
p ≈ –Λ/G (GΛ)2 fc’ ∆X ≈ -1086 p0 x fc’ ∆X



Magnitude Problem:
Too many Λ’s

� p = Λ2 f(-GΛ 1/□ R)
� Dangerous changing initial Λ2

� But can do -GΛ 1/□[R] � -G/□[ “Λ”R]
� Properties of “Λ”

� Approximately Λ during inflation
� Approx. R by onset of matter domination
� No change to initial value problem
� Invariant functional of metric

� Many choices but “Λ” = R(t/10) works
� Can specify invariantly



Same as before with
“Λ” = ¼ R(t/10)
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Sign Problem: R(t) > 0

� p = Λ2 f(-G/□[ “Λ” R])

� Need to add term to “Λ” R inside [  ]
� Nearly zero during inflation & radiation

� Comparable to R2 after matter

� Opposite sign

� Many choices but □R works
� R = 4/(3t2)  � □R = -8/(3t4) 



Conclusions

� Advantages of QG Inflation
1. Based on fundamental IR theory � GR

2. Λ not unreasonably small! 

3. Λ starts inflation naturally

4. QG back-reaction stops
Simple idea: Grav. Int. E. grows faster than V

5. 1 free parameter: Λ

� But tough to use � Phenom. Model



Tµν[g] = p gµν + (ρ+p) uµuν

� Guess p[g] = Λ2 f(-GΛ X)
� X1 = 1/� R
� Infer ρ and ui from conservation

� Homogeneous evolution: (generic f)
� X falls to make p cancel –Λ/8πG
� Then oscillate with const. period & decreasing amp.

� Reheats to radiation dom. (R=0)
� Matter dom. � R≠0
� ΛX2 = 1/□ [ “Λ” R + □R] can give late acceleration

� Perturbations
� Little change to observable tensors
� Scalars differ but still not clear


