A Phenomenological Model of Inflation from Quantum Gravity

> Nick Tsamis (U. Crete) Richard Woodard (U. Florida) arXiv:0409.2368

Quant. Gravitational Inflation

• Fund. IR gravity: $G_{\mu\nu} = -\Lambda g_{\mu\nu}$ • $\Lambda \sim [10^{12} \text{ GeV}]^2$ starts inflation • $ds^2 = -dt^2 + a^2(t) dx^2$ with $a(t) = e^{Ht}$ QG "friction" stops inflation • $\rho_1 \sim +\Lambda^2$ • $\rho_{2} \sim -G\Lambda^{3} \ln[a(t)]$ • $\rho_L \sim - \Lambda^2 [G\Lambda \ln(a)]^{L-1}$ • Hence p $\sim -\rho \sim \Lambda^2$ f[GAln(a)]

Only Causality Stops Collapse!

- IR gravitons $ightarrow
 ho_{_1} \sim +\Lambda^2$
- w/o causality $\rightarrow \rho_2 \sim -G\Lambda^3 a^2(t)$
 - \blacksquare R(t) \sim a(t)/H $\:$ and $\:$ M(t) \sim H a^3(t) $\:$

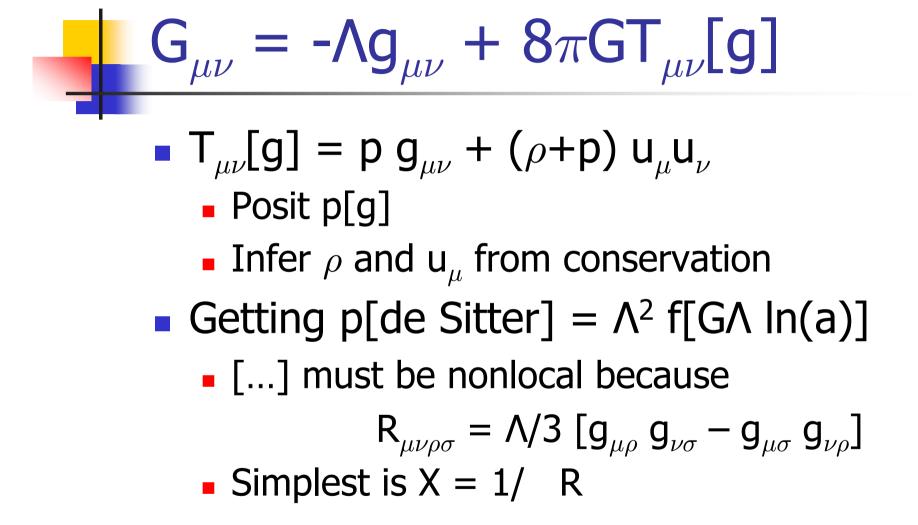
•
$$\Delta E(t) = -GM^2/R \sim -GH^3 a^5(t)$$

- Causality changes powers of a(t) to powers of ln[a(t)]
- But grav. Int. E. still grows w/o bound

Need Phenomenological Model

Advantages of QG Inflation

- Natural initial conditions
- No fine tuning
- Unique predictions
- But tough to USE!
- Try guessing most cosmologically significant part of effective field eqns



$\mathsf{R} \& \equiv (-\mathsf{g})^{-1/2} \partial_{\mu} [(-\mathsf{g})^{1/2} \mathsf{g}^{\mu\nu} \partial_{\nu}]$

R = 6 dH/dt + 12 H² for flat FRW
f(t) = -a⁻³ d/dt [a³ df/dt]
Hence 1/ f = -∫^t du a⁻³ ∫^u dv a³ f(v)
For de Sitter a(t) = e^{Ht} and dH/dt = 0
1/ R = -4 Ht + 4/3 [1 - e^{-3Ht}] ~ -4 ln(a)

Spatially Homogeneous Case

•
$$G_{\mu\nu} = (p-\Lambda)g_{\mu\nu} + (\rho+p) u_{\mu}u_{\nu}$$

• X = 1/ R = - $\int^{t} du a^{-3} \int^{u} dv a^{3} [12H^{2} + 6dH/dv]$

•
$$\rho + p = a^{-3} \int^t du \ a^3 \ dp/du$$
 and $u^{\mu} = \delta^{\mu_0}$

Two Eqns

•
$$3H^2 = \Lambda + 8\pi G \rho$$

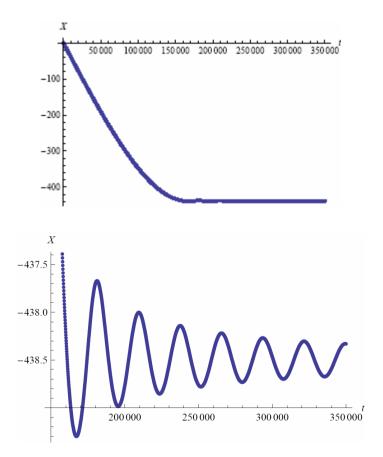
- $-2dH/dt 3H^2 = -\Lambda + 8\pi G p$ (easier)
- Parameters
 - 1 Number: GA (nominally $\sim 10^{-12}$)
 - I Function: f(x) (needs to grow w/o bound)

Numerical Results for $G\Lambda=1/300$ and $f(x) = e^{x}-1$

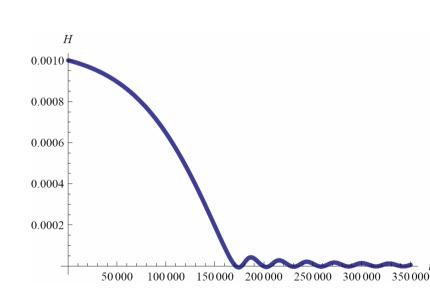
- X= -∫^tdu a⁻³∫^udv a³R
- Criticality

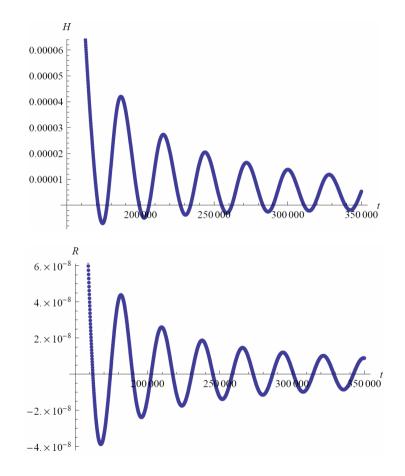
 $p = \Lambda^2 f(-G\Lambda X) = \Lambda/8\pi G$

- Evolution of X(t)
 - Falls steadily to X_c
 - Then oscillates with constant period and decreasing amplitude
 - For all f(x) growing w/o bound



Inflation Ends, H(t) goes < 0, R(t) oscillates about 0





Analytic Treatment ($\epsilon \equiv G\Lambda$)

•
$$2 \text{ dH/dt} + 3 \text{ H}^2 = \Lambda [1 - 8\pi \epsilon f(-\epsilon X)]$$

- $X(t) = X_c + \Delta X(t)$
 - $f \approx f_c \epsilon \Delta X f'_c$
 - 2dH/dt + 3 H² \approx 24 $\pi\epsilon^2$ f'_c Δ X
- Use $R = 6 dH/dt + 12 H^2$

•
$$\Delta X = 1/R - X_c$$

- Act = -[d/dt + 3H]d/dt to localize
 - $[(d/dt)^2 + 2H(d/dt) + \omega^2]R \approx 0$
 - R(t) $\approx \sin(\omega t)/a(t)$
 - $\omega^2 = 24\pi\epsilon^2 \Lambda f'_c$ (agrees with plots!)

Tensor Perturbations

• No change from usual eqn $\ddot{x} + 3 H \dot{x} + k^2/a^2 x = 0$

- Of course a(t) is unusual . . .
 - Oscillations in H(t)
 - And H(t) drops below zero!
- But this happens at the end of inflation
 - Little effect on far super-horizon modes

Origin of Scalar Perturbations

1. In Fundamental QG Inflation

- $\mathcal{L} = 1/16\pi G (R 2\Lambda)(-g)^{\frac{1}{2}}$
- Two h_{ij} 's can make a scalar! E.g. Graviton KE: $\dot{h}_{ij} \dot{h}_{ij} + \nabla h_{ij} \nabla h_{ij}$
- Usually negligible but if IR logs make homogeneous ~ O(1) maybe perts ~ O(GΛ)

2. In Phenomenological Model

- $T_{\mu\nu}[g] = p g_{\mu\nu} + (\rho+p) u_{\mu}u_{\nu}$
- $p = \Lambda^2 f(-G\Lambda/R)$ fixed by retarded BC
- But ρ and u_i at t=0 not fixed by $D^{\mu}T_{\mu\nu} = 0$

Analysis (in conformal coords)

- 0^{th} order: $2a''/a^3 a'^2/a^4 = \Lambda[1 8\pi\epsilon f(-\epsilon X_0)]$
- $h_{\mu\nu}dx^{\mu}dx^{\nu} = -2\phi d\eta^2 2B_{,i}dx^i d\eta 2[\psi\delta_{ij} + E_{,ii}]dx^i dx^j$
 - $\Phi = \phi a'/a (B-E') (B'-E'')$

• $G_{ij} \text{ Eqn} \rightarrow \Psi = \Phi$ and $2/a^2 \Phi'' + 6a'/a^3 \Phi' + [4a''/a^3 - 2a'^2/a^4] \Phi = -8\pi\epsilon^2 \Lambda f'(-\epsilon X_0)$ $\times 1/_0 [\nabla^2/a^2 \Phi - 6/a^2 \Phi'' - 24 a'/a^3 \Phi' - 4/a^2 X_0' \Phi']$ $d^2\Phi/dt^2 + 4Hd\Phi/dt + (2dH/dt + 3H^2)\Phi = -8\pi\epsilon^2\Lambda f'(-\epsilon X(t)) NL$

■ Early → f′(-εX(t)) << 1

- + de Sitter → Φ₁ = 1/a and Φ₂ = 1/a³
 Same for all k's
- Late → $f'(-\epsilon X(t)) \approx f_c'$
 - Oscillates with constant frequency ω d² Φ /dt² \approx - ω ² 1/ \Box [d² Φ /dt²]
 - Amplitude seems constant (numerically)
- Energy transfer to matter crucial

After Inflation

• Model driven by X = 1/R

■ Oscillations & H < 0 → efficient reheating</p>

• $H = 1/2t \rightarrow R = 6 dH/dt + 12 H^2 = 0$

QG ends inflation, reheats & then turns off for most of cosmological history

• $X(t) = -\int^t du \ a^{-3} \int^u dv \ a^3 \ R \rightarrow X_c$

Two Problems at Late Times

Eventually matter dominates

- H(t) goes from 1/(2t) to 2/(3t)
- $R = 6dH/dt + 12H^2$ from 0 to 3/(4t²)
- $X = 1/\Box R$ from X_c to $X_c 4/3 \ln(t/t_{eq})$
- 1. The Sign Problem:

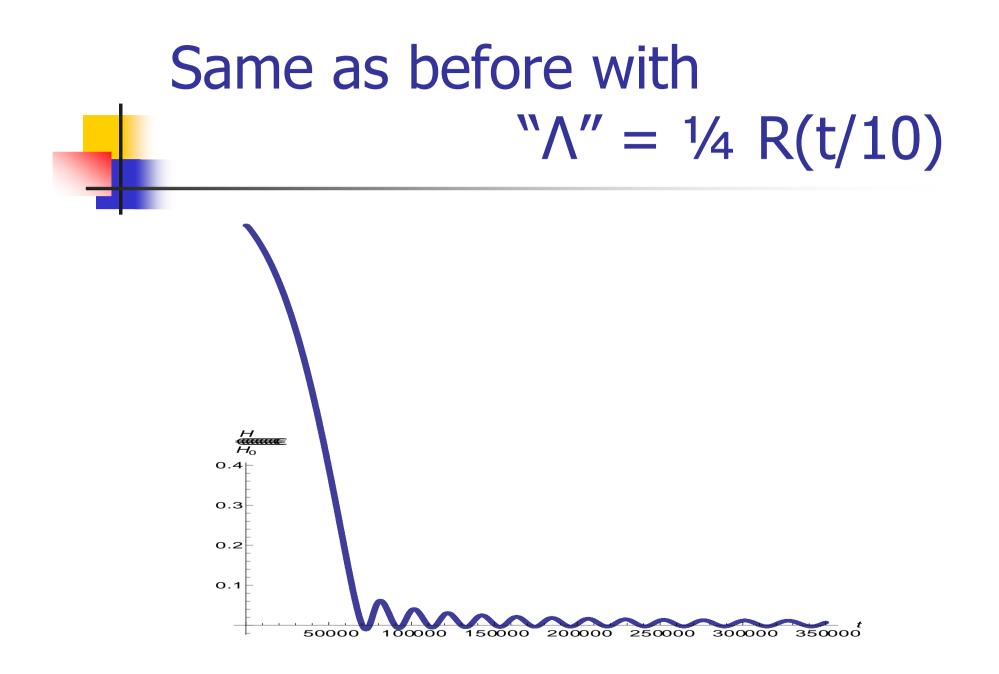
This gives further screening!

2. The Magnitude Problem:

 $p \approx$ –A/G (GA)² $f_c{'}\,\Delta X \approx$ -1086 p_0 x $f_c{'}\,\Delta X$

Magnitude Problem: Too many Λ's

- $p = \Lambda^2 f(-G\Lambda 1/\Box R)$
 - Dangerous changing initial Λ^2
 - But can do -GA $1/\Box[R] \rightarrow -G/\Box[``A''R]$
- Properties of "Λ"
 - Approximately Λ during inflation
 - Approx. R by onset of matter domination
 - No change to initial value problem
 - Invariant functional of metric
- Many choices but " Λ " = R(t/10) works
 - Can specify invariantly



Sign Problem: R(t) > 0

- $p = \Lambda^2 f(-G/\Box[``\Lambda'' R])$
- Need to add term to "\" R inside []
 - Nearly zero during inflation & radiation
 - Comparable to R² after matter
 - Opposite sign
- Many choices but

 R works
 - R = 4/(3t²) $\rightarrow \Box R = -8/(3t^4)$

Conclusions

- Advantages of QG Inflation
 - 1. Based on fundamental IR theory → GR
 - 2. Λ not unreasonably small!
 - 3. Λ starts inflation naturally
 - 4. QG back-reaction stops Simple idea: Grav. Int. E. grows faster than V
 - 5. 1 free parameter: Λ
- But tough to use → Phenom. Model

$T_{\mu\nu}[g] = p g_{\mu\nu} + (\rho+p) u_{\mu}u_{\nu}$

- Guess $p[g] = \Lambda^2 f(-G\Lambda X)$
 - $X_1 = 1/R_1$
 - Infer ρ and u_i from conservation
- Homogeneous evolution: (generic f)
 - X falls to make p cancel $-\Lambda/8\pi G$
 - Then oscillate with const. period & decreasing amp.
- Reheats to radiation dom. (R=0)
 - Matter dom. → R≠0
 - $\Lambda X_2 = 1/\Box$ [" Λ " R + \Box R] can give late acceleration
- Perturbations
 - Little change to observable tensors
 - Scalars differ but still not clear