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i Quant. Gravitational Inflation

= Fund. IR gravity: G, = -Ag

= \ ~ [1012 GeV]? star

U
s inflation

» ds? = -dt? + a2(t) dx? with a(t) = ettt
= QG “friction” stops inflation

= py~ NV
| p2 ~/ —G/\3 In[a(t)]

= p; ~— N [GAIn(a)]+!
= Hence p ~ -p ~ A? f[GAIn(a)]



i Only Causality Stops Collapse!

= IR gravitons = p, ~ +A°

= W/0 causality = p, ~ —GA3 a?(t)
= R(t) ~a(t)/H and M(t) ~ H a3(t)
= AE(Y) = -GM2/R ~ —GH3 a>(t)

= Causality changes powers of a(t) to
powers of In[a(t)]

= But grav. Int. E. still grows w/o bound




i Need Phenomenological Model

= Advantages of QG Inflation
= Natural initial conditions
= No fine tuning
= Unique predictions

= But tough to USE!

= Try guessing most cosmologically
significant part of effective field egns




i G, =-Ng,, + 87GT [q]

= T,91=pg, + (p+p)uu,
= Posit p[d]
= Infer p and u, from conservation

= Getting p[de Sitter] = A? f[GA In(a)]
= [...] must be nonlocal because

R,LLI/,OO' = /\/3 [glup gya — gluo' gyp]
« Simplestis X = 1/00R



i R & 0 =(-g)"d,[(-9)"g"d,]

= R = 6 dH/dt + 12 H? for flat FRW

s (f(t) = -a3 d/dt [a3 df/dt]
=« Hence 1/0f = -ftdu a3 [Udv a3 f(v)

= For de Sitter a(t) = et and dH/dt = 0
= 1/R=-4Ht+4/3[1-e3"] ~ -4 In(a)



i Spatially Homogeneous Case

= G, =(p-Ng,, + (p+p) uu,
= X =1/0R = -ftdu a3Judv a3 [12H? + 6dH/dV]
= P = % f('G/\ X)
= p+p = a3ftduaddp/du and u~ = d~
= [wWo EqQns
| 3H2 - /\ + 87TG P
« -2dH/dt - 3H2 =-A + 87G p (easier)
= Parameters
= 1 Number: GA (nominally ~ 10-12)
= 1 Function: f(x) (needs to grow w/o bound)



Numerical Results for
i GA=1/300 and f(x) = e*-1

= X=-[tdu a3Judv a°R
= Criticality

D = Nf(-GAX) = A/8=G
= Evolution of X(t)

= Falls steadily to X.

= Then oscillates with
constant period and
decreasing amplitude

= For all f(x) growing

w/o bound




Inflation Ends, H(t) goes < 0O,
‘L R(t) oscillates about 0
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i Analytic Treatment (¢ = GA)

= 2dH/dt + 3 H2 = A[1 - 8mef(-eX)]
s X(t) = X, + AX(t)
s Frf -eAXT,
= 2dH/dt + 3 H? = 24ne> f'. AX
= UseR =6dH/dt + 12 H?
= L.H.S. =R/3 —H?
«» AX =1/TTR =X,
= Act [ = -[d/dt + 3H]d/dt to localize
« [(d/dt)? + 2H(d/dt) + w*]R ~ 0
= R(t) = sin(w t)/a(t)
= W = 24ne2N\f. (agrees with plots!)



i Tensor Perturbations

= No change from usual egn
X+3Hx+k?a2x=0
= Of course a(t) is unusual . . .

= Oscillations in H(t)
= And H(t) drops below zero!

= But this happens at the end of inflation
= Little effect on far super-horizon modes



Origin of Scalar Perturbations

+

1. In Fundamental QG Inflation
= L =1/167G (R - 2N)(-g)*"
= Two hy's can m_ak_e a scalar!
E.g. Graviton KE: h; h; + Vh; Vh;,
= Usually negligible but if IR logs make
homogeneous ~ O(1) maybe perts ~ O(GA)
2. In Phenomenological Model
= T,9l=pg, + (p+p)uy,
= p=ANAf(-GA/U R) fixed by retarded BC
= But pand uy; at t=0 not fixed by DT, = 0



i Analysis (in conformal coords)

s Ot order: 2a"”/a3 - a”%/a* = A[1 — 8ref(-eX,)]
« h, dxedx = -2¢die - 2B dxidn — 2[¢3; +
E ;]dxidx
= & =¢—a'l/a(B-E) - (B-E")
= U =1+ a'/a (B-E)
= GyEgn = ¥=¢ and
2/a? &"+6a’[a’ ¢'+[4a"[a3-2a"%[/a*]® = -8re2N f'(-eX,)
X 1/0,[V?/a2 & - 6/a2®” - 24 a'/a3 &' - 4/a? X, D]



d2@/dt2 + 4Hd®/dt + (2dH/dt
i +3H2)® = -8re2A F(-eX(t)) NL

= Early =2 f'(-eX(t)) << 1
« + de Sitter 2 &, =1/a and &, = 1/a3
= Same for all k's
s Late = f(-eX(t)) ~ f.
= Oscillates with constant frequency w
d2@/dt? ~ -w? 1/o [d2d/dt?]
=« Amplitude seems constant (numerically)
= Energy transfer to matter crucial




i After Inflation

= Model driven by X = 1/00R
= Oscillations & H < 0 = efficient reheating
s H=1/2t=>R=6dH/dt+ 12H2=0

= QG ends inflation, reheats & then turns
off for most of cosmological history
= X(t) = -ftdu a3Judv a3 R > X_



i Two Problems at Late Times

Eventually matter dominates
= H(t) goes from 1/(2t) to 2/(3t)
= R = 6dH/dt +12H? from 0 to 3/(4t?)
= X=1/oRfrom X_to X.-4/3 In(t/teg)
1. The Sign Problem:

This gives further screening!

2. The Magnitude Problem:
p =~ -NG (GA)? f/ AX ~ -1086 p, x f." AX




Magnitude Problem:
i Too many A’s

= p = A2f(-GA 1/a R)
= Dangerous changing initial A2
= But can do -GA 1/0[R] = -G/o[ “"A"R]
= Properties of “"A”
= Approximately A during inflation
= ApproXx. R by onset of matter domination
= No change to initial value problem
= Invariant functional of metric

= Many choices but "A” = R(t/10) works
= Can specify invariantly




Same as before with

i “A\” = Va4 R(t/10)




i Sign Problem: R(t) > 0

s p = A f(-G/o[ "A" R])

= Need to add term to "A”" R inside [ ]
= Nearly zero during inflation & radiation
= Comparable to R? after matter
= Opposite sign

= Many choices but oR works
= R =4/(3t2) > oR =-8/(3t%)



i Conclusions

= Advantages of QG Inflation
1. Based on fundamental IR theory = GR
>. N\ not unreasonably small!
3. N\ starts inflation naturally

+. QG back-reaction stops
Simple idea: Grav. Int. E. grows faster than V

s. 1 free parameter: A
= But tough to use = Phenom. Model




i T, [9l=pg, + (p+p) uu,

= Guess p[g] = A? f(-GA X)

| Xl — l/D R

= Infer p and u; from conservation
= Homogeneous evolution: (generic f)

=« X falls to make p cancel -A/87G

= Then oscillate with const. period & decreasing amp.
= Reheats to radiation dom. (R=0)

= Matter dom. = R+#0

« AX, = 1/o [ "A" R + oR] can give late acceleration
= Perturbations

= Little change to observable tensors
= Scalars differ but still not clear



