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Turbulence

The dynamics of fluids is a long standing challenge that
remained as an unsolved problem for centuries.

Understanding its main features, chaos and turbulence, is
likely to provide an understanding of the principles and
non-linear dynamics of a large class of systems far from
equilibrium.
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Black Hole Dynamics

We consider a conceptually new viewpoint to study these
features using the gravitational field variables.
Since the gravitational field is characterized by a curved
geometry, the gravity variables provide a geometrical
framework for studying the dynamics of fluids: A
geometrization of turbulence.
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The Navier-Stokes Equations

The fundamental formulation of the nonlinear dynamics of
fluids is given by the incompressible Navier-Stokes (NS)
equations

∂tvi + vj∂jvi = −∂iP + ν∂jjvi + fi (1)

vi(x , t), i = 1, ..., d , (d ≥ 2) obeying ∂ivi = 0 is the velocity
vector field, P(x , t) is the fluid pressure divided by the
density, ν is the (kinematic) viscosity and fi(x , t) are the
components of an externally applied force.

The equations can be studied mathematically in any space
dimensionality d , with two and three space dimensions
having an experimental realization.
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Reynolds Number and Turbulence

An important dimensionless parameter is the Reynolds
number

Re =
LV
ν

(2)

where L and V are, respectively, a characteristic scale and
velocity of the flow.

Experimental and numerical analysis data show that for
Re ≪ 1, the flows are regular (Laminar). For a Reynolds
number in the range between 1 and 100 the flow exhibits a
complicated (chaotic) structure, while for Re ≫ 100 the
flow is highly irregular (turbulent) with a complex
spatio-temporal pattern formed by the turbulent velocity
field.
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Turbulence in Nature

Most flows in nature are turbulent. This is simple to see by
noting that the viscosity of water is ν ≃ 10−6 m2

sec , while that

of air is ν ≃ 1.5 × 10−5 m2

sec . Thus, a medium size river has
a Reynolds number Re ∼ 107.
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The Statistical Approach

Although the NS equation is deterministic (without a
random force), it is useful to obtain a statistical description
of the turbulent flows.
In the energy cascade picture introduced by Kolmogorov in
1941, energy is transmitted to the fluid by large eddies at a
scale L, that transmit the energy to smaller scales by
breaking to smaller eddies due to instability, until the
viscous scale l is reached, where the energy dissipates
due to friction.

Yaron Oz Gravity and the Shape of Turbulence



Black Holes and Fluid Dynamics
Turbulence

Relativistic CFT Hydrodynamics and Gravity
The Membrane Paradigm

Discussion

Anomalous Scaling

There is experimental and numerical evidence that in the
range of distance scales l ≪ r ≪ L, called the inertial
range, the flows exhibit a universal behavior, e.g. the
space-averaged equal-time correlators of velocity
differences in the inertial range are characterized by critical
exponents.
For instance, the longitudinal n-point functions scale as
(r ≡ x − y)

Sn(r) ≡ 〈
(

(v(x) − v(y)) · r
r

)n
〉 ∼ r ξn (3)

The 1941 exact scaling result of Kolmogorov ξ3 = 1,
agrees well with the experimental data, while the other
exponents are measurable real numbers.
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Anomalous Exponents from Experiment

A major open problem is to calculate these exponents.
While in two space dimensions the anomalous exponents
ξn seem to follow the Kolmogorov linear scaling and are
given by rational numbers, this is not the case in three
space dimensions. Examples in three space dimensions
taken from a wind tunnel data ξ2 = 0.7, ξ4 = 1.28 differ
from the Kolmogorov linear scaling ξ2 = 2

3 , ξ4 = 4
3 .
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The Third Millennium Problem

The NS and Euler equations are nonlinear partial
differential evolution equations. A major open problem
posed by these equations is the understanding and control
of their solutions.
Of particular importance is the short distance behavior and
existence of singularities in the solutions, i.e. starting from
smooth initial data, with a bounded energy condition and a
smooth external force, can the solutions develop a
finite-time singularity.
This is known not to be the case in two space dimensions,
but is not known in three space dimensions ("The Third
Millennium Problem" announced by the Clay Mathematics
Institute).
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Finite Time Singularities

Numerical computations appear to exhibit blowup for
solutions of the Euler equations, but the extreme numerical
instability of the equations makes it very hard to draw
reliable conclusions.

From a physical viewpoint, such a finite-time blowup would
mean a breakdown of the large distance effective theory
that is supposed to describe fluid dynamics, and a need for
an ultraviolet (short distance) information for a complete
description of the dynamics.
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Knudsen Number

Hydrodynamics applies under the condition that the
correlation length of the fluid lcor is much smaller than the
characteristic scale L of variations of the macroscopic
fields.
In order to characterize this, one introduces the
dimensionless Knudsen number

Kn ≡ lcor/L (4)

Since the only dimensionfull parameter is the characteristic
temperature of the fluid T , one has by dimensional
analysis,

lcor = (~c/kBT )G(λ) (5)

where λ denotes all the dimensionless parameters of the
CFT.
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Stress-Energy Tensor

The stress-energy tensor of the CFT obeys

∂νT µν = 0, T µ
µ = 0 (6)

The equations of relativistic hydrodynamics are determined
by the constitutive relation expressing T µν in terms of the
temperature T (x) and the four-velocity field uµ(x)
satisfying uµuµ = −1.
The constitutive relation has the form of a series in the
small parameter Kn ≪ 1,

T µν(x) =
∞
∑

l=0

T µν
l (x), T µν

l ∼ (Kn)l , (7)

where T µν
l (x) is determined by the local values of uµ and

T and their derivatives of a finite order.
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Stress-Energy Tensor

Keeping only the first term in the series gives ideal
hydrodynamics and the stress-energy tensor reads

Tµν = T 4[ηµν + 4uµuν ] (8)

The dissipative hydrodynamics is obtained by keeping
l = 1 term in the series. The stress-energy tensor reads

Tµν = T 4 [ηµν + 4uµuν ] − cησµν (9)

where

σµν = (∂µuν+∂νuµ+uνuρ∂ρuµ+uµuρ∂ρuν−
2
3
∂αuα[ηµν+uµuν ]

(10)
The dissipative hydrodynamics of a CFT is determined by
only one kinetic coefficient - the shear viscosity η.
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Non-Relativistic Limit

The hydrodynamics of relativistic conformal field theories is
intrinsically relativistic as is the microscopic dynamics.
However, the limit of non-relativistic macroscopic motions
of a CFT hydrodynamics leads to the non-relativistic
incompressible Euler and Navier-Stokes equations for ideal
and dissipative hydrodynamics of the CFT, respectively.
The non-relativistic slow motions limit: v ≪ c where v i is
the three-velocity of the fluid, uµ = (γ, γv i/c) and
γ = [1 − v2/c2]−1/2.

T = T0

[

1 + P/c2 + o(1/c)
]

, ν ≡ ~c2F (λ)

4kBT0
(11)

For example, for strongly coupled CFTs described by an
AdS gravity dual F = 1/π.
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Gravitational Dual Description

Relativistic CFT hydrodynamics provides a universal
description of the large scale dynamics of the CFT. The
AdS/CFT correspondence suggests that the large-time
dynamics of gravity provides a dual description of the CFT
hydrodynamics.
The four-dimensional CFT hydrodynamics equations are
the same as the equations describing the evolution of large
scale perturbations of the five-dimensional black brane.
Since we can obtain the Euler and NS equations in the
non-relativistic limit of CFT hydrodynamics, the AdS/CFT
correspondence implies that Euler and NS equations have
a dual gravitational description. The dual description is
obtained by taking the non-relativistic limit of the geometry
dual to the relativistic CFT hydrodynamics.
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Gravitational Dual Description

Consider the five-dimensional Einstein equations with
negative cosmological constant

Rmn + 4gmn = 0, R = −20 (12)

These equations have a particular "thermal equilibrium"
solution - the boosted black brane

ds2 = −2uµdxµdr − r2f [br ]uµuνdxµdxν + r2Pµνdxµdxν

(13)
where

f (r) = 1 − 1
r4 , Pµν = uµuν + ηµν (14)

and the constant T = 1/πb is the temperature.
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Gravitational Dual Description

One looks for a solution of the Einstein equation by the
method of variation of constants using the ansatz

gmn = (g0)mn + δgmn (15)

(g0)mndymdyn = −2uµ(xα)dxµdr −
r2f [b(xα)r ]uµ(xα)uν(xα)dxµdxν + r2Pµν(xα)dxµdxν (16)

y = (xµ, r). As in the Boltzmann equation, the condition of
constructibility of the series solution produces equations
for uµ(xα) and T (xα) = 1/πb(xα). The series for gmn is the
series in the Knudsen number of the boundary CFT
hydrodynamics.
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Membrane Dynamics

The way the black brane horizon geometry encodes the
boundary fluid dynamics is reminiscent of the Membrane
Paradigm in classical general relativity, according to which
any black hole has a fictitious fluid living on its horizon.
The real fluid whose dynamics we wish to study is at the
boundary of the space. It is natural to ask to what extent it
can be identified under the duality map with the membrane
paradigm fluid.
Using the Membrane Paradigm approach as developed by
Damour, we analyze the dynamics of a membrane defined
by the event horizon of a black brane in asymptotically AdS
space-time. We show that it is described by the
incompressible NS equations.
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Membrane Dynamics

The analysis that we perform also holds for any
non-singular null hypersurface when a large scale
hydrodynamic limit exists. Thus, for instance, that the
dynamics of the Rindler acceleration horizon is also
described by the incompressible NS equations.

The connection between the horizon hypersurface
dynamics and the NS equation is analogous to the
connection between the Burgers and the KPZ equations.
The Burgers equation provides a simplified model for
turbulence, while the KPZ equation describes a local
growth of an interface using a height function. The height
gradient obeys the Burgers equation.
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Membrane Dynamics

Our result shows that real turbulence may also be seen as
resulting from a physically natural surface dynamics.
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Definition of Coordinates

We use the convention 8πG = c = ~ = kB = 1.

Consider a (d + 2)-dimensional bulk space-time M with
coordinates X A, A = 0, ..., d + 1 with a Lorentzian metric
gAB.

Let H be a (d + 1)-dimensional null hypersurface (notion
akin to horizon) characterized by the null normal vector n
which components nA obey

n · n = gABnAnB = 0 (17)

Note this condition implies that for a null hypersurface the
normal vector is also a tangent vector.
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The Normal to the Horizon

We define the hypersurface in the bulk space-time by
xd+1 ≡ r = const , and denote the other coordinates as
xµ = (t , x i ), i = 1, ..., d .

The coordinate t parameterizes a slicing of space-time by
spatial hypersurfaces and x i are coordinates on sections of
the horizon with constant t .

In this coordinate system

nr = 0, nt = 1, ni = v i (18)
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Time Slices

Figure: E. Gourgoulhon, J.L. Jaramillo, Phys.Rept. 423 (2006) 159
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Slow Motion Limit

In the case of black branes in AdS, the event horizon is
located in the bulk space-time at r = πT0, where T0

corresponds to the Hawking temperature. The horizon
coordinates (t , x i ) can be identified with time and space
Eddington-Finkelstein coordinates in the AdS boundary.

We consider the slow motion limit where v i is a small
perturbation. In order to keep track of the different terms
we impose the scaling ∂t ∼ ε2, v i ∼ ∂i ∼ ε, where ε is a
small parameter corresponding to c−1.
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The Induced Metric

The first fundamental form (induces metric) reads

ds2
H = hij(dx i − v i dt)(dx j − v jdt) (19)

where hij is the metric on sections St of the horizon H at
constant t .

For the equilibrium black brane, at zeroth order

h(0)
ij = (πT0)

2δij (20)

The details of the subleading term, which is of order ε2, will
not be needed for our analysis.
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The Extrinsic Curvature

The second fundamental form of the horizon hypersurface
is the extrinsic curvature K ν

µ defined by

∇µnA = K ν
µ eA

ν (21)

where we use the horizon basis eA
µ

Together, the first and second fundamental forms provide a
complete description the embedding of the null
hypersurface in the bulk space-time.
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Expansion and Shear

Consider Lie transport of hij along the null normal vector n,
which is given by the Lie derivative Ln

Lnhij =
1
2
∂thij +

1
2
(πT0)

2(Divj + Djvi) (22)

Di is the covariant derivative with respect to the metric hij .

This can be split into its trace part (the expansion θ) and
trace free part (the shear σij )

θ =
1
2

hij∂thij + Djv
j (23)

σij = Lnhij − θhij/d (24)
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Expansion and Shear

For the black brane we get to leading order the O(ε2)
expressions

θ = ∂ivi (25)

σij =
1
2
(πT0)

2(∂ivj + ∂jvi − 2∂kvkδij/d) (26)
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The Pressure

Using n and eA
i as a tangent basis, the components of the

horizon extrinsic curvature are

K n
n = κ(x) (27)

K n
i = Ωi (28)

K i
j = σi

j + θδi
j /d (29)

κ(x) is the surface gravity defined by nB∇BnA = κ(x)nA. It
can be parameterized as

κ(x) = 2πT0(1 + P(x) − v2/2) (30)

where P(x) and v2 scale as ε2. We will identify P(x) as the
fluid pressure.
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The Momentum

Ωi is defined by
Ωi = mA∇inA (31)

where mAnA = 1. For the black brane at leading order we
have

Ωi = 2πT0vi (32)
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The Focusing Equation

The dynamics of the horizon geometry perturbations are
governed by the Einstein equations. Consider first the
contraction of the Einstein equations with nAnB . The black
brane is a solution to the Einstein equations with negative
cosmological constant

RAB + (d + 1)gAB = T matt
AB (33)

There is no contribution from the cosmological constant
term proportional to the metric due to (17), and we get the
focusing equation

−nA∇Aθ + κ(x)θ − θ2/d − σABσAB − T matt
AB nAnB = 0 (34)
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The Incompressibility Condition

Consider first the case T matt
AB = 0. Plugging our previous

results for the expansion, shear, and surface gravity into
(34), we find at leading order the incompressibility
condition

∂ivi = 0 (35)
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The Navier-Stokes Equations

Consider next the contraction of the Einstein equations
with nAeB

i . Again the cosmological constant term does not
contribute because by construction eB

i and nA are
orthogonal. From the remaining terms one finds

LnΩi = −∂iκ(x) + Djσ
j
i −

1
d

∂iθ − nAeB
i T matt

AB (36)

where
LnΩi = (∂t + θ)Ωi + v j DjΩi + ΩjDiv

j (37)

When T matt
AB = 0 we find that the leading order terms are at

order ε3 and give the NS equation (1) without a force term
and with a kinematic viscosity ν = (4πT0)

−1.
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Forcing

If there is a non-zero matter stress tensor it acts as a
forcing term in the NS equations, the force being

fi = T matt
AB nBeA

i (38)

For instance, adding a dilaton φ to gravity, results in

fi = ∇Aφ∇BφnBeA
i /2 (39)
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Energy Balance Equation

In the following we will consider the NS equations without a
forcing term. From the NS equations one can derive the
energy balance equation

∫

1
2

∂tv2ddx = −
∫

ν∂ivj∂
iv jddx (40)

that relates the rate of change of the fluid energy to minus
the energy dissipation per unit time due to fluid friction. To
interpret this equation in terms of the horizon geometry,
consider the focusing equation (34) expanded to order ε4

with T matt
AB = 0.
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Area Theorem

The expansion of the horizon is defined as the fractional
rate of change in the cross-sectional area along the
horizon generators

θ = Ln ln
√

h , (41)

where Ln is the Lie derivative and h is the determinant of
hij .
Integrating the focusing equation over a horizon
cross-section one has

∂tA = ν(πT0)
d

∫

∂ivj∂
iv j ddx , (42)

where A is the total horizon area.
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Area Theorem

Imposing the energy balance law (40), we find that

∂t (A/A0) = −
∫

∂tv2/2 ddx (43)

where A0 is the zeroth order area density (πT0)
d . Thus, as

the kinetic energy of the fluid on the boundary decreases
in time due to viscous dissipation, the horizon area grows.
This is consistent with the classical area increase theorem
of General Relativity.
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Comments

The derivation of the NS equations required knowledge of
the horizon embedding and employed a local analysis near
this horizon. There was no need to know the asymptotic
structure of the full bulk space-time.

The results will apply to a general non-singular null
hypersurface, as long as there is a separation between the
characteristic scale L of the macroscopic perturbations and
some intrinsic microscopic scale.

The non-singularity requirement was used when
contracting the Einstein equations in order to obtain the
membrane equations.
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Knudsen Number

Consider for example black holes in asymptotically flat
spaces with horizons of a spherical topology.

By dimensional analysis the correlation length of a fluid will
scale as lc ∼ T−1

0 , where T0 is the Hawking temperature.

In the asymptotically flat cases T−1
0 ∼ r0, where r0 the

horizon radius. Since the horizon is now also compact, the
L can be no greater than ∼ r0. The dimensionless
Knudsen number Kn ≡ lc/L is of order unity, implying that
the derivative expansion used above is not valid and that
hydrodynamics is not the appropriate effective description.
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Rindler Horizon

Rindler space is associated with accelerated observers in
d + 2 Minkowski spacetime

ds2 = −κ2ξ2dτ2 + dξ2 +
d

∑

i=1

dx idxi (44)

where κ is a constant.

To the uniformly accelerated observer with worldline
ξ = const ., the surface ξ = 0 is a causal horizon, with
intrinsic metric hij = δij , that prevents him from an access
to the entire spacetime.
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Rindler Horizon

The constant κ can be identified with a temperature. Unruh
showed that accelerated observers feel the quantum
vacuum to be a thermal state at temperature T = a/2π,
where a the observer’s proper acceleration.

This local temperature can be expressed as T = κ/2πχ,
where χ =

√−gττ = κξ is the redshift factor.

We define κ = 2πT0 as the location independent
temperature of the system.
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Rindler Horizon

To perturb this horizon we allow, a slowly varying
(L ≫ T−1

0 ) fluid velocity ni = v i of ∼ ε and parameterize
κ(x) as in (30).

Applying the membrane analysis to the Rindler horizon
also shows that its dynamics is determined by the
incompressible NS equations with kinematic viscosity
(4πT0)

−1.

In this case though the result cannot be understood as
mirroring the hydrodynamics of a field theory fluid living on
an asymptotic boundary of spacetime.
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Implications

Exact solutions of the NS equations such as vortices and
others are mapped immediately into geometrical horizons.

Finite time singularities, where fluid velocity gradients
diverge, are mapped into the naked curvature singularities
in the gravity description. Thus, the extremely important
problem of singularities in the NS equations in three space
dimensions appears linked to a cosmic censorship
principle in gravity.
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Implications

space-averaged equal-time correlators of velocity
differences Sn(r) in the inertial range are characterized by
critical exponents. In the geometrical picture, Sn(r)
correspond to the space-averaged equal-time correlators
of differences of normals to the horizon.

Multi-fractality of the horizon surface may give for the first
time a consistent dynamical basis for the multifractal model
of turbulence, which expresses the anomalous exponents
of turbulence in terms of the spectrum of fractal
dimensions.
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