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Neutron Stars in AdS/CFT
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Our main goal is to construct a“neutron star” in AdS and
understand its dynamics in the boundary CFT.
Motivations:

n Gravitational Collapse in AdS/CFT

• Neutron Stars are dense objects which do collapse if they
get too big.

• Good starting point to study black hole formation.

n Holography

• Macroscopic objects in AdS, no horizon, may be easier to
understand holographically than black holes.

• What is the meaning of the gravitational field of the star
in the boundary theory?

• How is their radial profile of the star encoded in the
boundary theory?



Some more motivations
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n High Density Gauge theories

n Astrophysics ?



An ideal Neutron star
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n Real world neutron stars are complicated - Equation of
State (nuclear matter) is not well understood.

n We are interested in an idealized neutron star:

• A system of identical fermions, which interact only
gravitationally.

• Fermions do not have to be neutrons, so more generally
we can call them “degenerate stars”.

n Fermions do not collapse because of degeneracy pressure.

n Degenerate fermions have P 6= 0 even at T = 0.



The Chandrasekhar/Oppenheimer-Volkoff Limit
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n Consider N degenerate fermions of mass m
fermion

.

n Degeneracy pressure cannot support gravitational
attraction when:

Ncrit &
(
m

Planck

m
fermion

)3

(1)

n Compute the energy of N fermions in a box of size R as
the sum of gravitational potential energy + kinetic energy.
Then energy is unbounded from below for N > Ncrit.

n More precisely: Einstein equations + degenerate fermionic
fluid have no static solutions for N > Ncrit.



Neutron stars and Black Holes
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n If the mass of a degenerate star exceeds the
Chandrasekhar/OV limit, then the star becomes unstable
and starts collapsing.

n Understanding the endpoint of the collapse is in general a
complicated question (for example in the real world “white
dwarf” → “neutron star” → “quark star (??)” → “black
hole”).

n For our idealized fermions the natural endpoint would be a
black hole.



Degenerate stars in AdS
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AdS/CFT correspondence

Degenerate stars in
AdS
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n Any theory of quantum gravity in AdSd+1 space is
holographically dual to a d-dimensional CFT.

n Consider AdSd+1 in global coordinates

ds2 = −(1 + r2)dt2 + (1 + r2)−1dr2 + r2dΩ2
d−1 (2)

n Dual CFT lives on Sd−1 × time

n Hilbert spaces of two systems are equivalent.

n Degenerate star in AdS corresponds to some state of the
CFT on the cylinder.



States and Operators
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n State Operator Map:
states on Sd−1 ⇔ local operators at the origin in Rd.

Φ(0)|0〉 ⇒ |Φ〉 (3)

n The energy of the state is given by the conformal
dimension of the operator

E =
∆
R

(4)

n Other quantum numbers of |Φ〉 are determined by those of
Φ(0).

n A neutron star in the bulk will correspond to a certain
“neutron star operator” in the CFT.



Single-fermion states
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n Consider a fermionic “single trace operator” Ψ(x) of
conformal dimension ∆0.

n For example in the N = 4 SYM it could be a descendant of
a chiral primary:

Ψ(x) = {Q,Trφk} ∼ Tr(λφk) (5)

(which is protected at strong coupling)

n A state corresponding to a single Ψ fermion in its ground
state can be represented by the operator

Ψ(0) (6)

and has energy E = ∆0.



Excited single-fermion states
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n The conformal descendants in the same multiplet
correspond to a single fermion in an excited state (moving
in AdS) and can be written as

∂µ1 ...∂µnΨ(0) (7)

with energy E = ∆0 + n.

n The operator Ψ is dual to a field ψ in the bulk, which
obeys a Klein-Gordon (or Dirac) equation

(¤ +m2)ψ = 0 (8)

with mass m ≈ ∆0 for large ∆0.

n The single particle states in the bulk correspond to
solutions of this equation and have the form

ψn,l,m(r,Ω) = fn,l(r)Yn−2l,m(Ω) (9)



Multi-fermion states
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n Now we consider a state with 2 fermions. We want to find
the corresponding operator.

n In AdS/CFT multi-particle states in the bulk are dual to
multi-trace operators.

n Since the operator Ψ obeys Fermi statistics we have

Ψ(x)Ψ(y) = −Ψ(y)Ψ(x) (10)

which implies
: Ψ(0)2 := 0 (11)

n The lowest energy state with 2 fermions made out of Ψ
corresponds to the operator

: Ψ(0)∂µΨ(0) : (12)

and has conformal dimension 2∆0 + 1.



”Degenerate operators” at infinite N
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n More generally the operator corresponding to the ground
state of many fermions in the bulk is

Φ = Ψ
∏

i

∂iΨ
∏

i,j

∂i∂jΨ...
∏

i1,...,inF

∂i1 ...∂inF
Ψ (13)

n nF is # of “filled shells” = “Fermi Level”

n The total number of particles is

N =
nF∑

n=0

(
n+ d− 1
d− 1

)
=

(
nF + d

d

)
(14)

for AdSd+1, and the total conformal dimension (energy)

∆ =
∑

(n+ ∆0)
(
n+ d− 1
d− 1

)
= ∆0N +

dnF

d− 1
N (15)



First comments on interactions
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n If we keep # fermions and ∆ fixed and send N →∞ then
our previous analysis is exact.

n This is based on ’t Hooft large N counting and the
factorization of correlators

〈Ψ(x)Ψ(y)O(z)〉 ∼ 1
N

(16)

n The ∆ = fixed, N →∞ limit is under control but not so
interesting because our system is essentially a free Fock
space of fermions.

n However: if we scale the number of fermions to infinity at
the same time as N →∞, it is possible that the ’t Hooft
1
N suppression is compensated by the large number of
diagrams between pairs of particles.



The scaling limit
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n What limit do we want to take?

n In the bulk the gravitational backreaction of an object of
mass M is of the order

GnewtonM

`2
(17)

where ` is the radius of AdS5.

n We also have Gnewton ∼ 1
N2 .

n To have nontrivial backreaction we need M ≡ ∆ ∼ N2.

n We consider “degenerate fermionic operators” of conformal
dimension ∆ = µN2.

n When µ¿ 1 the system is approximately free, for µ ∼ 1
very complicated.



Bulk without Backreaction
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Quantum states in AdS

Bulk without
Backreaction
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n Operators of the form ∂µ....∂νΨ are single fermion states in
the bulk with wavefunctions

ψn,l,m(r,Ω) = fn,l(r)Yn−2l,m(Ω) (18)

n The composite degenerate operator

Φ = Ψ
∏

i

∂iΨ
∏

i,j

∂i∂jΨ...
∏

i1,...,inF

∂i1 ...∂inF
Ψ (19)

corresponds to a Slater determinant of many fermions in
the bulk.

n We will work in a limit where the number of fermions goes
to infinity.



Trapped Fermionic Gas in AdS
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Fluid Approximation
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n If number of fermions is very large it is better to describe
the state in a fluid approximation

Tµν = (ρ+ P )uµuν + Pgµν (20)

n ρ and P are given by the Equation of State of a degenerate
fermionic gas.

n It is OK to use the flat space EOS even in AdS, if the
number of fermions is very large.



Fermionic Equation of State

Bulk without
Backreaction

21 / 42

n Local Fermi Energy µF given by

µF =
√
m2

f + k2
F (21)

n Energy density

ρ =
∫ kF

0
kd−1

√
k2 +m2

dk

(2π)d
(22)

n Pressure

P =
1
d

∫ kF

0

kd+1

√
k2 +m2

dk

(2π)d
(23)

n Particle number density n = kd
F

d(2π)d



The star, no self-gravitation
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n Start with fixed, non-dynamical background metric

ds2 = −A(r)2dt2 +B(r)2dr2 + r2dΩ2
3 (24)

n Consider a spherically symmetric profile µF (r) for the fluid.

n Equation for hydrostatic equilibrium

∇µTµν = 0 (25)

n Solution is given by “Tolman factor”

µF (r) =
εF
A(r)

, εF = const (26)

n Edge of the star when µF (R) = mF . At that point the
pressure and density go to zero.



Particle Number and Energy

Bulk without
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n As a check of the fluid approximation we can compute the
total mass and particle number

M =
∫ R

0
drA(r)B(r)r3ρ(r)

N =
∫ R

0
drB(r)r3n(r)

(27)

where ρ(r), n(r) are to be computed using the profile

µF (r) =
εF
A(r)

, εF = const (28)

n Computing the integrals one finds agreement with the
exact counting in the gauge theory.



Including Backreaction
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The Tolman-Oppenheimer-Volkoff equations
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n We assume spherically symmetric and static solutions

ds2 = −A(r)2dt2 +B(r)2dr2 + r2dΩ2
3 (29)

n And we have to solve Einstein’s equations

Rµν − 1
2
gµνR+ Λgµν = 8πGTµν

Tµν = (ρ+ P )uµuν + Pgµν

(30)

n We start with a density ρ0 at the center of the star and
then integrate the equations outwards.



Numerical Solution: Density profile
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Numerical Solutions
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n One finds spherical star-like objects.

n For fixed total number of fermions, increasing Gnewton

makes the star more compact.

n Increasing Gnewton lowers the ADM mass → binding energy

n What happens if we put too many fermions? Are the stars
stable?



The Chandrasekhar bound in AdS

Including
Backreaction

28 / 42

n Below we plot the ADM mass as a function of the density
at the center.
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n Solutions for which dM
dρ0

< 0 are unstable towards radial
density perturbations.

n There is a maximum critical mass Mc of a degenerate
fermionic star in AdS.



Dependence on fermion mass
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n The critical mass depends on the mass of the fermions

n For light fermions the critical star is bigger than AdS radius
and relativistic, while for heavy fermions it is smaller and
non-relativistic.
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The instability
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n At the point where dM
dρ0

= 0 there is a linearized
perturbation of the solution with ω = 0 which becomes
tachyonic for larger ρ0.

n This tachyonic mode corresponds to radial density waves,
which move fermions towards the center and leads to the
collapse of the star.

n There are no *static* solutions with M > Mcrit (except for
Black Holes)



Endpoint of the collapse
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n In AdS5 the critical mass of a degenerate fermionic star is
slightly above the “smallest big AdS black hole”.

n Notice that the neutron star has T = 0 while the black hole
T > 0.

n We have entropy production.



CFT intepretation
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What is the collapse in the CFT

CFT intepretation
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n Initial State: many fermions. These are gauge singlets or
“glueballs” of the CFT.

n Final state: black hole, dual to a quark-gluon plasma phase.

n If we try to place too many “glueballs” on the 3-sphere,
even at zero temperature, they will deconfine.

n Gravitational Collapse = High density deconfinement
“phase transition” in the CFT.



Gravitational Backreaction in the CFT 1

CFT intepretation
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n At infinite N the correlators of operators in the CFT
factorize. This implies that the conformal dimension of a
multi-trace operator is the sum of conformal dimensions of
constituents

∆(: φ1φ2 :) = ∆(φ1) + ∆(φ2) (31)

n If we keep 1
N corrections then there will be an anomalous

dimension or “binding energy”

∆(: φ1φ2 :) = ∆(φ1) + ∆(φ2)− δ

N2
(32)

n To compute the binding energy δ
N2 we need the 4-point

function 〈φ1φ1φ2φ2〉 to order 1
N2 .



Gravitational Backreaction in the CFT 2

CFT intepretation
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n In the bulk the gravitational backreaction can be
understood as graviton exchange between the fermions.

n In AdS/CFT the bulk graviton gµν is mapped to the
stress-energy tensor Tµν of the CFT.

n So we expect that the gravitational interaction must be
related to Tµν exchange between φ1, φ2 in the CFT.

n The contribution of Tµν to the 4-point function
〈φ1φ1φ2φ2〉 is fixed by conformal invariance.

n The Ward identities fix 〈φiφiT 〉 ∼ ∆i while 〈TT 〉 ∼ N2.



Gravitational Backreaction in the CFT 3

CFT intepretation
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n Then one finds

〈φ1φ1φ2φ2〉T ∼ ∆1∆2

N2
(33)

Which gives a binding energy of the order

∆1∆2

N2
∼ GNm1m2

`2
! (34)

n This can be made more precise, one finds that the
gravitational interaction between two particles in the bulk
can be exactly reproduced by Tµν exchange on the
boundary (Conformal Partial Wave vs Witten diagram).



Summing up the corrections

CFT intepretation

41 / 42

n Since we can reproduce the gravitational interaction
between 2 particles from the CFT it should be possilbe to
sum up over all pairs.

n This should reproduce the gravitational binding energy of
the star in the “Newtonian” approximation.

n To get the full General Relativity answer we also need the
self-interactions of gravitons.

n The collapse should be visible even in the Newtonian limit.



Further Questions
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n How big is the effect of other particles and interactions? Is
there an AdS/CFT setup in which they can be neglected?

n How do correlators look in the presence of the star? (see
also V. Hubeny, H. Liu, M. Rangamani)

n What is the tachyonic mode on the boundary CFT (radial
instability) ?

n Can we reconstruct the bulk spacetime+star from the CFT
with only Tµν and Ψ?

n What do Einstein’s equations mean in the CFT?

n Can we study the dynamics of the collapse in the CFT?


