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Neutron Stars in AdS/CFT

Our main goal is to construct a “neutron star” in AdS and
understand its dynamics in the boundary CFT.
Motivations:

Introduction

B Gravitational Collapse in AdS/CFT

e Neutron Stars are dense objects which do collapse if they
get too big.

e Good starting point to study black hole formation.

B Holography

e Macroscopic objects in AdS, no horizon, may be easier to
understand holographically than black holes.

e \What is the meaning of the gravitational field of the star
in the boundary theory?

e How is their radial profile of the star encoded in the
boundary theory?
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Some more motivations

Introduction B High Density Gauge theories

B Astrophysics ?
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An ideal Neutron star

Introduction B Real world neutron stars are complicated - Equation of
State (nuclear matter) is not well understood.

B \We are interested in an idealized neutron star:

e A system of identical fermions, which interact only
gravitationally.

e Fermions do not have to be neutrons, so more generally
we can call them “degenerate stars”.

B Fermions do not collapse because of degeneracy pressure.

B Degenerate fermions have P # 0 even at T' = 0.
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Introduction

The Chandrasekhar/Oppenheimer-Volkoff Limit

B Consider NV degenerate fermions of mass m

fermion -’

B Degeneracy pressure cannot support gravitational
attraction when:

3
chrit 2 ( mPlanck ) (1)

fermaion

B Compute the energy of N fermions in a box of size R as
the sum of gravitational potential energy + kinetic energy.
Then energy is unbounded from below for N > N..;+.

B More precisely: Einstein equations 4+ degenerate fermionic
fluid have no static solutions for N > N_,.;;.

6 / 42



Neutron stars and Black Holes

Introduction B If the mass of a degenerate star exceeds the
Chandrasekhar/QV limit, then the star becomes unstable
and starts collapsing.

B Understanding the endpoint of the collapse is in general a
complicated question (for example in the real world “white

dwarf” — “neutron star” — “quark star (?7)" — “black
hole™).

B For our idealized fermions the natural endpoint would be a
black hole.
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Degenerate stars in AdS
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AdS/CFT correspondence

Degenerate stars in B Any theory of quantum gravity in AdS;1 space is
holographically dual to a d-dimensional CFT.

B Consider AdS;4.1 in global coordinates

ds® = —(L+r2)dt* + 14+ ) 1dr? +r2d03 |, (2)

m Dual CFT lives on S41 x time
B Hilbert spaces of two systems are equivalent.

B Degenerate star in AdS corresponds to some state of the
CFT on the cylinder.
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States and Operators

Degenerate stars in
AdS

B State Operator Map:
states on S%~1 < local operators at the origin in R<.

©(0)[0) = @) (3)

B The energy of the state is given by the conformal
dimension of the operator

A
E== 4
= (@
B Other quantum numbers of |®) are determined by those of
®(0).

B A neutron star in the bulk will correspond to a certain
“neutron star operator” in the CFT.
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Single-fermion states

Degenerate stars in B Consider a fermionic “single trace operator” ¥(x) of
conformal dimension Ay.

m For example in the A/ = 4 SYM it could be a descendant of
a chiral primary:

U(z) = {Q, Tr¢"} ~ Tr(A") (5)
(which is protected at strong coupling)

B A state corresponding to a single ¥ fermion in its ground
state can be represented by the operator

v (0) (6)

and has energy £ = Ay.
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Excited single-fermion states

Degenerate stars in B The conformal descendants in the same multiplet
correspond to a single fermion in an excited state (moving
in AdS) and can be written as

Opy O, ¥(0) (7)
with energy ' = Ag + n.

B The operator V¥ is dual to a field ¥ in the bulk, which
obeys a Klein-Gordon (or Dirac) equation

(O+m?)p =0 (8)
with mass m ~ A for large Ay.

B The single particle states in the bulk correspond to
solutions of this equation and have the form

wn,l,m(fr; Q) — f’n,l(r)Yn—Ql,m(Q> 15 }%g



Multi-fermion states

Degenerate stars in
AdS

B Now we consider a state with 2 fermions. We want to find
the corresponding operator.

B In AdS/CFT multi-particle states in the bulk are dual to
multi-trace operators.

B Since the operator ¥ obeys Fermi statistics we have

U(z)¥(y) = —V(y)¥(z) (10)

which implies
L U(0)?:=0 (11)

B The lowest energy state with 2 fermions made out of W
corresponds to the operator

: ¥(0)0,¥(0) : (12)
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" Degenerate operators’ at infinite N

Degenerate stars in B More generally the operator corresponding to the ground
state of many fermions in the bulk is

o=v]lov]]oo®... ] 0.0, ¥  (13)
i i.j

11y--lnp

B np is # of “filled shells” = “Fermi Level”

B T[he total number of particles is

N — Z<n+d—1>:(npd+d> (14)

for AdS4,1, and the total conformal dimension (energy)

A:Z(on)(”;fIl) AN + TN (15)

14 / 42



First comments on interactions

Degenerate stars in B If we keep # fermions and A fixed and send N — oo then
our previous analysis is exact.

B This is based on 't Hooft large N counting and the
factorization of correlators

(V(2)TW)O(:)) ~ (16)

B The A = fixed, N — oo limit is under control but not so
interesting because our system is essentially a free Fock
space of fermions.

B However: if we scale the number of fermions to infinity at
the same time as N — o0, it is possible that the 't Hooft
% suppression is compensated by the large number of
diagrams between pairs of particles.
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The scaling limit

/E;jgenerate stars in B \What limit do we want to take?

B In the bulk the gravitational backreaction of an object of
mass M is of the order

GnewtonM
62

where ¢ is the radius of AdSs.

(17)

B We also have G, ewton ~ #
B To have nontrivial backreaction we need M = A ~ N?Z.

B \We consider “degenerate fermionic operators’ of conformal
dimension A = N2,

B When p < 1 the system is approximately free, for u ~ 1
very complicated.
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Bulk without Backreaction
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Quantum states in AdS

Bulk without B Operators of the form 9,,....0, ¥ are single fermion states in
the bulk with wavefunctions

wn,l,m(ra Q) — fn,l(T)Yn—%,m(Q) (18)

B [he composite degenerate operator

o=v]lov]]oov... ] 0.0, ¥ (19
i i,j

i]_,...,?:rnF

corresponds to a Slater determinant of many fermions in
the bulk.

B We will work in a limit where the number of fermions goes
to infinity.
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Trapped Fermionic Gas in AdS

Bulk without
Backreaction




Fluid Approximation

Bulk without B If number of fermions is very large it is better to describe
the state in a fluid approximation

Ty = (p+ P)uyuy, + Pgy (20)

B p and P are given by the Equation of State of a degenerate
fermionic gas.

B It is OK to use the flat space EOS even in AdS, if the
number of fermions is very large.
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Fermionic Equation of State

Bulk without B Local Fermi Energy puyr given by

Backreaction

pr = \/m?c—kk%

B Energy density

kr dk
,0:/ kA1 k2 + m?2
0

(2m)<
B Pressure
1 kg kd+1 dk
P = -
d/o VEZ + m2 (2m)d
. : k4
B Particle number density n = d(2—§)d

(21)

(22)

(23)
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The star, no self-gravitation

Bulk without
Backreaction

B Start with fixed, non-dynamical background metric

ds® = —A(r)*dt* + B(r)*dr® + r*dQ3 (24)

B Consider a spherically symmetric profile (1) for the fluid.

B Equation for hydrostatic equilibrium

VAT, =0 (25)

B Solution is given by “Tolman factor”

pp(r) = ep = const (26)

B Edge of the star when up(R) = mp. At that point the
pressure and density go to zero. 22 / 42



Particle Number and Energy

Bulk without B As a check of the fluid approximation we can compute the
acKreaction
total mass and particle number

R
= T T TTB T
M—AdAum>pu

5 (27)
N = / drB(r)r’n(r)
0
where p(7),n(r) are to be computed using the profile
pp(r) = ;5), ep = const (28)

B Computing the integrals one finds agreement with the
exact counting in the gauge theory.
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Including Backreaction
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The Tolman-Oppenheimer-Volkoff equations

Including B \We assume spherically symmetric and static solutions

Backreaction

ds® = —A(r)?dt* + B(r)*dr?® + r2dS); (29)

B And we have to solve Einstein’'s equations

1
R'UJ,/ — ig’ij + Ag/u/ = SWGTMV

Ty = (p+ P)uyuy, + Pgy

(30)

B \We start with a density pg at the center of the star and
then integrate the equations outwards.
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Including
Backreaction

Numerical Solution: Density profile

05 1.0

15

2.0
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Numerical Solutions

Including B One finds spherical star-like objects.

Backreaction

B For fixed total number of fermions, increasing G,cwton
makes the star more compact.

B Increasing Gewton lowers the ADM mass — binding energy

B \What happens if we put too many fermions? Are the stars
stable?
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The Chandrasekhar bound in AdS

Including B Below we plot the ADM mass as a function of the density
at the center.

ADM mass
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log(p)

hdM

B Solutions for whic < 0 are unstable towards radial

density perturbatlons

B There is a maximum critical mass M. of a degenerate
fermionic star in AdS. 28 / 42



Dependence on fermion mass

Including :
Backreaction gt [

B The critical mass depends on the mass of the fermions

B For light fermions the critical star is bigger than AdS radius
and relativistic, while for heavy fermions it is smaller and

non-relativistic.
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Including
Backreaction
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Including
Backreaction
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Including
Backreaction
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Including
Backreaction
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The instability

Including . M L . . .
Beeoe B At the point where doo = 0 there is a linearized

perturbation of the solution with w = 0 which becomes
tachyonic for larger pg.

B This tachyonic mode corresponds to radial density waves,
which move fermions towards the center and leads to the
collapse of the star.

B There are no *static* solutions with M > M_.;; (except for
Black Holes)
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Endpoint of the collapse

Including B In AdS5 the critical mass of a degenerate fermionic star is
slightly above the “smallest big AdS black hole”.

B Notice that the neutron star has I' = 0 while the black hole
T > 0.

B \We have entropy production.
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CFT intepretation
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What is the collapse in the CFT

CFT intepretation B Initial State: many fermions. These are gauge singlets or
“glueballs” of the CFT.

B Final state: black hole, dual to a quark-gluon plasma phase.

B If we try to place too many “glueballs” on the 3-sphere,
even at zero temperature, they will deconfine.

B Gravitational Collapse = High density deconfinement
“phase transition” in the CFT.
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Gravitational Backreaction in the CFT 1

CFT intepretation

B At infinite NV the correlators of operators in the CFT
factorize. This implies that the conformal dimension of a

multi-trace operator is the sum of conformal dimensions of
constituents

A(: p192 1) = A(¢1) + A(¢2) (31)

m If we keep % corrections then there will be an anomalous
dimension or “binding energy”

J

Al 9192:) = A1) + Ald2) — 15 (32)

B To compute the binding energy % we need the 4-point

function (¢p1¢1p2¢2) to order #
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Gravitational Backreaction in the CFT 2

CFT intepretation B In the bulk the gravitational backreaction can be
understood as graviton exchange between the fermions.

B In AdS/CFT the bulk graviton g, is mapped to the
stress-energy tensor 1), of the CFT.

B So we expect that the gravitational interaction must be
related to 7}, exchange between ¢1, ¢2 in the CFT.

B The contribution of 7}, to the 4-point function
(Pp101¢202) is fixed by conformal invariance.

B The Ward identities fix (¢;¢;T) ~ A; while (T'T) ~ N2,
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Gravitational Backreaction in the CFT 3

CFT intepretation B Then one finds
A1As
(P1d10202)T ~ — (33)
Which gives a binding energy of the order
AlAQ N GlemQ ' (34)

N2 02

B This can be made more precise, one finds that the
gravitational interaction between two particles in the bulk
can be exactly reproduced by T}, exchange on the
boundary (Conformal Partial Wave vs Witten diagram).
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Summing up the corrections

CFT intepretation B Since we can reproduce the gravitational interaction
between 2 particles from the CFT it should be possilbe to
sum up over all pairs.

B This should reproduce the gravitational binding energy of
the star in the “Newtonian” approximation.

B To get the full General Relativity answer we also need the
self-interactions of gravitons.

B The collapse should be visible even in the Newtonian limit.
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Further Questions

CFT intepretation B How big is the effect of other particles and interactions? Is
there an AdS/CFT setup in which they can be neglected?

B How do correlators look in the presence of the star? (see
also V. Hubeny, H. Liu, M. Rangamani)

B What is the tachyonic mode on the boundary CFT (radial
instability) 7

B Can we reconstruct the bulk spacetime—+star from the CFT
with only 7}, and W?

B What do Einstein’'s equations mean in the CFT?

B Can we study the dynamics of the collapse in the CFT?
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